Improve method name suggestions
Attempts to improve method name suggestions when a matching method name is not found. The approach taken is use the Levenshtein distance and account for substrings having a high distance but can sometimes be very close to the intended method (eg. empty vs is_empty).
This commit is contained in:
parent
15a242a432
commit
e2dfa23eac
9 changed files with 104 additions and 10 deletions
|
@ -46,6 +46,62 @@ pub fn lev_distance(a: &str, b: &str, limit: usize) -> Option<usize> {
|
|||
(dcol[m] <= limit).then_some(dcol[m])
|
||||
}
|
||||
|
||||
/// Provides a word similarity score between two words that accounts for substrings being more
|
||||
/// meaningful than a typical Levenshtein distance. The lower the score, the closer the match.
|
||||
/// 0 is an identical match.
|
||||
///
|
||||
/// Uses the Levenshtein distance between the two strings and removes the cost of the length
|
||||
/// difference. If this is 0 then it is either a substring match or a full word match, in the
|
||||
/// substring match case we detect this and return `1`. To prevent finding meaningless substrings,
|
||||
/// eg. "in" in "shrink", we only perform this subtraction of length difference if one of the words
|
||||
/// is not greater than twice the length of the other. For cases where the words are close in size
|
||||
/// but not an exact substring then the cost of the length difference is discounted by half.
|
||||
///
|
||||
/// Returns `None` if the distance exceeds the limit.
|
||||
pub fn lev_distance_with_substrings(a: &str, b: &str, limit: usize) -> Option<usize> {
|
||||
let n = a.chars().count();
|
||||
let m = b.chars().count();
|
||||
|
||||
// Check one isn't less than half the length of the other. If this is true then there is a
|
||||
// big difference in length.
|
||||
let big_len_diff = (n * 2) < m || (m * 2) < n;
|
||||
let len_diff = if n < m { m - n } else { n - m };
|
||||
let lev = lev_distance(a, b, limit + len_diff)?;
|
||||
|
||||
// This is the crux, subtracting length difference means exact substring matches will now be 0
|
||||
let score = lev - len_diff;
|
||||
|
||||
// If the score is 0 but the words have different lengths then it's a substring match not a full
|
||||
// word match
|
||||
let score = if score == 0 && len_diff > 0 && !big_len_diff {
|
||||
1 // Exact substring match, but not a total word match so return non-zero
|
||||
} else if !big_len_diff {
|
||||
// Not a big difference in length, discount cost of length difference
|
||||
score + (len_diff + 1) / 2
|
||||
} else {
|
||||
// A big difference in length, add back the difference in length to the score
|
||||
score + len_diff
|
||||
};
|
||||
|
||||
(score <= limit).then_some(score)
|
||||
}
|
||||
|
||||
/// Finds the best match for given word in the given iterator where substrings are meaningful.
|
||||
///
|
||||
/// A version of [`find_best_match_for_name`] that uses [`lev_distance_with_substrings`] as the score
|
||||
/// for word similarity. This takes an optional distance limit which defaults to one-third of the
|
||||
/// given word.
|
||||
///
|
||||
/// Besides the modified Levenshtein, we use case insensitive comparison to improve accuracy
|
||||
/// on an edge case with a lower(upper)case letters mismatch.
|
||||
pub fn find_best_match_for_name_with_substrings(
|
||||
candidates: &[Symbol],
|
||||
lookup: Symbol,
|
||||
dist: Option<usize>,
|
||||
) -> Option<Symbol> {
|
||||
find_best_match_for_name_impl(true, candidates, lookup, dist)
|
||||
}
|
||||
|
||||
/// Finds the best match for a given word in the given iterator.
|
||||
///
|
||||
/// As a loose rule to avoid the obviously incorrect suggestions, it takes
|
||||
|
@ -54,11 +110,20 @@ pub fn lev_distance(a: &str, b: &str, limit: usize) -> Option<usize> {
|
|||
///
|
||||
/// Besides Levenshtein, we use case insensitive comparison to improve accuracy
|
||||
/// on an edge case with a lower(upper)case letters mismatch.
|
||||
#[cold]
|
||||
pub fn find_best_match_for_name(
|
||||
candidates: &[Symbol],
|
||||
lookup: Symbol,
|
||||
dist: Option<usize>,
|
||||
) -> Option<Symbol> {
|
||||
find_best_match_for_name_impl(false, candidates, lookup, dist)
|
||||
}
|
||||
|
||||
#[cold]
|
||||
fn find_best_match_for_name_impl(
|
||||
use_substring_score: bool,
|
||||
candidates: &[Symbol],
|
||||
lookup: Symbol,
|
||||
dist: Option<usize>,
|
||||
) -> Option<Symbol> {
|
||||
let lookup = lookup.as_str();
|
||||
let lookup_uppercase = lookup.to_uppercase();
|
||||
|
@ -74,7 +139,11 @@ pub fn find_best_match_for_name(
|
|||
let mut dist = dist.unwrap_or_else(|| cmp::max(lookup.len(), 3) / 3);
|
||||
let mut best = None;
|
||||
for c in candidates {
|
||||
match lev_distance(lookup, c.as_str(), dist) {
|
||||
match if use_substring_score {
|
||||
lev_distance_with_substrings(lookup, c.as_str(), dist)
|
||||
} else {
|
||||
lev_distance(lookup, c.as_str(), dist)
|
||||
} {
|
||||
Some(0) => return Some(*c),
|
||||
Some(d) => {
|
||||
dist = d - 1;
|
||||
|
|
|
@ -27,6 +27,17 @@ fn test_lev_distance_limit() {
|
|||
assert_eq!(lev_distance("abc", "xyz", 2), None);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_method_name_similarity_score() {
|
||||
assert_eq!(lev_distance_with_substrings("empty", "is_empty", 1), Some(1));
|
||||
assert_eq!(lev_distance_with_substrings("shrunk", "rchunks", 2), None);
|
||||
assert_eq!(lev_distance_with_substrings("abc", "abcd", 1), Some(1));
|
||||
assert_eq!(lev_distance_with_substrings("a", "abcd", 1), None);
|
||||
assert_eq!(lev_distance_with_substrings("edf", "eq", 1), None);
|
||||
assert_eq!(lev_distance_with_substrings("abc", "xyz", 3), Some(3));
|
||||
assert_eq!(lev_distance_with_substrings("abcdef", "abcdef", 2), Some(0));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_find_best_match_for_name() {
|
||||
use crate::create_default_session_globals_then;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue