1
Fork 0

interpret: rename relocation → provenance

This commit is contained in:
Ralf Jung 2022-08-27 14:11:19 -04:00
parent 332cc8fb75
commit e63a625711
14 changed files with 161 additions and 164 deletions

View file

@ -430,7 +430,7 @@ fn define_all_allocs(tcx: TyCtxt<'_>, module: &mut dyn Module, cx: &mut Constant
let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(0..alloc.len()).to_vec();
data_ctx.define(bytes.into_boxed_slice());
for &(offset, alloc_id) in alloc.relocations().iter() {
for &(offset, alloc_id) in alloc.provenance().iter() {
let addend = {
let endianness = tcx.data_layout.endian;
let offset = offset.bytes() as usize;

View file

@ -127,7 +127,7 @@ impl<'gcc, 'tcx> StaticMethods for CodegenCx<'gcc, 'tcx> {
//
// We could remove this hack whenever we decide to drop macOS 10.10 support.
if self.tcx.sess.target.options.is_like_osx {
// The `inspect` method is okay here because we checked relocations, and
// The `inspect` method is okay here because we checked for provenance, and
// because we are doing this access to inspect the final interpreter state
// (not as part of the interpreter execution).
//
@ -296,17 +296,17 @@ impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn const_alloc_to_gcc<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, alloc: ConstAllocation<'tcx>) -> RValue<'gcc> {
let alloc = alloc.inner();
let mut llvals = Vec::with_capacity(alloc.relocations().len() + 1);
let mut llvals = Vec::with_capacity(alloc.provenance().len() + 1);
let dl = cx.data_layout();
let pointer_size = dl.pointer_size.bytes() as usize;
let mut next_offset = 0;
for &(offset, alloc_id) in alloc.relocations().iter() {
for &(offset, alloc_id) in alloc.provenance().iter() {
let offset = offset.bytes();
assert_eq!(offset as usize as u64, offset);
let offset = offset as usize;
if offset > next_offset {
// This `inspect` is okay since we have checked that it is not within a relocation, it
// This `inspect` is okay since we have checked that it is not within a pointer with provenance, it
// is within the bounds of the allocation, and it doesn't affect interpreter execution
// (we inspect the result after interpreter execution). Any undef byte is replaced with
// some arbitrary byte value.
@ -319,7 +319,7 @@ pub fn const_alloc_to_gcc<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, alloc: ConstAl
read_target_uint( dl.endian,
// This `inspect` is okay since it is within the bounds of the allocation, it doesn't
// affect interpreter execution (we inspect the result after interpreter execution),
// and we properly interpret the relocation as a relocation pointer offset.
// and we properly interpret the provenance as a relocation pointer offset.
alloc.inspect_with_uninit_and_ptr_outside_interpreter(offset..(offset + pointer_size)),
)
.expect("const_alloc_to_llvm: could not read relocation pointer")
@ -336,7 +336,7 @@ pub fn const_alloc_to_gcc<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, alloc: ConstAl
}
if alloc.len() >= next_offset {
let range = next_offset..alloc.len();
// This `inspect` is okay since we have check that it is after all relocations, it is
// This `inspect` is okay since we have check that it is after all provenance, it is
// within the bounds of the allocation, and it doesn't affect interpreter execution (we
// inspect the result after interpreter execution). Any undef byte is replaced with some
// arbitrary byte value.

View file

@ -27,12 +27,12 @@ use tracing::debug;
pub fn const_alloc_to_llvm<'ll>(cx: &CodegenCx<'ll, '_>, alloc: ConstAllocation<'_>) -> &'ll Value {
let alloc = alloc.inner();
let mut llvals = Vec::with_capacity(alloc.relocations().len() + 1);
let mut llvals = Vec::with_capacity(alloc.provenance().len() + 1);
let dl = cx.data_layout();
let pointer_size = dl.pointer_size.bytes() as usize;
// Note: this function may call `inspect_with_uninit_and_ptr_outside_interpreter`,
// so `range` must be within the bounds of `alloc` and not contain or overlap a relocation.
// Note: this function may call `inspect_with_uninit_and_ptr_outside_interpreter`, so `range`
// must be within the bounds of `alloc` and not contain or overlap a pointer provenance.
fn append_chunks_of_init_and_uninit_bytes<'ll, 'a, 'b>(
llvals: &mut Vec<&'ll Value>,
cx: &'a CodegenCx<'ll, 'b>,
@ -79,12 +79,12 @@ pub fn const_alloc_to_llvm<'ll>(cx: &CodegenCx<'ll, '_>, alloc: ConstAllocation<
}
let mut next_offset = 0;
for &(offset, alloc_id) in alloc.relocations().iter() {
for &(offset, alloc_id) in alloc.provenance().iter() {
let offset = offset.bytes();
assert_eq!(offset as usize as u64, offset);
let offset = offset as usize;
if offset > next_offset {
// This `inspect` is okay since we have checked that it is not within a relocation, it
// This `inspect` is okay since we have checked that there is no provenance, it
// is within the bounds of the allocation, and it doesn't affect interpreter execution
// (we inspect the result after interpreter execution).
append_chunks_of_init_and_uninit_bytes(&mut llvals, cx, alloc, next_offset..offset);
@ -93,7 +93,7 @@ pub fn const_alloc_to_llvm<'ll>(cx: &CodegenCx<'ll, '_>, alloc: ConstAllocation<
dl.endian,
// This `inspect` is okay since it is within the bounds of the allocation, it doesn't
// affect interpreter execution (we inspect the result after interpreter execution),
// and we properly interpret the relocation as a relocation pointer offset.
// and we properly interpret the provenance as a relocation pointer offset.
alloc.inspect_with_uninit_and_ptr_outside_interpreter(offset..(offset + pointer_size)),
)
.expect("const_alloc_to_llvm: could not read relocation pointer")
@ -121,7 +121,7 @@ pub fn const_alloc_to_llvm<'ll>(cx: &CodegenCx<'ll, '_>, alloc: ConstAllocation<
}
if alloc.len() >= next_offset {
let range = next_offset..alloc.len();
// This `inspect` is okay since we have check that it is after all relocations, it is
// This `inspect` is okay since we have check that it is after all provenance, it is
// within the bounds of the allocation, and it doesn't affect interpreter execution (we
// inspect the result after interpreter execution).
append_chunks_of_init_and_uninit_bytes(&mut llvals, cx, alloc, range);
@ -479,7 +479,7 @@ impl<'ll> StaticMethods for CodegenCx<'ll, '_> {
//
// We could remove this hack whenever we decide to drop macOS 10.10 support.
if self.tcx.sess.target.is_like_osx {
// The `inspect` method is okay here because we checked relocations, and
// The `inspect` method is okay here because we checked for provenance, and
// because we are doing this access to inspect the final interpreter state
// (not as part of the interpreter execution).
//
@ -487,7 +487,7 @@ impl<'ll> StaticMethods for CodegenCx<'ll, '_> {
// happens to be zero. Instead, we should only check the value of defined bytes
// and set all undefined bytes to zero if this allocation is headed for the
// BSS.
let all_bytes_are_zero = alloc.relocations().is_empty()
let all_bytes_are_zero = alloc.provenance().is_empty()
&& alloc
.inspect_with_uninit_and_ptr_outside_interpreter(0..alloc.len())
.iter()
@ -511,9 +511,9 @@ impl<'ll> StaticMethods for CodegenCx<'ll, '_> {
section.as_str().as_ptr().cast(),
section.as_str().len() as c_uint,
);
assert!(alloc.relocations().is_empty());
assert!(alloc.provenance().is_empty());
// The `inspect` method is okay here because we checked relocations, and
// The `inspect` method is okay here because we checked for provenance, and
// because we are doing this access to inspect the final interpreter state (not
// as part of the interpreter execution).
let bytes =

View file

@ -134,7 +134,7 @@ fn intern_shallow<'rt, 'mir, 'tcx, M: CompileTimeMachine<'mir, 'tcx, const_eval:
alloc.mutability = Mutability::Not;
};
// link the alloc id to the actual allocation
leftover_allocations.extend(alloc.relocations().iter().map(|&(_, alloc_id)| alloc_id));
leftover_allocations.extend(alloc.provenance().iter().map(|&(_, alloc_id)| alloc_id));
let alloc = tcx.intern_const_alloc(alloc);
tcx.set_alloc_id_memory(alloc_id, alloc);
None
@ -191,10 +191,10 @@ impl<'rt, 'mir, 'tcx: 'mir, M: CompileTimeMachine<'mir, 'tcx, const_eval::Memory
return Ok(true);
};
// If there are no relocations in this allocation, it does not contain references
// If there is no provenance in this allocation, it does not contain references
// that point to another allocation, and we can avoid the interning walk.
if let Some(alloc) = self.ecx.get_ptr_alloc(mplace.ptr, size, align)? {
if !alloc.has_relocations() {
if !alloc.has_provenance() {
return Ok(false);
}
} else {
@ -233,8 +233,8 @@ impl<'rt, 'mir, 'tcx: 'mir, M: CompileTimeMachine<'mir, 'tcx, const_eval::Memory
}
fn visit_value(&mut self, mplace: &MPlaceTy<'tcx>) -> InterpResult<'tcx> {
// Handle Reference types, as these are the only relocations supported by const eval.
// Raw pointers (and boxes) are handled by the `leftover_relocations` logic.
// Handle Reference types, as these are the only types with provenance supported by const eval.
// Raw pointers (and boxes) are handled by the `leftover_allocations` logic.
let tcx = self.ecx.tcx;
let ty = mplace.layout.ty;
if let ty::Ref(_, referenced_ty, ref_mutability) = *ty.kind() {
@ -410,7 +410,7 @@ pub fn intern_const_alloc_recursive<
// references and a `leftover_allocations` set (where we only have a todo-list here).
// So we hand-roll the interning logic here again.
match intern_kind {
// Statics may contain mutable allocations even behind relocations.
// Statics may point to mutable allocations.
// Even for immutable statics it would be ok to have mutable allocations behind
// raw pointers, e.g. for `static FOO: *const AtomicUsize = &AtomicUsize::new(42)`.
InternKind::Static(_) => {}
@ -441,7 +441,7 @@ pub fn intern_const_alloc_recursive<
}
let alloc = tcx.intern_const_alloc(alloc);
tcx.set_alloc_id_memory(alloc_id, alloc);
for &(_, alloc_id) in alloc.inner().relocations().iter() {
for &(_, alloc_id) in alloc.inner().provenance().iter() {
if leftover_allocations.insert(alloc_id) {
todo.push(alloc_id);
}

View file

@ -326,7 +326,7 @@ pub trait Machine<'mir, 'tcx>: Sized {
/// cache the result. (This relies on `AllocMap::get_or` being able to add the
/// owned allocation to the map even when the map is shared.)
///
/// This must only fail if `alloc` contains relocations.
/// This must only fail if `alloc` contains provenance.
fn adjust_allocation<'b>(
ecx: &InterpCx<'mir, 'tcx, Self>,
id: AllocId,

View file

@ -214,7 +214,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
self.allocate_raw_ptr(alloc, kind).unwrap()
}
/// This can fail only of `alloc` contains relocations.
/// This can fail only of `alloc` contains provenance.
pub fn allocate_raw_ptr(
&mut self,
alloc: Allocation,
@ -794,10 +794,10 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
todo.extend(static_roots);
while let Some(id) = todo.pop() {
if reachable.insert(id) {
// This is a new allocation, add its relocations to `todo`.
// This is a new allocation, add the allocation it points to to `todo`.
if let Some((_, alloc)) = self.memory.alloc_map.get(id) {
todo.extend(
alloc.relocations().values().filter_map(|prov| prov.get_alloc_id()),
alloc.provenance().values().filter_map(|prov| prov.get_alloc_id()),
);
}
}
@ -833,7 +833,7 @@ impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> std::fmt::Debug for DumpAllocs<'a,
allocs_to_print: &mut VecDeque<AllocId>,
alloc: &Allocation<Prov, Extra>,
) -> std::fmt::Result {
for alloc_id in alloc.relocations().values().filter_map(|prov| prov.get_alloc_id()) {
for alloc_id in alloc.provenance().values().filter_map(|prov| prov.get_alloc_id()) {
allocs_to_print.push_back(alloc_id);
}
write!(fmt, "{}", display_allocation(tcx, alloc))
@ -960,9 +960,9 @@ impl<'tcx, 'a, Prov: Provenance, Extra> AllocRef<'a, 'tcx, Prov, Extra> {
.map_err(|e| e.to_interp_error(self.alloc_id))?)
}
/// Returns whether the allocation has relocations for the entire range of the `AllocRef`.
pub(crate) fn has_relocations(&self) -> bool {
self.alloc.has_relocations(&self.tcx, self.range)
/// Returns whether the allocation has provenance anywhere in the range of the `AllocRef`.
pub(crate) fn has_provenance(&self) -> bool {
self.alloc.range_has_provenance(&self.tcx, self.range)
}
}
@ -1078,17 +1078,17 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
return Ok(());
};
// This checks relocation edges on the src, which needs to happen before
// `prepare_relocation_copy`.
// This checks provenance edges on the src, which needs to happen before
// `prepare_provenance_copy`.
let src_bytes = src_alloc
.get_bytes_with_uninit_and_ptr(&tcx, src_range)
.map_err(|e| e.to_interp_error(src_alloc_id))?
.as_ptr(); // raw ptr, so we can also get a ptr to the destination allocation
// first copy the relocations to a temporary buffer, because
// `get_bytes_mut` will clear the relocations, which is correct,
// since we don't want to keep any relocations at the target.
let relocations =
src_alloc.prepare_relocation_copy(self, src_range, dest_offset, num_copies);
// first copy the provenance to a temporary buffer, because
// `get_bytes_mut` will clear the provenance, which is correct,
// since we don't want to keep any provenance at the target.
let provenance =
src_alloc.prepare_provenance_copy(self, src_range, dest_offset, num_copies);
// Prepare a copy of the initialization mask.
let compressed = src_alloc.compress_uninit_range(src_range);
@ -1117,7 +1117,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
dest_alloc
.write_uninit(&tcx, dest_range)
.map_err(|e| e.to_interp_error(dest_alloc_id))?;
// We can forget about the relocations, this is all not initialized anyway.
// We can forget about the provenance, this is all not initialized anyway.
return Ok(());
}
@ -1161,8 +1161,8 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
alloc_range(dest_offset, size), // just a single copy (i.e., not full `dest_range`)
num_copies,
);
// copy the relocations to the destination
dest_alloc.mark_relocation_range(relocations);
// copy the provenance to the destination
dest_alloc.mark_provenance_range(provenance);
Ok(())
}

View file

@ -34,11 +34,11 @@ pub struct Allocation<Prov = AllocId, Extra = ()> {
/// The actual bytes of the allocation.
/// Note that the bytes of a pointer represent the offset of the pointer.
bytes: Box<[u8]>,
/// Maps from byte addresses to extra data for each pointer.
/// Maps from byte addresses to extra provenance data for each pointer.
/// Only the first byte of a pointer is inserted into the map; i.e.,
/// every entry in this map applies to `pointer_size` consecutive bytes starting
/// at the given offset.
relocations: Relocations<Prov>,
provenance: ProvenanceMap<Prov>,
/// Denotes which part of this allocation is initialized.
init_mask: InitMask,
/// The alignment of the allocation to detect unaligned reads.
@ -84,7 +84,7 @@ impl hash::Hash for Allocation {
}
// Hash the other fields as usual.
self.relocations.hash(state);
self.provenance.hash(state);
self.init_mask.hash(state);
self.align.hash(state);
self.mutability.hash(state);
@ -211,7 +211,7 @@ impl<Prov> Allocation<Prov> {
let size = Size::from_bytes(bytes.len());
Self {
bytes,
relocations: Relocations::new(),
provenance: ProvenanceMap::new(),
init_mask: InitMask::new(size, true),
align,
mutability,
@ -246,7 +246,7 @@ impl<Prov> Allocation<Prov> {
let bytes = unsafe { bytes.assume_init() };
Ok(Allocation {
bytes,
relocations: Relocations::new(),
provenance: ProvenanceMap::new(),
init_mask: InitMask::new(size, false),
align,
mutability: Mutability::Mut,
@ -266,22 +266,22 @@ impl Allocation {
) -> Result<Allocation<Prov, Extra>, Err> {
// Compute new pointer provenance, which also adjusts the bytes.
let mut bytes = self.bytes;
let mut new_relocations = Vec::with_capacity(self.relocations.0.len());
let mut new_provenance = Vec::with_capacity(self.provenance.0.len());
let ptr_size = cx.data_layout().pointer_size.bytes_usize();
let endian = cx.data_layout().endian;
for &(offset, alloc_id) in self.relocations.iter() {
for &(offset, alloc_id) in self.provenance.iter() {
let idx = offset.bytes_usize();
let ptr_bytes = &mut bytes[idx..idx + ptr_size];
let bits = read_target_uint(endian, ptr_bytes).unwrap();
let (ptr_prov, ptr_offset) =
adjust_ptr(Pointer::new(alloc_id, Size::from_bytes(bits)))?.into_parts();
write_target_uint(endian, ptr_bytes, ptr_offset.bytes().into()).unwrap();
new_relocations.push((offset, ptr_prov));
new_provenance.push((offset, ptr_prov));
}
// Create allocation.
Ok(Allocation {
bytes,
relocations: Relocations::from_presorted(new_relocations),
provenance: ProvenanceMap::from_presorted(new_provenance),
init_mask: self.init_mask,
align: self.align,
mutability: self.mutability,
@ -300,8 +300,8 @@ impl<Prov, Extra> Allocation<Prov, Extra> {
Size::from_bytes(self.len())
}
/// Looks at a slice which may describe uninitialized bytes or describe a relocation. This differs
/// from `get_bytes_with_uninit_and_ptr` in that it does no relocation checks (even on the
/// Looks at a slice which may contain uninitialized bytes or provenance. This differs
/// from `get_bytes_with_uninit_and_ptr` in that it does no provenance checks (even on the
/// edges) at all.
/// This must not be used for reads affecting the interpreter execution.
pub fn inspect_with_uninit_and_ptr_outside_interpreter(&self, range: Range<usize>) -> &[u8] {
@ -313,23 +313,23 @@ impl<Prov, Extra> Allocation<Prov, Extra> {
&self.init_mask
}
/// Returns the relocation list.
pub fn relocations(&self) -> &Relocations<Prov> {
&self.relocations
/// Returns the provenance map.
pub fn provenance(&self) -> &ProvenanceMap<Prov> {
&self.provenance
}
}
/// Byte accessors.
impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
/// This is the entirely abstraction-violating way to just grab the raw bytes without
/// caring about relocations. It just deduplicates some code between `read_scalar`
/// caring about provenance. It just deduplicates some code between `read_scalar`
/// and `get_bytes_internal`.
fn get_bytes_even_more_internal(&self, range: AllocRange) -> &[u8] {
&self.bytes[range.start.bytes_usize()..range.end().bytes_usize()]
}
/// The last argument controls whether we error out when there are uninitialized or pointer
/// bytes. However, we *always* error when there are relocations overlapping the edges of the
/// bytes. However, we *always* error when there is provenance overlapping the edges of the
/// range.
///
/// You should never call this, call `get_bytes` or `get_bytes_with_uninit_and_ptr` instead,
@ -347,10 +347,10 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
) -> AllocResult<&[u8]> {
if check_init_and_ptr {
self.check_init(range)?;
self.check_relocations(cx, range)?;
self.check_provenance(cx, range)?;
} else {
// We still don't want relocations on the *edges*.
self.check_relocation_edges(cx, range)?;
// We still don't want provenance on the *edges*.
self.check_provenance_edges(cx, range)?;
}
Ok(self.get_bytes_even_more_internal(range))
@ -368,7 +368,7 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
}
/// It is the caller's responsibility to handle uninitialized and pointer bytes.
/// However, this still checks that there are no relocations on the *edges*.
/// However, this still checks that there is no provenance on the *edges*.
///
/// It is the caller's responsibility to check bounds and alignment beforehand.
#[inline]
@ -380,7 +380,7 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
self.get_bytes_internal(cx, range, false)
}
/// Just calling this already marks everything as defined and removes relocations,
/// Just calling this already marks everything as defined and removes provenance,
/// so be sure to actually put data there!
///
/// It is the caller's responsibility to check bounds and alignment beforehand.
@ -392,7 +392,7 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
range: AllocRange,
) -> AllocResult<&mut [u8]> {
self.mark_init(range, true);
self.clear_relocations(cx, range)?;
self.clear_provenance(cx, range)?;
Ok(&mut self.bytes[range.start.bytes_usize()..range.end().bytes_usize()])
}
@ -404,7 +404,7 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
range: AllocRange,
) -> AllocResult<*mut [u8]> {
self.mark_init(range, true);
self.clear_relocations(cx, range)?;
self.clear_provenance(cx, range)?;
assert!(range.end().bytes_usize() <= self.bytes.len()); // need to do our own bounds-check
let begin_ptr = self.bytes.as_mut_ptr().wrapping_add(range.start.bytes_usize());
@ -415,7 +415,7 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
/// Reading and writing.
impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
/// Validates that this memory range is initiailized and contains no relocations.
/// Validates that this memory range is initiailized and contains no provenance.
pub fn check_bytes(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
// This implicitly does all the checking we are asking for.
self.get_bytes(cx, range)?;
@ -447,17 +447,17 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
return Err(AllocError::InvalidUninitBytes(None));
}
// If we are doing a pointer read, and there is a relocation exactly where we
// are reading, then we can put data and relocation back together and return that.
if read_provenance && let Some(&prov) = self.relocations.get(&range.start) {
// We already checked init and relocations, so we can use this function.
// If we are doing a pointer read, and there is provenance exactly where we
// are reading, then we can put data and provenance back together and return that.
if read_provenance && let Some(&prov) = self.provenance.get(&range.start) {
// We already checked init and provenance, so we can use this function.
let bytes = self.get_bytes_even_more_internal(range);
let bits = read_target_uint(cx.data_layout().endian, bytes).unwrap();
let ptr = Pointer::new(prov, Size::from_bytes(bits));
return Ok(Scalar::from_pointer(ptr, cx));
}
// If we are *not* reading a pointer, and we can just ignore relocations,
// If we are *not* reading a pointer, and we can just ignore provenance,
// then do exactly that.
if !read_provenance && Prov::OFFSET_IS_ADDR {
// We just strip provenance.
@ -469,8 +469,8 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
// It's complicated. Better make sure there is no provenance anywhere.
// FIXME: If !OFFSET_IS_ADDR, this is the best we can do. But if OFFSET_IS_ADDR, then
// `read_pointer` is true and we ideally would distinguish the following two cases:
// - The entire `range` is covered by 2 relocations for the same provenance.
// Then we should return a pointer with that provenance.
// - The entire `range` is covered by the same provenance, stored in two separate entries of
// the provenance map. Then we should return a pointer with that provenance.
// - The range has inhomogeneous provenance. Then we should return just the
// underlying bits.
let bytes = self.get_bytes(cx, range)?;
@ -508,9 +508,9 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
let dst = self.get_bytes_mut(cx, range)?;
write_target_uint(endian, dst, bytes).unwrap();
// See if we have to also write a relocation.
// See if we have to also store some provenance.
if let Some(provenance) = provenance {
self.relocations.0.insert(range.start, provenance);
self.provenance.0.insert(range.start, provenance);
}
Ok(())
@ -519,64 +519,64 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
/// Write "uninit" to the given memory range.
pub fn write_uninit(&mut self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
self.mark_init(range, false);
self.clear_relocations(cx, range)?;
self.clear_provenance(cx, range)?;
return Ok(());
}
}
/// Relocations.
/// Provenance.
impl<Prov: Copy, Extra> Allocation<Prov, Extra> {
/// Returns all relocations overlapping with the given pointer-offset pair.
fn get_relocations(&self, cx: &impl HasDataLayout, range: AllocRange) -> &[(Size, Prov)] {
/// Returns all provenance overlapping with the given pointer-offset pair.
fn range_get_provenance(&self, cx: &impl HasDataLayout, range: AllocRange) -> &[(Size, Prov)] {
// We have to go back `pointer_size - 1` bytes, as that one would still overlap with
// the beginning of this range.
let start = range.start.bytes().saturating_sub(cx.data_layout().pointer_size.bytes() - 1);
self.relocations.range(Size::from_bytes(start)..range.end())
self.provenance.range(Size::from_bytes(start)..range.end())
}
/// Returns whether this allocation has relocations overlapping with the given range.
/// Returns whether this allocation has progrnance overlapping with the given range.
///
/// Note: this function exists to allow `get_relocations` to be private, in order to somewhat
/// limit access to relocations outside of the `Allocation` abstraction.
/// Note: this function exists to allow `range_get_provenance` to be private, in order to somewhat
/// limit access to provenance outside of the `Allocation` abstraction.
///
pub fn has_relocations(&self, cx: &impl HasDataLayout, range: AllocRange) -> bool {
!self.get_relocations(cx, range).is_empty()
pub fn range_has_provenance(&self, cx: &impl HasDataLayout, range: AllocRange) -> bool {
!self.range_get_provenance(cx, range).is_empty()
}
/// Checks that there are no relocations overlapping with the given range.
/// Checks that there is no provenance overlapping with the given range.
#[inline(always)]
fn check_relocations(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
if self.has_relocations(cx, range) { Err(AllocError::ReadPointerAsBytes) } else { Ok(()) }
fn check_provenance(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
if self.range_has_provenance(cx, range) { Err(AllocError::ReadPointerAsBytes) } else { Ok(()) }
}
/// Removes all relocations inside the given range.
/// If there are relocations overlapping with the edges, they
/// Removes all provenance inside the given range.
/// If there is provenance overlapping with the edges, it
/// are removed as well *and* the bytes they cover are marked as
/// uninitialized. This is a somewhat odd "spooky action at a distance",
/// but it allows strictly more code to run than if we would just error
/// immediately in that case.
fn clear_relocations(&mut self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult
fn clear_provenance(&mut self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult
where
Prov: Provenance,
{
// Find the start and end of the given range and its outermost relocations.
// Find the start and end of the given range and its outermost provenance.
let (first, last) = {
// Find all relocations overlapping the given range.
let relocations = self.get_relocations(cx, range);
if relocations.is_empty() {
// Find all provenance overlapping the given range.
let provenance = self.range_get_provenance(cx, range);
if provenance.is_empty() {
return Ok(());
}
(
relocations.first().unwrap().0,
relocations.last().unwrap().0 + cx.data_layout().pointer_size,
provenance.first().unwrap().0,
provenance.last().unwrap().0 + cx.data_layout().pointer_size,
)
};
let start = range.start;
let end = range.end();
// We need to handle clearing the relocations from parts of a pointer.
// FIXME: Miri should preserve partial relocations; see
// We need to handle clearing the provenance from parts of a pointer.
// FIXME: Miri should preserve partial provenance; see
// https://github.com/rust-lang/miri/issues/2181.
if first < start {
if Prov::ERR_ON_PARTIAL_PTR_OVERWRITE {
@ -599,41 +599,40 @@ impl<Prov: Copy, Extra> Allocation<Prov, Extra> {
self.init_mask.set_range(end, last, false);
}
// Forget all the relocations.
// Since relocations do not overlap, we know that removing until `last` (exclusive) is fine,
// i.e., this will not remove any other relocations just after the ones we care about.
self.relocations.0.remove_range(first..last);
// Forget all the provenance.
// Since provenance do not overlap, we know that removing until `last` (exclusive) is fine,
// i.e., this will not remove any other provenance just after the ones we care about.
self.provenance.0.remove_range(first..last);
Ok(())
}
/// Errors if there are relocations overlapping with the edges of the
/// given memory range.
/// Errors if there is provenance overlapping with the edges of the given memory range.
#[inline]
fn check_relocation_edges(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
self.check_relocations(cx, alloc_range(range.start, Size::ZERO))?;
self.check_relocations(cx, alloc_range(range.end(), Size::ZERO))?;
fn check_provenance_edges(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
self.check_provenance(cx, alloc_range(range.start, Size::ZERO))?;
self.check_provenance(cx, alloc_range(range.end(), Size::ZERO))?;
Ok(())
}
}
/// "Relocations" stores the provenance information of pointers stored in memory.
/// Stores the provenance information of pointers stored in memory.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
pub struct Relocations<Prov = AllocId>(SortedMap<Size, Prov>);
pub struct ProvenanceMap<Prov = AllocId>(SortedMap<Size, Prov>);
impl<Prov> Relocations<Prov> {
impl<Prov> ProvenanceMap<Prov> {
pub fn new() -> Self {
Relocations(SortedMap::new())
ProvenanceMap(SortedMap::new())
}
// The caller must guarantee that the given relocations are already sorted
// The caller must guarantee that the given provenance list is already sorted
// by address and contain no duplicates.
pub fn from_presorted(r: Vec<(Size, Prov)>) -> Self {
Relocations(SortedMap::from_presorted_elements(r))
ProvenanceMap(SortedMap::from_presorted_elements(r))
}
}
impl<Prov> Deref for Relocations<Prov> {
impl<Prov> Deref for ProvenanceMap<Prov> {
type Target = SortedMap<Size, Prov>;
fn deref(&self) -> &Self::Target {
@ -641,36 +640,36 @@ impl<Prov> Deref for Relocations<Prov> {
}
}
/// A partial, owned list of relocations to transfer into another allocation.
/// A partial, owned list of provenance to transfer into another allocation.
///
/// Offsets are already adjusted to the destination allocation.
pub struct AllocationRelocations<Prov> {
dest_relocations: Vec<(Size, Prov)>,
pub struct AllocationProvenance<Prov> {
dest_provenance: Vec<(Size, Prov)>,
}
impl<Prov: Copy, Extra> Allocation<Prov, Extra> {
pub fn prepare_relocation_copy(
pub fn prepare_provenance_copy(
&self,
cx: &impl HasDataLayout,
src: AllocRange,
dest: Size,
count: u64,
) -> AllocationRelocations<Prov> {
let relocations = self.get_relocations(cx, src);
if relocations.is_empty() {
return AllocationRelocations { dest_relocations: Vec::new() };
) -> AllocationProvenance<Prov> {
let provenance = self.range_get_provenance(cx, src);
if provenance.is_empty() {
return AllocationProvenance { dest_provenance: Vec::new() };
}
let size = src.size;
let mut new_relocations = Vec::with_capacity(relocations.len() * (count as usize));
let mut new_provenance = Vec::with_capacity(provenance.len() * (count as usize));
// If `count` is large, this is rather wasteful -- we are allocating a big array here, which
// is mostly filled with redundant information since it's just N copies of the same `Prov`s
// at slightly adjusted offsets. The reason we do this is so that in `mark_relocation_range`
// at slightly adjusted offsets. The reason we do this is so that in `mark_provenance_range`
// we can use `insert_presorted`. That wouldn't work with an `Iterator` that just produces
// the right sequence of relocations for all N copies.
// the right sequence of provenance for all N copies.
for i in 0..count {
new_relocations.extend(relocations.iter().map(|&(offset, reloc)| {
new_provenance.extend(provenance.iter().map(|&(offset, reloc)| {
// compute offset for current repetition
let dest_offset = dest + size * i; // `Size` operations
(
@ -681,17 +680,17 @@ impl<Prov: Copy, Extra> Allocation<Prov, Extra> {
}));
}
AllocationRelocations { dest_relocations: new_relocations }
AllocationProvenance { dest_provenance: new_provenance }
}
/// Applies a relocation copy.
/// The affected range, as defined in the parameters to `prepare_relocation_copy` is expected
/// to be clear of relocations.
/// Applies a provenance copy.
/// The affected range, as defined in the parameters to `prepare_provenance_copy` is expected
/// to be clear of provenance.
///
/// This is dangerous to use as it can violate internal `Allocation` invariants!
/// It only exists to support an efficient implementation of `mem_copy_repeatedly`.
pub fn mark_relocation_range(&mut self, relocations: AllocationRelocations<Prov>) {
self.relocations.0.insert_presorted(relocations.dest_relocations);
pub fn mark_provenance_range(&mut self, provenance: AllocationProvenance<Prov>) {
self.provenance.0.insert_presorted(provenance.dest_provenance);
}
}

View file

@ -128,7 +128,7 @@ pub use self::value::{get_slice_bytes, ConstAlloc, ConstValue, Scalar};
pub use self::allocation::{
alloc_range, AllocRange, Allocation, ConstAllocation, InitChunk, InitChunkIter, InitMask,
Relocations,
ProvenanceMap,
};
pub use self::pointer::{Pointer, PointerArithmetic, Provenance};

View file

@ -130,9 +130,7 @@ pub enum Scalar<Prov = AllocId> {
/// The raw bytes of a simple value.
Int(ScalarInt),
/// A pointer into an `Allocation`. An `Allocation` in the `memory` module has a list of
/// relocations, but a `Scalar` is only large enough to contain one, so we just represent the
/// relocation and its associated offset together as a `Pointer` here.
/// A pointer.
///
/// We also store the size of the pointer, such that a `Scalar` always knows how big it is.
/// The size is always the pointer size of the current target, but this is not information

View file

@ -2692,8 +2692,8 @@ fn pretty_print_const_value<'tcx>(
match inner.kind() {
ty::Slice(t) => {
if *t == u8_type {
// The `inspect` here is okay since we checked the bounds, and there are
// no relocations (we have an active slice reference here). We don't use
// The `inspect` here is okay since we checked the bounds, and `u8` carries
// no provenance (we have an active slice reference here). We don't use
// this result to affect interpreter execution.
let byte_str = data
.inner()
@ -2703,8 +2703,8 @@ fn pretty_print_const_value<'tcx>(
}
}
ty::Str => {
// The `inspect` here is okay since we checked the bounds, and there are no
// relocations (we have an active `str` reference here). We don't use this
// The `inspect` here is okay since we checked the bounds, and `str` carries
// no provenance (we have an active `str` reference here). We don't use this
// result to affect interpreter execution.
let slice = data
.inner()

View file

@ -676,7 +676,7 @@ pub fn write_allocations<'tcx>(
fn alloc_ids_from_alloc(
alloc: ConstAllocation<'_>,
) -> impl DoubleEndedIterator<Item = AllocId> + '_ {
alloc.inner().relocations().values().map(|id| *id)
alloc.inner().provenance().values().map(|id| *id)
}
fn alloc_ids_from_const_val(val: ConstValue<'_>) -> impl Iterator<Item = AllocId> + '_ {
@ -778,7 +778,7 @@ pub fn write_allocations<'tcx>(
/// If the allocation is small enough to fit into a single line, no start address is given.
/// After the hex dump, an ascii dump follows, replacing all unprintable characters (control
/// characters or characters whose value is larger than 127) with a `.`
/// This also prints relocations adequately.
/// This also prints provenance adequately.
pub fn display_allocation<'a, 'tcx, Prov, Extra>(
tcx: TyCtxt<'tcx>,
alloc: &'a Allocation<Prov, Extra>,
@ -873,34 +873,34 @@ fn write_allocation_bytes<'tcx, Prov: Provenance, Extra>(
if i != line_start {
write!(w, " ")?;
}
if let Some(&prov) = alloc.relocations().get(&i) {
// Memory with a relocation must be defined
if let Some(&prov) = alloc.provenance().get(&i) {
// Memory with provenance must be defined
assert!(alloc.init_mask().is_range_initialized(i, i + ptr_size).is_ok());
let j = i.bytes_usize();
let offset = alloc
.inspect_with_uninit_and_ptr_outside_interpreter(j..j + ptr_size.bytes_usize());
let offset = read_target_uint(tcx.data_layout.endian, offset).unwrap();
let offset = Size::from_bytes(offset);
let relocation_width = |bytes| bytes * 3;
let provenance_width = |bytes| bytes * 3;
let ptr = Pointer::new(prov, offset);
let mut target = format!("{:?}", ptr);
if target.len() > relocation_width(ptr_size.bytes_usize() - 1) {
if target.len() > provenance_width(ptr_size.bytes_usize() - 1) {
// This is too long, try to save some space.
target = format!("{:#?}", ptr);
}
if ((i - line_start) + ptr_size).bytes_usize() > BYTES_PER_LINE {
// This branch handles the situation where a relocation starts in the current line
// This branch handles the situation where a provenance starts in the current line
// but ends in the next one.
let remainder = Size::from_bytes(BYTES_PER_LINE) - (i - line_start);
let overflow = ptr_size - remainder;
let remainder_width = relocation_width(remainder.bytes_usize()) - 2;
let overflow_width = relocation_width(overflow.bytes_usize() - 1) + 1;
let remainder_width = provenance_width(remainder.bytes_usize()) - 2;
let overflow_width = provenance_width(overflow.bytes_usize() - 1) + 1;
ascii.push('╾');
for _ in 0..remainder.bytes() - 1 {
ascii.push('─');
}
if overflow_width > remainder_width && overflow_width >= target.len() {
// The case where the relocation fits into the part in the next line
// The case where the provenance fits into the part in the next line
write!(w, "╾{0:─^1$}", "", remainder_width)?;
line_start =
write_allocation_newline(w, line_start, &ascii, pos_width, prefix)?;
@ -921,11 +921,11 @@ fn write_allocation_bytes<'tcx, Prov: Provenance, Extra>(
i += ptr_size;
continue;
} else {
// This branch handles a relocation that starts and ends in the current line.
let relocation_width = relocation_width(ptr_size.bytes_usize() - 1);
oversized_ptr(&mut target, relocation_width);
// This branch handles a provenance that starts and ends in the current line.
let provenance_width = provenance_width(ptr_size.bytes_usize() - 1);
oversized_ptr(&mut target, provenance_width);
ascii.push('╾');
write!(w, "╾{0:─^1$}╼", target, relocation_width)?;
write!(w, "╾{0:─^1$}╼", target, provenance_width)?;
for _ in 0..ptr_size.bytes() - 2 {
ascii.push('─');
}
@ -935,7 +935,7 @@ fn write_allocation_bytes<'tcx, Prov: Provenance, Extra>(
} else if alloc.init_mask().is_range_initialized(i, i + Size::from_bytes(1)).is_ok() {
let j = i.bytes_usize();
// Checked definedness (and thus range) and relocations. This access also doesn't
// Checked definedness (and thus range) and provenance. This access also doesn't
// influence interpreter execution but is only for debugging.
let c = alloc.inspect_with_uninit_and_ptr_outside_interpreter(j..j + 1)[0];
write!(w, "{:02x}", c)?;

View file

@ -113,7 +113,7 @@ impl<'a> HashStable<StableHashingContext<'a>> for mir::interpret::AllocId {
}
// `Relocations` with default type parameters is a sorted map.
impl<'a, Prov> HashStable<StableHashingContext<'a>> for mir::interpret::Relocations<Prov>
impl<'a, Prov> HashStable<StableHashingContext<'a>> for mir::interpret::ProvenanceMap<Prov>
where
Prov: HashStable<StableHashingContext<'a>>,
{

View file

@ -461,7 +461,7 @@ fn collect_items_rec<'tcx>(
recursion_depth_reset = None;
if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
for &id in alloc.inner().relocations().values() {
for &id in alloc.inner().provenance().values() {
collect_miri(tcx, id, &mut neighbors);
}
}
@ -1424,7 +1424,7 @@ fn collect_miri<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoIte
}
GlobalAlloc::Memory(alloc) => {
trace!("collecting {:?} with {:#?}", alloc_id, alloc);
for &inner in alloc.inner().relocations().values() {
for &inner in alloc.inner().provenance().values() {
rustc_data_structures::stack::ensure_sufficient_stack(|| {
collect_miri(tcx, inner, output);
});
@ -1463,7 +1463,7 @@ fn collect_const_value<'tcx>(
match value {
ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => collect_miri(tcx, ptr.provenance, output),
ConstValue::Slice { data: alloc, start: _, end: _ } | ConstValue::ByRef { alloc, .. } => {
for &id in alloc.inner().relocations().values() {
for &id in alloc.inner().provenance().values() {
collect_miri(tcx, id, output);
}
}

View file

@ -542,13 +542,13 @@ fn maybe_check_static_with_link_section(tcx: TyCtxt<'_>, id: LocalDefId) {
// For the wasm32 target statics with `#[link_section]` are placed into custom
// sections of the final output file, but this isn't link custom sections of
// other executable formats. Namely we can only embed a list of bytes,
// nothing with pointers to anything else or relocations. If any relocation
// show up, reject them here.
// nothing with provenance (pointers to anything else). If any provenance
// show up, reject it here.
// `#[link_section]` may contain arbitrary, or even undefined bytes, but it is
// the consumer's responsibility to ensure all bytes that have been read
// have defined values.
if let Ok(alloc) = tcx.eval_static_initializer(id.to_def_id())
&& alloc.inner().relocations().len() != 0
&& alloc.inner().provenance().len() != 0
{
let msg = "statics with a custom `#[link_section]` must be a \
simple list of bytes on the wasm target with no \