Implement the simple Lengauer-Tarjan algorithm

This replaces the previous implementation with the simple variant of
Lengauer-Tarjan, which performs better in the general case. Performance on the
keccak benchmark is about equivalent between the two, but we don't see
regressions (and indeed see improvements) on other benchmarks, even on a
partially optimized implementation.

The implementation here follows that of the pseudocode in "Linear-Time
Algorithms for Dominators and Related Problems" thesis by Loukas Georgiadis. The
next few commits will optimize the implementation as suggested in the thesis.
Several related works are cited in the comments within the implementation, as
well.

Implement the simple Lengauer-Tarjan algorithm

This replaces the previous implementation (from #34169), which has not been
optimized since, with the simple variant of Lengauer-Tarjan which performs
better in the general case. A previous attempt -- not kept in commit history --
attempted a replacement with a bitset-based implementation, but this led to
regressions on perf.rust-lang.org benchmarks and equivalent wins for the keccak
benchmark, so was rejected.

The implementation here follows that of the pseudocode in "Linear-Time
Algorithms for Dominators and Related Problems" thesis by Loukas Georgiadis. The
next few commits will optimize the implementation as suggested in the thesis.
Several related works are cited in the comments within the implementation, as
well.

On the keccak benchmark, we were previously spending 15% of our cycles computing
the NCA / intersect function; this function is quite expensive, especially on
modern CPUs, as it chases pointers on every iteration in a tight loop. With this
commit, we spend ~0.05% of our time in dominator computation.
This commit is contained in:
Mark Rousskov 2021-05-06 17:24:09 -04:00
parent 0fb1c371d4
commit e8d7248093
2 changed files with 119 additions and 42 deletions

View file

@ -1,9 +1,8 @@
//! Finding the dominators in a control-flow graph.
//!
//! Algorithm based on Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy,
//! "A Simple, Fast Dominance Algorithm",
//! Rice Computer Science TS-06-33870,
//! <https://www.cs.rice.edu/~keith/EMBED/dom.pdf>.
//! Algorithm based on Loukas Georgiadis,
//! "Linear-Time Algorithms for Dominators and Related Problems",
//! ftp://ftp.cs.princeton.edu/techreports/2005/737.pdf
use super::iterate::reverse_post_order;
use super::ControlFlowGraph;
@ -19,6 +18,11 @@ pub fn dominators<G: ControlFlowGraph>(graph: G) -> Dominators<G::Node> {
dominators_given_rpo(graph, &rpo)
}
struct PreOrderFrame<Node, Iter> {
node: Node,
iter: Iter,
}
fn dominators_given_rpo<G: ControlFlowGraph>(graph: G, rpo: &[G::Node]) -> Dominators<G::Node> {
let start_node = graph.start_node();
assert_eq!(rpo[0], start_node);
@ -29,53 +33,115 @@ fn dominators_given_rpo<G: ControlFlowGraph>(graph: G, rpo: &[G::Node]) -> Domin
post_order_rank[node] = index;
}
let mut visited = BitSet::new_empty(graph.num_nodes());
let mut parent: IndexVec<G::Node, Option<G::Node>> =
IndexVec::from_elem_n(None, graph.num_nodes());
let mut pre_order_index: IndexVec<G::Node, Option<usize>> =
IndexVec::from_elem_n(None, graph.num_nodes());
let mut pre_order_nodes = Vec::with_capacity(rpo.len());
let mut stack = vec![PreOrderFrame {
node: graph.start_node(),
iter: graph.successors(graph.start_node()),
}];
visited.insert(graph.start_node());
let mut idx = 0;
pre_order_index[graph.start_node()] = Some(0);
idx += 1;
pre_order_nodes.push(graph.start_node());
'recurse: while let Some(frame) = stack.last_mut() {
while let Some(successor) = frame.iter.next() {
if visited.insert(successor) {
parent[successor] = Some(frame.node);
pre_order_index[successor] = Some(idx);
pre_order_nodes.push(successor);
idx += 1;
stack.push(PreOrderFrame { node: successor, iter: graph.successors(successor) });
continue 'recurse;
}
}
stack.pop();
}
let mut ancestor = IndexVec::from_elem_n(None, graph.num_nodes());
let mut idom = IndexVec::from_elem_n(graph.start_node(), graph.num_nodes());
let mut semi = IndexVec::from_fn_n(std::convert::identity, graph.num_nodes());
let mut label = semi.clone();
let mut bucket = IndexVec::from_elem_n(vec![], graph.num_nodes());
for &w in pre_order_nodes[1..].iter().rev() {
semi[w] = w;
for v in graph.predecessors(w) {
let x = eval(&pre_order_index, &mut ancestor, &semi, &mut label, v);
semi[w] = if pre_order_index[semi[w]].unwrap() < pre_order_index[semi[x]].unwrap() {
semi[w]
} else {
semi[x]
};
}
// semi[w] is now semidominator(w).
bucket[semi[w]].push(w);
link(&mut ancestor, &parent, w);
let z = parent[w].unwrap();
for v in std::mem::take(&mut bucket[z]) {
let y = eval(&pre_order_index, &mut ancestor, &semi, &mut label, v);
idom[v] = if pre_order_index[semi[y]] < pre_order_index[z] { y } else { z };
}
}
for &w in pre_order_nodes.iter().skip(1) {
if idom[w] != semi[w] {
idom[w] = idom[idom[w]];
}
}
let mut immediate_dominators = IndexVec::from_elem_n(None, graph.num_nodes());
immediate_dominators[start_node] = Some(start_node);
let mut changed = true;
while changed {
changed = false;
for &node in &rpo[1..] {
let mut new_idom = None;
for pred in graph.predecessors(node) {
if immediate_dominators[pred].is_some() {
// (*) dominators for `pred` have been calculated
new_idom = Some(if let Some(new_idom) = new_idom {
intersect(&post_order_rank, &immediate_dominators, new_idom, pred)
} else {
pred
});
}
}
if new_idom != immediate_dominators[node] {
immediate_dominators[node] = new_idom;
changed = true;
}
for (node, idom_slot) in immediate_dominators.iter_enumerated_mut() {
if pre_order_index[node].is_some() {
*idom_slot = Some(idom[node]);
}
}
Dominators { post_order_rank, immediate_dominators }
}
fn intersect<Node: Idx>(
post_order_rank: &IndexVec<Node, usize>,
immediate_dominators: &IndexVec<Node, Option<Node>>,
mut node1: Node,
mut node2: Node,
) -> Node {
while node1 != node2 {
while post_order_rank[node1] < post_order_rank[node2] {
node1 = immediate_dominators[node1].unwrap();
}
while post_order_rank[node2] < post_order_rank[node1] {
node2 = immediate_dominators[node2].unwrap();
}
fn eval<N: Idx>(
pre_order_index: &IndexVec<N, Option<usize>>,
ancestor: &mut IndexVec<N, Option<N>>,
semi: &IndexVec<N, N>,
label: &mut IndexVec<N, N>,
node: N,
) -> N {
if ancestor[node].is_some() {
compress(pre_order_index, ancestor, semi, label, node);
label[node]
} else {
node
}
}
node1
fn compress<N: Idx>(
pre_order_index: &IndexVec<N, Option<usize>>,
ancestor: &mut IndexVec<N, Option<N>>,
semi: &IndexVec<N, N>,
label: &mut IndexVec<N, N>,
v: N,
) {
let u = ancestor[v].unwrap();
if ancestor[u].is_some() {
compress(pre_order_index, ancestor, semi, label, u);
if pre_order_index[semi[label[u]]] < pre_order_index[semi[label[v]]] {
label[v] = label[u];
}
ancestor[v] = ancestor[u];
}
}
fn link<N: Idx>(ancestor: &mut IndexVec<N, Option<N>>, parent: &IndexVec<N, Option<N>>, w: N) {
ancestor[w] = Some(parent[w].unwrap());
}
#[derive(Clone, Debug)]

View file

@ -32,3 +32,14 @@ fn paper() {
assert_eq!(immediate_dominators[5], Some(6));
assert_eq!(immediate_dominators[6], Some(6));
}
#[test]
fn paper_slt() {
// example from the paper:
let graph = TestGraph::new(
1,
&[(1, 2), (1, 3), (2, 3), (2, 7), (3, 4), (3, 6), (4, 5), (5, 4), (6, 7), (7, 8), (8, 5)],
);
dominators(&graph);
}