1
Fork 0

Move all functions used by the queries to query.rs

This commit is contained in:
Oliver Scherer 2019-12-25 01:15:26 +01:00
parent 43221a684d
commit e21d2c8f9b
2 changed files with 98 additions and 108 deletions

View file

@ -1,22 +1,12 @@
// Not in interpret to make sure we do not use private implementation details
use std::convert::TryInto;
use std::error::Error;
use std::fmt;
use std::hash::Hash;
use rustc::mir;
use rustc::ty::layout::{self, VariantIdx};
use rustc::ty::layout::VariantIdx;
use rustc::ty::{self, TyCtxt};
use syntax::{
source_map::{Span, DUMMY_SP},
symbol::Symbol,
};
use syntax::{source_map::DUMMY_SP, symbol::Symbol};
use crate::interpret::{
intern_const_alloc_recursive, Allocation, ConstValue, ImmTy, Immediate, InterpCx, OpTy, Scalar,
};
use crate::interpret::{intern_const_alloc_recursive, ConstValue, InterpCx};
mod error;
mod query;
@ -24,101 +14,6 @@ mod query;
pub use error::*;
pub use query::*;
/// The `InterpCx` is only meant to be used to do field and index projections into constants for
/// `simd_shuffle` and const patterns in match arms.
///
/// The function containing the `match` that is currently being analyzed may have generic bounds
/// that inform us about the generic bounds of the constant. E.g., using an associated constant
/// of a function's generic parameter will require knowledge about the bounds on the generic
/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
fn mk_eval_cx<'mir, 'tcx>(
tcx: TyCtxt<'tcx>,
span: Span,
param_env: ty::ParamEnv<'tcx>,
can_access_statics: bool,
) -> CompileTimeEvalContext<'mir, 'tcx> {
debug!("mk_eval_cx: {:?}", param_env);
InterpCx::new(
tcx.at(span),
param_env,
CompileTimeInterpreter::new(),
MemoryExtra { can_access_statics },
)
}
fn op_to_const<'tcx>(
ecx: &CompileTimeEvalContext<'_, 'tcx>,
op: OpTy<'tcx>,
) -> &'tcx ty::Const<'tcx> {
// We do not have value optimizations for everything.
// Only scalars and slices, since they are very common.
// Note that further down we turn scalars of undefined bits back to `ByRef`. These can result
// from scalar unions that are initialized with one of their zero sized variants. We could
// instead allow `ConstValue::Scalar` to store `ScalarMaybeUndef`, but that would affect all
// the usual cases of extracting e.g. a `usize`, without there being a real use case for the
// `Undef` situation.
let try_as_immediate = match op.layout.abi {
layout::Abi::Scalar(..) => true,
layout::Abi::ScalarPair(..) => match op.layout.ty.kind {
ty::Ref(_, inner, _) => match inner.kind {
ty::Slice(elem) => elem == ecx.tcx.types.u8,
ty::Str => true,
_ => false,
},
_ => false,
},
_ => false,
};
let immediate = if try_as_immediate {
Err(ecx.read_immediate(op).expect("normalization works on validated constants"))
} else {
// It is guaranteed that any non-slice scalar pair is actually ByRef here.
// When we come back from raw const eval, we are always by-ref. The only way our op here is
// by-val is if we are in const_field, i.e., if this is (a field of) something that we
// "tried to make immediate" before. We wouldn't do that for non-slice scalar pairs or
// structs containing such.
op.try_as_mplace()
};
let val = match immediate {
Ok(mplace) => {
let ptr = mplace.ptr.to_ptr().unwrap();
let alloc = ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id);
ConstValue::ByRef { alloc, offset: ptr.offset }
}
// see comment on `let try_as_immediate` above
Err(ImmTy { imm: Immediate::Scalar(x), .. }) => match x {
ScalarMaybeUndef::Scalar(s) => ConstValue::Scalar(s),
ScalarMaybeUndef::Undef => {
// When coming out of "normal CTFE", we'll always have an `Indirect` operand as
// argument and we will not need this. The only way we can already have an
// `Immediate` is when we are called from `const_field`, and that `Immediate`
// comes from a constant so it can happen have `Undef`, because the indirect
// memory that was read had undefined bytes.
let mplace = op.assert_mem_place();
let ptr = mplace.ptr.to_ptr().unwrap();
let alloc = ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id);
ConstValue::ByRef { alloc, offset: ptr.offset }
}
},
Err(ImmTy { imm: Immediate::ScalarPair(a, b), .. }) => {
let (data, start) = match a.not_undef().unwrap() {
Scalar::Ptr(ptr) => {
(ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id), ptr.offset.bytes())
}
Scalar::Raw { .. } => (
ecx.tcx.intern_const_alloc(Allocation::from_byte_aligned_bytes(b"" as &[u8])),
0,
),
};
let len = b.to_machine_usize(&ecx.tcx.tcx).unwrap();
let start = start.try_into().unwrap();
let len: usize = len.try_into().unwrap();
ConstValue::Slice { data, start, end: start + len }
}
};
ecx.tcx.mk_const(ty::Const { val: ty::ConstKind::Value(val), ty: op.layout.ty })
}
/// Extracts a field of a (variant of a) const.
// this function uses `unwrap` copiously, because an already validated constant must have valid
// fields and can thus never fail outside of compiler bugs

View file

@ -262,3 +262,98 @@ fn eval_body_using_ecx<'mir, 'tcx>(
debug!("eval_body_using_ecx done: {:?}", *ret);
Ok(ret)
}
/// The `InterpCx` is only meant to be used to do field and index projections into constants for
/// `simd_shuffle` and const patterns in match arms.
///
/// The function containing the `match` that is currently being analyzed may have generic bounds
/// that inform us about the generic bounds of the constant. E.g., using an associated constant
/// of a function's generic parameter will require knowledge about the bounds on the generic
/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
pub(super) fn mk_eval_cx<'mir, 'tcx>(
tcx: TyCtxt<'tcx>,
span: Span,
param_env: ty::ParamEnv<'tcx>,
can_access_statics: bool,
) -> CompileTimeEvalContext<'mir, 'tcx> {
debug!("mk_eval_cx: {:?}", param_env);
InterpCx::new(
tcx.at(span),
param_env,
CompileTimeInterpreter::new(),
MemoryExtra { can_access_statics },
)
}
pub(super) fn op_to_const<'tcx>(
ecx: &CompileTimeEvalContext<'_, 'tcx>,
op: OpTy<'tcx>,
) -> &'tcx ty::Const<'tcx> {
// We do not have value optimizations for everything.
// Only scalars and slices, since they are very common.
// Note that further down we turn scalars of undefined bits back to `ByRef`. These can result
// from scalar unions that are initialized with one of their zero sized variants. We could
// instead allow `ConstValue::Scalar` to store `ScalarMaybeUndef`, but that would affect all
// the usual cases of extracting e.g. a `usize`, without there being a real use case for the
// `Undef` situation.
let try_as_immediate = match op.layout.abi {
layout::Abi::Scalar(..) => true,
layout::Abi::ScalarPair(..) => match op.layout.ty.kind {
ty::Ref(_, inner, _) => match inner.kind {
ty::Slice(elem) => elem == ecx.tcx.types.u8,
ty::Str => true,
_ => false,
},
_ => false,
},
_ => false,
};
let immediate = if try_as_immediate {
Err(ecx.read_immediate(op).expect("normalization works on validated constants"))
} else {
// It is guaranteed that any non-slice scalar pair is actually ByRef here.
// When we come back from raw const eval, we are always by-ref. The only way our op here is
// by-val is if we are in const_field, i.e., if this is (a field of) something that we
// "tried to make immediate" before. We wouldn't do that for non-slice scalar pairs or
// structs containing such.
op.try_as_mplace()
};
let val = match immediate {
Ok(mplace) => {
let ptr = mplace.ptr.to_ptr().unwrap();
let alloc = ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id);
ConstValue::ByRef { alloc, offset: ptr.offset }
}
// see comment on `let try_as_immediate` above
Err(ImmTy { imm: Immediate::Scalar(x), .. }) => match x {
ScalarMaybeUndef::Scalar(s) => ConstValue::Scalar(s),
ScalarMaybeUndef::Undef => {
// When coming out of "normal CTFE", we'll always have an `Indirect` operand as
// argument and we will not need this. The only way we can already have an
// `Immediate` is when we are called from `const_field`, and that `Immediate`
// comes from a constant so it can happen have `Undef`, because the indirect
// memory that was read had undefined bytes.
let mplace = op.assert_mem_place();
let ptr = mplace.ptr.to_ptr().unwrap();
let alloc = ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id);
ConstValue::ByRef { alloc, offset: ptr.offset }
}
},
Err(ImmTy { imm: Immediate::ScalarPair(a, b), .. }) => {
let (data, start) = match a.not_undef().unwrap() {
Scalar::Ptr(ptr) => {
(ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id), ptr.offset.bytes())
}
Scalar::Raw { .. } => (
ecx.tcx.intern_const_alloc(Allocation::from_byte_aligned_bytes(b"" as &[u8])),
0,
),
};
let len = b.to_machine_usize(&ecx.tcx.tcx).unwrap();
let start = start.try_into().unwrap();
let len: usize = len.try_into().unwrap();
ConstValue::Slice { data, start, end: start + len }
}
};
ecx.tcx.mk_const(ty::Const { val: ty::ConstKind::Value(val), ty: op.layout.ty })
}