1
Fork 0

Remove Analysis::into_engine.

This is a standard pattern:
```
MyAnalysis.into_engine(tcx, body).iterate_to_fixpoint()
```
`into_engine` and `iterate_to_fixpoint` are always called in pairs, but
sometimes with a builder-style `pass_name` call between them. But a
builder-style interface is overkill here. This has been bugging me a for
a while.

This commit:
- Merges `Engine::new` and `Engine::iterate_to_fixpoint`. This removes
  the need for `Engine` to have fields, leaving it as a trivial type
  that the next commit will remove.
- Renames `Analysis::into_engine` as `Analysis::iterate_to_fixpoint`,
  gives it an extra argument for the optional pass name, and makes it
  call `Engine::iterate_to_fixpoint` instead of `Engine::new`.

This turns the pattern from above into this:
```
MyAnalysis.iterate_to_fixpoint(tcx, body, None)
```
which is shorter at every call site, and there's less plumbing required
to support it.
This commit is contained in:
Nicholas Nethercote 2024-10-30 08:45:46 +11:00
parent 31e102c509
commit e54c177118
14 changed files with 72 additions and 116 deletions

View file

@ -71,25 +71,21 @@ where
}
/// A solver for dataflow problems.
pub struct Engine<'mir, 'tcx, A>
where
A: Analysis<'tcx>,
{
tcx: TyCtxt<'tcx>,
body: &'mir mir::Body<'tcx>,
entry_sets: IndexVec<BasicBlock, A::Domain>,
pass_name: Option<&'static str>,
analysis: A,
}
pub struct Engine;
impl<'mir, 'tcx, A, D> Engine<'mir, 'tcx, A>
where
A: Analysis<'tcx, Domain = D>,
D: Clone + JoinSemiLattice,
{
impl Engine {
/// Creates a new `Engine` to solve a dataflow problem with an arbitrary transfer
/// function.
pub(crate) fn new(tcx: TyCtxt<'tcx>, body: &'mir mir::Body<'tcx>, analysis: A) -> Self {
pub(crate) fn iterate_to_fixpoint<'mir, 'tcx, A>(
tcx: TyCtxt<'tcx>,
body: &'mir mir::Body<'tcx>,
mut analysis: A,
pass_name: Option<&'static str>,
) -> Results<'tcx, A>
where
A: Analysis<'tcx>,
A::Domain: DebugWithContext<A> + Clone + JoinSemiLattice,
{
let mut entry_sets =
IndexVec::from_fn_n(|_| analysis.bottom_value(body), body.basic_blocks.len());
analysis.initialize_start_block(body, &mut entry_sets[mir::START_BLOCK]);
@ -99,25 +95,6 @@ where
bug!("`initialize_start_block` is not yet supported for backward dataflow analyses");
}
Engine { analysis, tcx, body, pass_name: None, entry_sets }
}
/// Adds an identifier to the graphviz output for this particular run of a dataflow analysis.
///
/// Some analyses are run multiple times in the compilation pipeline. Give them a `pass_name`
/// to differentiate them. Otherwise, only the results for the latest run will be saved.
pub fn pass_name(mut self, name: &'static str) -> Self {
self.pass_name = Some(name);
self
}
/// Computes the fixpoint for this dataflow problem and returns it.
pub fn iterate_to_fixpoint(self) -> Results<'tcx, A>
where
A::Domain: DebugWithContext<A>,
{
let Engine { mut analysis, body, mut entry_sets, tcx, pass_name } = self;
let mut dirty_queue: WorkQueue<BasicBlock> = WorkQueue::with_none(body.basic_blocks.len());
if A::Direction::IS_FORWARD {

View file

@ -7,18 +7,17 @@
//!
//! The `impls` module contains several examples of dataflow analyses.
//!
//! Create an `Engine` for your analysis using the `into_engine` method on the `Analysis` trait,
//! then call `iterate_to_fixpoint`. From there, you can use a `ResultsCursor` to inspect the
//! fixpoint solution to your dataflow problem, or implement the `ResultsVisitor` interface and use
//! `visit_results`. The following example uses the `ResultsCursor` approach.
//! Then call `iterate_to_fixpoint` on your type that impls `Analysis` to get a `Results`. From
//! there, you can use a `ResultsCursor` to inspect the fixpoint solution to your dataflow problem,
//! or implement the `ResultsVisitor` interface and use `visit_results`. The following example uses
//! the `ResultsCursor` approach.
//!
//! ```ignore (cross-crate-imports)
//! use rustc_const_eval::dataflow::Analysis; // Makes `into_engine` available.
//! use rustc_const_eval::dataflow::Analysis; // Makes `iterate_to_fixpoint` available.
//!
//! fn do_my_analysis(tcx: TyCtxt<'tcx>, body: &mir::Body<'tcx>) {
//! let analysis = MyAnalysis::new()
//! .into_engine(tcx, body)
//! .iterate_to_fixpoint()
//! .iterate_to_fixpoint(tcx, body, None)
//! .into_results_cursor(body);
//!
//! // Print the dataflow state *after* each statement in the start block.
@ -39,6 +38,8 @@ use rustc_index::bit_set::{BitSet, ChunkedBitSet, HybridBitSet};
use rustc_middle::mir::{self, BasicBlock, CallReturnPlaces, Location, TerminatorEdges};
use rustc_middle::ty::TyCtxt;
use super::fmt::DebugWithContext;
mod cursor;
mod direction;
mod engine;
@ -223,26 +224,30 @@ pub trait Analysis<'tcx> {
/* Extension methods */
/// Creates an `Engine` to find the fixpoint for this dataflow problem.
/// Finds the fixpoint for this dataflow problem.
///
/// You shouldn't need to override this. Its purpose is to enable method chaining like so:
///
/// ```ignore (cross-crate-imports)
/// let results = MyAnalysis::new(tcx, body)
/// .into_engine(tcx, body, def_id)
/// .iterate_to_fixpoint()
/// .iterate_to_fixpoint(tcx, body, None)
/// .into_results_cursor(body);
/// ```
#[inline]
fn into_engine<'mir>(
/// You can optionally add a `pass_name` to the graphviz output for this particular run of a
/// dataflow analysis. Some analyses are run multiple times in the compilation pipeline.
/// Without a `pass_name` to differentiates them, only the results for the latest run will be
/// saved.
fn iterate_to_fixpoint<'mir>(
self,
tcx: TyCtxt<'tcx>,
body: &'mir mir::Body<'tcx>,
) -> Engine<'mir, 'tcx, Self>
pass_name: Option<&'static str>,
) -> Results<'tcx, Self>
where
Self: Sized,
Self::Domain: DebugWithContext<Self>,
{
Engine::new(tcx, body, self)
Engine::iterate_to_fixpoint(tcx, body, self, pass_name)
}
}