1
Fork 0

Auto merge of #93288 - matthiaskrgr:rollup-uu4uwd1, r=matthiaskrgr

Rollup of 8 pull requests

Successful merges:

 - #88794 (Add a `try_clone()` function to `OwnedFd`.)
 - #93064 (Properly track `DepNode`s in trait evaluation provisional cache)
 - #93118 (Move param count error emission to end of `check_argument_types`)
 - #93144 (Work around missing code coverage data causing llvm-cov failures)
 - #93169 (Fix inconsistency of local blanket impls)
 - #93175 (Implement stable overlap check considering negative traits)
 - #93251 (rustdoc settings: use radio buttons for theme)
 - #93269 (Use error-on-mismatch policy for PAuth module flags.)

Failed merges:

r? `@ghost`
`@rustbot` modify labels: rollup
This commit is contained in:
bors 2022-01-25 05:15:21 +00:00
commit df368ae457
30 changed files with 857 additions and 389 deletions

View file

@ -215,16 +215,19 @@ pub unsafe fn create_module<'ll>(
// to ensure intrinsic calls don't use it.
if !sess.needs_plt() {
let avoid_plt = "RtLibUseGOT\0".as_ptr().cast();
llvm::LLVMRustAddModuleFlag(llmod, avoid_plt, 1);
llvm::LLVMRustAddModuleFlag(llmod, llvm::LLVMModFlagBehavior::Warning, avoid_plt, 1);
}
if sess.is_sanitizer_cfi_enabled() {
// FIXME(rcvalle): Add support for non canonical jump tables.
let canonical_jump_tables = "CFI Canonical Jump Tables\0".as_ptr().cast();
// FIXME(rcvalle): Add it with Override behavior flag--LLVMRustAddModuleFlag adds it with
// Warning behavior flag. Add support for specifying the behavior flag to
// LLVMRustAddModuleFlag.
llvm::LLVMRustAddModuleFlag(llmod, canonical_jump_tables, 1);
// FIXME(rcvalle): Add it with Override behavior flag.
llvm::LLVMRustAddModuleFlag(
llmod,
llvm::LLVMModFlagBehavior::Warning,
canonical_jump_tables,
1,
);
}
// Control Flow Guard is currently only supported by the MSVC linker on Windows.
@ -233,11 +236,21 @@ pub unsafe fn create_module<'ll>(
CFGuard::Disabled => {}
CFGuard::NoChecks => {
// Set `cfguard=1` module flag to emit metadata only.
llvm::LLVMRustAddModuleFlag(llmod, "cfguard\0".as_ptr() as *const _, 1)
llvm::LLVMRustAddModuleFlag(
llmod,
llvm::LLVMModFlagBehavior::Warning,
"cfguard\0".as_ptr() as *const _,
1,
)
}
CFGuard::Checks => {
// Set `cfguard=2` module flag to emit metadata and checks.
llvm::LLVMRustAddModuleFlag(llmod, "cfguard\0".as_ptr() as *const _, 2)
llvm::LLVMRustAddModuleFlag(
llmod,
llvm::LLVMModFlagBehavior::Warning,
"cfguard\0".as_ptr() as *const _,
2,
)
}
}
}
@ -247,24 +260,28 @@ pub unsafe fn create_module<'ll>(
llvm::LLVMRustAddModuleFlag(
llmod,
llvm::LLVMModFlagBehavior::Error,
"branch-target-enforcement\0".as_ptr().cast(),
bti.into(),
);
llvm::LLVMRustAddModuleFlag(
llmod,
llvm::LLVMModFlagBehavior::Error,
"sign-return-address\0".as_ptr().cast(),
pac.is_some().into(),
);
let pac_opts = pac.unwrap_or(PacRet { leaf: false, key: PAuthKey::A });
llvm::LLVMRustAddModuleFlag(
llmod,
llvm::LLVMModFlagBehavior::Error,
"sign-return-address-all\0".as_ptr().cast(),
pac_opts.leaf.into(),
);
let is_bkey = if pac_opts.key == PAuthKey::A { false } else { true };
llvm::LLVMRustAddModuleFlag(
llmod,
llvm::LLVMModFlagBehavior::Error,
"sign-return-address-with-bkey\0".as_ptr().cast(),
is_bkey.into(),
);

View file

@ -9,6 +9,7 @@ use rustc_data_structures::fx::FxIndexSet;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefIdSet;
use rustc_llvm::RustString;
use rustc_middle::bug;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::mir::coverage::CodeRegion;
use rustc_middle::ty::TyCtxt;
@ -76,10 +77,18 @@ pub fn finalize<'ll, 'tcx>(cx: &CodegenCx<'ll, 'tcx>) {
let coverage_mapping_buffer = llvm::build_byte_buffer(|coverage_mapping_buffer| {
mapgen.write_coverage_mapping(expressions, counter_regions, coverage_mapping_buffer);
});
debug_assert!(
!coverage_mapping_buffer.is_empty(),
"Every `FunctionCoverage` should have at least one counter"
);
if coverage_mapping_buffer.is_empty() {
if function_coverage.is_used() {
bug!(
"A used function should have had coverage mapping data but did not: {}",
mangled_function_name
);
} else {
debug!("unused function had no coverage mapping data: {}", mangled_function_name);
continue;
}
}
function_data.push((mangled_function_name, source_hash, is_used, coverage_mapping_buffer));
}

View file

@ -108,18 +108,29 @@ impl<'a, 'tcx> CrateDebugContext<'a, 'tcx> {
// This can be overridden using --llvm-opts -dwarf-version,N.
// Android has the same issue (#22398)
if let Some(version) = sess.target.dwarf_version {
llvm::LLVMRustAddModuleFlag(self.llmod, "Dwarf Version\0".as_ptr().cast(), version)
llvm::LLVMRustAddModuleFlag(
self.llmod,
llvm::LLVMModFlagBehavior::Warning,
"Dwarf Version\0".as_ptr().cast(),
version,
)
}
// Indicate that we want CodeView debug information on MSVC
if sess.target.is_like_msvc {
llvm::LLVMRustAddModuleFlag(self.llmod, "CodeView\0".as_ptr().cast(), 1)
llvm::LLVMRustAddModuleFlag(
self.llmod,
llvm::LLVMModFlagBehavior::Warning,
"CodeView\0".as_ptr().cast(),
1,
)
}
// Prevent bitcode readers from deleting the debug info.
let ptr = "Debug Info Version\0".as_ptr();
llvm::LLVMRustAddModuleFlag(
self.llmod,
llvm::LLVMModFlagBehavior::Warning,
ptr.cast(),
llvm::LLVMRustDebugMetadataVersion(),
);

View file

@ -61,6 +61,26 @@ pub enum LLVMMachineType {
ARM = 0x01c0,
}
/// LLVM's Module::ModFlagBehavior, defined in llvm/include/llvm/IR/Module.h.
///
/// When merging modules (e.g. during LTO), their metadata flags are combined. Conflicts are
/// resolved according to the merge behaviors specified here. Flags differing only in merge
/// behavior are still considered to be in conflict.
///
/// In order for Rust-C LTO to work, we must specify behaviors compatible with Clang. Notably,
/// 'Error' and 'Warning' cannot be mixed for a given flag.
#[derive(Copy, Clone, PartialEq)]
#[repr(C)]
pub enum LLVMModFlagBehavior {
Error = 1,
Warning = 2,
Require = 3,
Override = 4,
Append = 5,
AppendUnique = 6,
Max = 7,
}
// Consts for the LLVM CallConv type, pre-cast to usize.
/// LLVM CallingConv::ID. Should we wrap this?
@ -1895,7 +1915,16 @@ extern "C" {
pub fn LLVMRustIsRustLLVM() -> bool;
pub fn LLVMRustAddModuleFlag(M: &Module, name: *const c_char, value: u32);
/// Add LLVM module flags.
///
/// In order for Rust-C LTO to work, module flags must be compatible with Clang. What
/// "compatible" means depends on the merge behaviors involved.
pub fn LLVMRustAddModuleFlag(
M: &Module,
merge_behavior: LLVMModFlagBehavior,
name: *const c_char,
value: u32,
);
pub fn LLVMRustMetadataAsValue<'a>(C: &'a Context, MD: &'a Metadata) -> &'a Value;

View file

@ -697,6 +697,7 @@ pub const BUILTIN_ATTRIBUTES: &[BuiltinAttribute] = &[
rustc_attr!(TEST, rustc_capture_analysis, Normal, template!(Word), WarnFollowing),
rustc_attr!(TEST, rustc_insignificant_dtor, Normal, template!(Word), WarnFollowing),
rustc_attr!(TEST, rustc_strict_coherence, Normal, template!(Word), WarnFollowing),
rustc_attr!(TEST, rustc_with_negative_coherence, Normal, template!(Word), WarnFollowing),
rustc_attr!(TEST, rustc_variance, Normal, template!(Word), WarnFollowing),
rustc_attr!(TEST, rustc_layout, Normal, template!(List: "field1, field2, ..."), WarnFollowing),
rustc_attr!(TEST, rustc_regions, Normal, template!(Word), WarnFollowing),

View file

@ -722,9 +722,12 @@ extern "C" bool LLVMRustIsRustLLVM() {
#endif
}
extern "C" void LLVMRustAddModuleFlag(LLVMModuleRef M, const char *Name,
uint32_t Value) {
unwrap(M)->addModuleFlag(Module::Warning, Name, Value);
extern "C" void LLVMRustAddModuleFlag(
LLVMModuleRef M,
Module::ModFlagBehavior MergeBehavior,
const char *Name,
uint32_t Value) {
unwrap(M)->addModuleFlag(MergeBehavior, Name, Value);
}
extern "C" LLVMValueRef LLVMRustMetadataAsValue(LLVMContextRef C, LLVMMetadataRef MD) {

View file

@ -1204,6 +1204,7 @@ symbols! {
rustc_trivial_field_reads,
rustc_unsafe_specialization_marker,
rustc_variance,
rustc_with_negative_coherence,
rustdoc,
rustdoc_internals,
rustfmt,

View file

@ -7,9 +7,11 @@
use crate::infer::{CombinedSnapshot, InferOk, TyCtxtInferExt};
use crate::traits::query::evaluate_obligation::InferCtxtExt;
use crate::traits::select::IntercrateAmbiguityCause;
use crate::traits::util::impl_trait_ref_and_oblig;
use crate::traits::SkipLeakCheck;
use crate::traits::{
self, Normalized, Obligation, ObligationCause, PredicateObligation, SelectionContext,
self, FulfillmentContext, Normalized, Obligation, ObligationCause, PredicateObligation,
PredicateObligations, SelectionContext,
};
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_middle::ty::fast_reject::{self, SimplifyParams, StripReferences};
@ -135,45 +137,83 @@ fn with_fresh_ty_vars<'cx, 'tcx>(
header
}
/// What kind of overlap check are we doing -- this exists just for testing and feature-gating
/// purposes.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
enum OverlapMode {
/// The 1.0 rules (either types fail to unify, or where clauses are not implemented for crate-local types)
Stable,
/// Feature-gated test: Stable, *or* there is an explicit negative impl that rules out one of the where-clauses.
WithNegative,
/// Just check for negative impls, not for "where clause not implemented": used for testing.
Strict,
}
impl OverlapMode {
fn use_negative_impl(&self) -> bool {
*self == OverlapMode::Strict || *self == OverlapMode::WithNegative
}
fn use_implicit_negative(&self) -> bool {
*self == OverlapMode::Stable || *self == OverlapMode::WithNegative
}
}
fn overlap_mode<'tcx>(tcx: TyCtxt<'tcx>, impl1_def_id: DefId, impl2_def_id: DefId) -> OverlapMode {
if tcx.has_attr(impl1_def_id, sym::rustc_strict_coherence)
!= tcx.has_attr(impl2_def_id, sym::rustc_strict_coherence)
{
bug!("Use strict coherence on both impls",);
}
if tcx.has_attr(impl1_def_id, sym::rustc_with_negative_coherence)
!= tcx.has_attr(impl2_def_id, sym::rustc_with_negative_coherence)
{
bug!("Use with negative coherence on both impls",);
}
if tcx.has_attr(impl1_def_id, sym::rustc_strict_coherence) {
OverlapMode::Strict
} else if tcx.has_attr(impl1_def_id, sym::rustc_with_negative_coherence) {
OverlapMode::WithNegative
} else {
OverlapMode::Stable
}
}
/// Can both impl `a` and impl `b` be satisfied by a common type (including
/// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls.
fn overlap<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
skip_leak_check: SkipLeakCheck,
a_def_id: DefId,
b_def_id: DefId,
impl1_def_id: DefId,
impl2_def_id: DefId,
) -> Option<OverlapResult<'tcx>> {
debug!("overlap(a_def_id={:?}, b_def_id={:?})", a_def_id, b_def_id);
debug!("overlap(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id);
selcx.infcx().probe_maybe_skip_leak_check(skip_leak_check.is_yes(), |snapshot| {
overlap_within_probe(selcx, skip_leak_check, a_def_id, b_def_id, snapshot)
overlap_within_probe(selcx, skip_leak_check, impl1_def_id, impl2_def_id, snapshot)
})
}
fn overlap_within_probe<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
skip_leak_check: SkipLeakCheck,
a_def_id: DefId,
b_def_id: DefId,
impl1_def_id: DefId,
impl2_def_id: DefId,
snapshot: &CombinedSnapshot<'_, 'tcx>,
) -> Option<OverlapResult<'tcx>> {
fn loose_check<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
o: &PredicateObligation<'tcx>,
) -> bool {
!selcx.predicate_may_hold_fatal(o)
}
let infcx = selcx.infcx();
let tcx = infcx.tcx;
fn strict_check<'cx, 'tcx>(
selcx: &SelectionContext<'cx, 'tcx>,
o: &PredicateObligation<'tcx>,
) -> bool {
let infcx = selcx.infcx();
let tcx = infcx.tcx;
o.flip_polarity(tcx)
.as_ref()
.map(|o| selcx.infcx().predicate_must_hold_modulo_regions(o))
.unwrap_or(false)
let overlap_mode = overlap_mode(tcx, impl1_def_id, impl2_def_id);
if overlap_mode.use_negative_impl() {
if negative_impl(selcx, impl1_def_id, impl2_def_id)
|| negative_impl(selcx, impl2_def_id, impl1_def_id)
{
return None;
}
}
// For the purposes of this check, we don't bring any placeholder
@ -182,26 +222,61 @@ fn overlap_within_probe<'cx, 'tcx>(
// empty environment.
let param_env = ty::ParamEnv::empty();
let a_impl_header = with_fresh_ty_vars(selcx, param_env, a_def_id);
let b_impl_header = with_fresh_ty_vars(selcx, param_env, b_def_id);
let impl1_header = with_fresh_ty_vars(selcx, param_env, impl1_def_id);
let impl2_header = with_fresh_ty_vars(selcx, param_env, impl2_def_id);
debug!("overlap: a_impl_header={:?}", a_impl_header);
debug!("overlap: b_impl_header={:?}", b_impl_header);
// Do `a` and `b` unify? If not, no overlap.
let obligations = match selcx
.infcx()
.at(&ObligationCause::dummy(), param_env)
.eq_impl_headers(&a_impl_header, &b_impl_header)
{
Ok(InferOk { obligations, value: () }) => obligations,
Err(_) => {
return None;
}
};
debug!("overlap: impl1_header={:?}", impl1_header);
debug!("overlap: impl2_header={:?}", impl2_header);
let obligations = equate_impl_headers(selcx, &impl1_header, &impl2_header)?;
debug!("overlap: unification check succeeded");
if overlap_mode.use_implicit_negative() {
if implicit_negative(selcx, param_env, &impl1_header, impl2_header, obligations) {
return None;
}
}
if !skip_leak_check.is_yes() {
if infcx.leak_check(true, snapshot).is_err() {
debug!("overlap: leak check failed");
return None;
}
}
let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes();
debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
let involves_placeholder =
matches!(selcx.infcx().region_constraints_added_in_snapshot(snapshot), Some(true));
let impl_header = selcx.infcx().resolve_vars_if_possible(impl1_header);
Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder })
}
fn equate_impl_headers<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
impl1_header: &ty::ImplHeader<'tcx>,
impl2_header: &ty::ImplHeader<'tcx>,
) -> Option<PredicateObligations<'tcx>> {
// Do `a` and `b` unify? If not, no overlap.
selcx
.infcx()
.at(&ObligationCause::dummy(), ty::ParamEnv::empty())
.eq_impl_headers(impl1_header, impl2_header)
.map(|infer_ok| infer_ok.obligations)
.ok()
}
/// Given impl1 and impl2 check if both impls can be satisfied by a common type (including
/// where-clauses) If so, return false, otherwise return true, they are disjoint.
fn implicit_negative<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
impl1_header: &ty::ImplHeader<'tcx>,
impl2_header: ty::ImplHeader<'tcx>,
obligations: PredicateObligations<'tcx>,
) -> bool {
// There's no overlap if obligations are unsatisfiable or if the obligation negated is
// satisfied.
//
@ -225,11 +300,11 @@ fn overlap_within_probe<'cx, 'tcx>(
// at some point an impl for `&'?a str: Error` could be added.
let infcx = selcx.infcx();
let tcx = infcx.tcx;
let opt_failing_obligation = a_impl_header
let opt_failing_obligation = impl1_header
.predicates
.iter()
.copied()
.chain(b_impl_header.predicates)
.chain(impl2_header.predicates)
.map(|p| infcx.resolve_vars_if_possible(p))
.map(|p| Obligation {
cause: ObligationCause::dummy(),
@ -239,15 +314,7 @@ fn overlap_within_probe<'cx, 'tcx>(
})
.chain(obligations)
.find(|o| {
// if both impl headers are set to strict coherence it means that this will be accepted
// only if it's stated that T: !Trait. So only prove that the negated obligation holds.
if tcx.has_attr(a_def_id, sym::rustc_strict_coherence)
&& tcx.has_attr(b_def_id, sym::rustc_strict_coherence)
{
strict_check(selcx, o)
} else {
loose_check(selcx, o) || tcx.features().negative_impls && strict_check(selcx, o)
}
loose_check(selcx, o) || tcx.features().negative_impls && negative_impl_exists(selcx, o)
});
// FIXME: the call to `selcx.predicate_may_hold_fatal` above should be ported
// to the canonical trait query form, `infcx.predicate_may_hold`, once
@ -255,24 +322,97 @@ fn overlap_within_probe<'cx, 'tcx>(
if let Some(failing_obligation) = opt_failing_obligation {
debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
return None;
true
} else {
false
}
}
if !skip_leak_check.is_yes() {
if infcx.leak_check(true, snapshot).is_err() {
debug!("overlap: leak check failed");
return None;
/// Given impl1 and impl2 check if both impls are never satisfied by a common type (including
/// where-clauses) If so, return true, they are disjoint and false otherwise.
fn negative_impl<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
impl1_def_id: DefId,
impl2_def_id: DefId,
) -> bool {
let tcx = selcx.infcx().tcx;
// create a parameter environment corresponding to a (placeholder) instantiation of impl1
let impl1_env = tcx.param_env(impl1_def_id);
let impl1_trait_ref = tcx.impl_trait_ref(impl1_def_id).unwrap();
// Create an infcx, taking the predicates of impl1 as assumptions:
tcx.infer_ctxt().enter(|infcx| {
// Normalize the trait reference. The WF rules ought to ensure
// that this always succeeds.
let impl1_trait_ref = match traits::fully_normalize(
&infcx,
FulfillmentContext::new(),
ObligationCause::dummy(),
impl1_env,
impl1_trait_ref,
) {
Ok(impl1_trait_ref) => impl1_trait_ref,
Err(err) => {
bug!("failed to fully normalize {:?}: {:?}", impl1_trait_ref, err);
}
};
// Attempt to prove that impl2 applies, given all of the above.
let selcx = &mut SelectionContext::new(&infcx);
let impl2_substs = infcx.fresh_substs_for_item(DUMMY_SP, impl2_def_id);
let (impl2_trait_ref, obligations) =
impl_trait_ref_and_oblig(selcx, impl1_env, impl2_def_id, impl2_substs);
// do the impls unify? If not, not disjoint.
let more_obligations = match infcx
.at(&ObligationCause::dummy(), impl1_env)
.eq(impl1_trait_ref, impl2_trait_ref)
{
Ok(InferOk { obligations, .. }) => obligations,
Err(_) => {
debug!(
"explicit_disjoint: {:?} does not unify with {:?}",
impl1_trait_ref, impl2_trait_ref
);
return false;
}
};
let opt_failing_obligation = obligations
.into_iter()
.chain(more_obligations)
.find(|o| negative_impl_exists(selcx, o));
if let Some(failing_obligation) = opt_failing_obligation {
debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
true
} else {
false
}
}
})
}
let impl_header = selcx.infcx().resolve_vars_if_possible(a_impl_header);
let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes();
debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
fn loose_check<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
o: &PredicateObligation<'tcx>,
) -> bool {
!selcx.predicate_may_hold_fatal(o)
}
let involves_placeholder =
matches!(selcx.infcx().region_constraints_added_in_snapshot(snapshot), Some(true));
Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder })
fn negative_impl_exists<'cx, 'tcx>(
selcx: &SelectionContext<'cx, 'tcx>,
o: &PredicateObligation<'tcx>,
) -> bool {
let infcx = selcx.infcx();
let tcx = infcx.tcx;
o.flip_polarity(tcx)
.as_ref()
.map(|o| {
// FIXME This isn't quite correct, regions should be included
selcx.infcx().predicate_must_hold_modulo_regions(o)
})
.unwrap_or(false)
}
pub fn trait_ref_is_knowable<'tcx>(

View file

@ -765,14 +765,38 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
debug!(?result, "CACHE MISS");
self.insert_evaluation_cache(param_env, fresh_trait_pred, dep_node, result);
stack.cache().on_completion(stack.dfn, |fresh_trait_pred, provisional_result| {
self.insert_evaluation_cache(
param_env,
fresh_trait_pred,
dep_node,
provisional_result.max(result),
);
});
stack.cache().on_completion(
stack.dfn,
|fresh_trait_pred, provisional_result, provisional_dep_node| {
// Create a new `DepNode` that has dependencies on:
// * The `DepNode` for the original evaluation that resulted in a provisional cache
// entry being crated
// * The `DepNode` for the *current* evaluation, which resulted in us completing
// provisional caches entries and inserting them into the evaluation cache
//
// This ensures that when a query reads this entry from the evaluation cache,
// it will end up (transitively) dependening on all of the incr-comp dependencies
// created during the evaluation of this trait. For example, evaluating a trait
// will usually require us to invoke `type_of(field_def_id)` to determine the
// constituent types, and we want any queries reading from this evaluation
// cache entry to end up with a transitive `type_of(field_def_id`)` dependency.
//
// By using `in_task`, we're also creating an edge from the *current* query
// to the newly-created `combined_dep_node`. This is probably redundant,
// but it's better to add too many dep graph edges than to add too few
// dep graph edges.
let ((), combined_dep_node) = self.in_task(|this| {
this.tcx().dep_graph.read_index(provisional_dep_node);
this.tcx().dep_graph.read_index(dep_node);
});
self.insert_evaluation_cache(
param_env,
fresh_trait_pred,
combined_dep_node,
provisional_result.max(result),
);
},
);
} else {
debug!(?result, "PROVISIONAL");
debug!(
@ -781,7 +805,13 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
fresh_trait_pred, stack.depth, reached_depth,
);
stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_pred, result);
stack.cache().insert_provisional(
stack.dfn,
reached_depth,
fresh_trait_pred,
result,
dep_node,
);
}
Ok(result)
@ -2506,6 +2536,11 @@ struct ProvisionalEvaluation {
from_dfn: usize,
reached_depth: usize,
result: EvaluationResult,
/// The `DepNodeIndex` created for the `evaluate_stack` call for this provisional
/// evaluation. When we create an entry in the evaluation cache using this provisional
/// cache entry (see `on_completion`), we use this `dep_node` to ensure that future reads from
/// the cache will have all of the necessary incr comp dependencies tracked.
dep_node: DepNodeIndex,
}
impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
@ -2548,6 +2583,7 @@ impl<'tcx> ProvisionalEvaluationCache<'tcx> {
reached_depth: usize,
fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
result: EvaluationResult,
dep_node: DepNodeIndex,
) {
debug!(?from_dfn, ?fresh_trait_pred, ?result, "insert_provisional");
@ -2573,7 +2609,10 @@ impl<'tcx> ProvisionalEvaluationCache<'tcx> {
}
}
map.insert(fresh_trait_pred, ProvisionalEvaluation { from_dfn, reached_depth, result });
map.insert(
fresh_trait_pred,
ProvisionalEvaluation { from_dfn, reached_depth, result, dep_node },
);
}
/// Invoked when the node with dfn `dfn` does not get a successful
@ -2624,7 +2663,7 @@ impl<'tcx> ProvisionalEvaluationCache<'tcx> {
fn on_completion(
&self,
dfn: usize,
mut op: impl FnMut(ty::PolyTraitPredicate<'tcx>, EvaluationResult),
mut op: impl FnMut(ty::PolyTraitPredicate<'tcx>, EvaluationResult, DepNodeIndex),
) {
debug!(?dfn, "on_completion");
@ -2633,7 +2672,7 @@ impl<'tcx> ProvisionalEvaluationCache<'tcx> {
{
debug!(?fresh_trait_pred, ?eval, "on_completion");
op(fresh_trait_pred, eval.result);
op(fresh_trait_pred, eval.result, eval.dep_node);
}
}
}

View file

@ -127,136 +127,19 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let expected_arg_count = formal_input_tys.len();
let param_count_error = |expected_count: usize,
arg_count: usize,
error_code: &str,
c_variadic: bool,
sugg_unit: bool| {
let (span, start_span, args, ctor_of) = match &call_expr.kind {
hir::ExprKind::Call(
hir::Expr {
span,
kind:
hir::ExprKind::Path(hir::QPath::Resolved(
_,
hir::Path { res: Res::Def(DefKind::Ctor(of, _), _), .. },
)),
..
},
args,
) => (*span, *span, &args[..], Some(of)),
hir::ExprKind::Call(hir::Expr { span, .. }, args) => {
(*span, *span, &args[..], None)
}
hir::ExprKind::MethodCall(path_segment, args, _) => (
path_segment.ident.span,
// `sp` doesn't point at the whole `foo.bar()`, only at `bar`.
path_segment
.args
.and_then(|args| args.args.iter().last())
// Account for `foo.bar::<T>()`.
.map(|arg| {
// Skip the closing `>`.
tcx.sess
.source_map()
.next_point(tcx.sess.source_map().next_point(arg.span()))
})
.unwrap_or(path_segment.ident.span),
&args[1..], // Skip the receiver.
None, // methods are never ctors
),
k => span_bug!(call_span, "checking argument types on a non-call: `{:?}`", k),
};
let arg_spans = if provided_args.is_empty() {
// foo()
// ^^^-- supplied 0 arguments
// |
// expected 2 arguments
vec![tcx.sess.source_map().next_point(start_span).with_hi(call_span.hi())]
} else {
// foo(1, 2, 3)
// ^^^ - - - supplied 3 arguments
// |
// expected 2 arguments
args.iter().map(|arg| arg.span).collect::<Vec<Span>>()
};
let mut err = tcx.sess.struct_span_err_with_code(
span,
&format!(
"this {} takes {}{} but {} {} supplied",
match ctor_of {
Some(CtorOf::Struct) => "struct",
Some(CtorOf::Variant) => "enum variant",
None => "function",
},
if c_variadic { "at least " } else { "" },
potentially_plural_count(expected_count, "argument"),
potentially_plural_count(arg_count, "argument"),
if arg_count == 1 { "was" } else { "were" }
),
DiagnosticId::Error(error_code.to_owned()),
);
let label = format!("supplied {}", potentially_plural_count(arg_count, "argument"));
for (i, span) in arg_spans.into_iter().enumerate() {
err.span_label(
span,
if arg_count == 0 || i + 1 == arg_count { &label } else { "" },
);
}
if let Some(def_id) = fn_def_id {
if let Some(def_span) = tcx.def_ident_span(def_id) {
let mut spans: MultiSpan = def_span.into();
let params = tcx
.hir()
.get_if_local(def_id)
.and_then(|node| node.body_id())
.into_iter()
.map(|id| tcx.hir().body(id).params)
.flatten();
for param in params {
spans.push_span_label(param.span, String::new());
}
let def_kind = tcx.def_kind(def_id);
err.span_note(spans, &format!("{} defined here", def_kind.descr(def_id)));
}
}
if sugg_unit {
let sugg_span = tcx.sess.source_map().end_point(call_expr.span);
// remove closing `)` from the span
let sugg_span = sugg_span.shrink_to_lo();
err.span_suggestion(
sugg_span,
"expected the unit value `()`; create it with empty parentheses",
String::from("()"),
Applicability::MachineApplicable,
);
} else {
err.span_label(
span,
format!(
"expected {}{}",
if c_variadic { "at least " } else { "" },
potentially_plural_count(expected_count, "argument")
),
);
}
err.emit();
};
// expected_count, arg_count, error_code, sugg_unit
let mut error: Option<(usize, usize, &str, bool)> = None;
// If the arguments should be wrapped in a tuple (ex: closures), unwrap them here
let (formal_input_tys, expected_input_tys) = if tuple_arguments == TupleArguments {
let tuple_type = self.structurally_resolved_type(call_span, formal_input_tys[0]);
match tuple_type.kind() {
ty::Tuple(arg_types) if arg_types.len() != provided_args.len() => {
param_count_error(arg_types.len(), provided_args.len(), "E0057", false, false);
(self.err_args(provided_args.len()), vec![])
}
// We expected a tuple and got a tuple
ty::Tuple(arg_types) => {
// Argument length differs
if arg_types.len() != provided_args.len() {
error = Some((arg_types.len(), provided_args.len(), "E0057", false));
}
let expected_input_tys = match expected_input_tys.get(0) {
Some(&ty) => match ty.kind() {
ty::Tuple(ref tys) => tys.iter().map(|k| k.expect_ty()).collect(),
@ -267,6 +150,8 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
(arg_types.iter().map(|k| k.expect_ty()).collect(), expected_input_tys)
}
_ => {
// Otherwise, there's a mismatch, so clear out what we're expecting, and set
// our input typs to err_args so we don't blow up the error messages
struct_span_err!(
tcx.sess,
call_span,
@ -284,7 +169,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
if supplied_arg_count >= expected_arg_count {
(formal_input_tys.to_vec(), expected_input_tys)
} else {
param_count_error(expected_arg_count, supplied_arg_count, "E0060", true, false);
error = Some((expected_arg_count, supplied_arg_count, "E0060", false));
(self.err_args(supplied_arg_count), vec![])
}
} else {
@ -296,8 +181,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
} else {
false
};
param_count_error(expected_arg_count, supplied_arg_count, "E0061", false, sugg_unit);
error = Some((expected_arg_count, supplied_arg_count, "E0061", sugg_unit));
(self.err_args(supplied_arg_count), vec![])
};
@ -315,13 +199,15 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
assert_eq!(expected_input_tys.len(), formal_input_tys.len());
let provided_arg_count: usize = provided_args.len();
// Keep track of the fully coerced argument types
let mut final_arg_types: Vec<(usize, Ty<'_>, Ty<'_>)> = vec![];
let mut final_arg_types: Vec<Option<(Ty<'_>, Ty<'_>)>> = vec![None; provided_arg_count];
// We introduce a helper function to demand that a given argument satisfy a given input
// This is more complicated than just checking type equality, as arguments could be coerced
// This version writes those types back so further type checking uses the narrowed types
let demand_compatible = |idx, final_arg_types: &mut Vec<(usize, Ty<'tcx>, Ty<'tcx>)>| {
let demand_compatible = |idx, final_arg_types: &mut Vec<Option<(Ty<'tcx>, Ty<'tcx>)>>| {
let formal_input_ty: Ty<'tcx> = formal_input_tys[idx];
let expected_input_ty: Ty<'tcx> = expected_input_tys[idx];
let provided_arg = &provided_args[idx];
@ -340,13 +226,13 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
// Keep track of these for below
final_arg_types.push((idx, checked_ty, coerced_ty));
final_arg_types[idx] = Some((checked_ty, coerced_ty));
// Cause selection errors caused by resolving a single argument to point at the
// argument and not the call. This is otherwise redundant with the `demand_coerce`
// call immediately after, but it lets us customize the span pointed to in the
// fulfillment error to be more accurate.
let _ =
let coerced_ty =
self.resolve_vars_with_obligations_and_mutate_fulfillment(coerced_ty, |errors| {
self.point_at_type_arg_instead_of_call_if_possible(errors, call_expr);
self.point_at_arg_instead_of_call_if_possible(
@ -358,6 +244,8 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
);
});
final_arg_types[idx] = Some((checked_ty, coerced_ty));
// We're processing function arguments so we definitely want to use
// two-phase borrows.
self.demand_coerce(&provided_arg, checked_ty, coerced_ty, None, AllowTwoPhase::Yes);
@ -416,6 +304,123 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
}
// If there was an error in parameter count, emit that here
if let Some((expected_count, arg_count, err_code, sugg_unit)) = error {
let (span, start_span, args, ctor_of) = match &call_expr.kind {
hir::ExprKind::Call(
hir::Expr {
span,
kind:
hir::ExprKind::Path(hir::QPath::Resolved(
_,
hir::Path { res: Res::Def(DefKind::Ctor(of, _), _), .. },
)),
..
},
args,
) => (*span, *span, &args[..], Some(of)),
hir::ExprKind::Call(hir::Expr { span, .. }, args) => {
(*span, *span, &args[..], None)
}
hir::ExprKind::MethodCall(path_segment, args, _) => (
path_segment.ident.span,
// `sp` doesn't point at the whole `foo.bar()`, only at `bar`.
path_segment
.args
.and_then(|args| args.args.iter().last())
// Account for `foo.bar::<T>()`.
.map(|arg| {
// Skip the closing `>`.
tcx.sess
.source_map()
.next_point(tcx.sess.source_map().next_point(arg.span()))
})
.unwrap_or(path_segment.ident.span),
&args[1..], // Skip the receiver.
None, // methods are never ctors
),
k => span_bug!(call_span, "checking argument types on a non-call: `{:?}`", k),
};
let arg_spans = if provided_args.is_empty() {
// foo()
// ^^^-- supplied 0 arguments
// |
// expected 2 arguments
vec![tcx.sess.source_map().next_point(start_span).with_hi(call_span.hi())]
} else {
// foo(1, 2, 3)
// ^^^ - - - supplied 3 arguments
// |
// expected 2 arguments
args.iter().map(|arg| arg.span).collect::<Vec<Span>>()
};
let call_name = match ctor_of {
Some(CtorOf::Struct) => "struct",
Some(CtorOf::Variant) => "enum variant",
None => "function",
};
let mut err = tcx.sess.struct_span_err_with_code(
span,
&format!(
"this {} takes {}{} but {} {} supplied",
call_name,
if c_variadic { "at least " } else { "" },
potentially_plural_count(expected_count, "argument"),
potentially_plural_count(arg_count, "argument"),
if arg_count == 1 { "was" } else { "were" }
),
DiagnosticId::Error(err_code.to_owned()),
);
let label = format!("supplied {}", potentially_plural_count(arg_count, "argument"));
for (i, span) in arg_spans.into_iter().enumerate() {
err.span_label(
span,
if arg_count == 0 || i + 1 == arg_count { &label } else { "" },
);
}
if let Some(def_id) = fn_def_id {
if let Some(def_span) = tcx.def_ident_span(def_id) {
let mut spans: MultiSpan = def_span.into();
let params = tcx
.hir()
.get_if_local(def_id)
.and_then(|node| node.body_id())
.into_iter()
.map(|id| tcx.hir().body(id).params)
.flatten();
for param in params {
spans.push_span_label(param.span, String::new());
}
let def_kind = tcx.def_kind(def_id);
err.span_note(spans, &format!("{} defined here", def_kind.descr(def_id)));
}
}
if sugg_unit {
let sugg_span = tcx.sess.source_map().end_point(call_expr.span);
// remove closing `)` from the span
let sugg_span = sugg_span.shrink_to_lo();
err.span_suggestion(
sugg_span,
"expected the unit value `()`; create it with empty parentheses",
String::from("()"),
Applicability::MachineApplicable,
);
} else {
err.span_label(
span,
format!(
"expected {}{}",
if c_variadic { "at least " } else { "" },
potentially_plural_count(expected_count, "argument")
),
);
}
err.emit();
}
// We also need to make sure we at least write the ty of the other
// arguments which we skipped above.
if c_variadic {
@ -975,7 +980,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
fn point_at_arg_instead_of_call_if_possible(
&self,
errors: &mut Vec<traits::FulfillmentError<'tcx>>,
final_arg_types: &[(usize, Ty<'tcx>, Ty<'tcx>)],
final_arg_types: &[Option<(Ty<'tcx>, Ty<'tcx>)>],
expr: &'tcx hir::Expr<'tcx>,
call_sp: Span,
args: &'tcx [hir::Expr<'tcx>],
@ -1030,8 +1035,12 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// `FulfillmentError`.
let mut referenced_in = final_arg_types
.iter()
.map(|&(i, checked_ty, _)| (i, checked_ty))
.chain(final_arg_types.iter().map(|&(i, _, coerced_ty)| (i, coerced_ty)))
.enumerate()
.filter_map(|(i, arg)| match arg {
Some((checked_ty, coerce_ty)) => Some([(i, *checked_ty), (i, *coerce_ty)]),
_ => None,
})
.flatten()
.flat_map(|(i, ty)| {
let ty = self.resolve_vars_if_possible(ty);
// We walk the argument type because the argument's type could have

View file

@ -8,6 +8,8 @@ use crate::fmt;
use crate::fs;
use crate::marker::PhantomData;
use crate::mem::forget;
#[cfg(not(target_os = "wasi"))]
use crate::sys::cvt;
use crate::sys_common::{AsInner, FromInner, IntoInner};
/// A borrowed file descriptor.
@ -67,6 +69,37 @@ impl BorrowedFd<'_> {
}
}
impl OwnedFd {
/// Creates a new `OwnedFd` instance that shares the same underlying file handle
/// as the existing `OwnedFd` instance.
#[cfg(not(target_os = "wasi"))]
pub fn try_clone(&self) -> crate::io::Result<Self> {
// We want to atomically duplicate this file descriptor and set the
// CLOEXEC flag, and currently that's done via F_DUPFD_CLOEXEC. This
// is a POSIX flag that was added to Linux in 2.6.24.
#[cfg(not(target_os = "espidf"))]
let cmd = libc::F_DUPFD_CLOEXEC;
// For ESP-IDF, F_DUPFD is used instead, because the CLOEXEC semantics
// will never be supported, as this is a bare metal framework with
// no capabilities for multi-process execution. While F_DUPFD is also
// not supported yet, it might be (currently it returns ENOSYS).
#[cfg(target_os = "espidf")]
let cmd = libc::F_DUPFD;
let fd = cvt(unsafe { libc::fcntl(self.as_raw_fd(), cmd, 0) })?;
Ok(unsafe { Self::from_raw_fd(fd) })
}
#[cfg(target_os = "wasi")]
pub fn try_clone(&self) -> crate::io::Result<Self> {
Err(crate::io::Error::new_const(
crate::io::ErrorKind::Unsupported,
&"operation not supported on WASI yet",
))
}
}
#[unstable(feature = "io_safety", issue = "87074")]
impl AsRawFd for BorrowedFd<'_> {
#[inline]

View file

@ -6,9 +6,11 @@ use super::raw::{AsRawHandle, FromRawHandle, IntoRawHandle, RawHandle};
use crate::convert::TryFrom;
use crate::fmt;
use crate::fs;
use crate::io;
use crate::marker::PhantomData;
use crate::mem::forget;
use crate::sys::c;
use crate::sys::cvt;
use crate::sys_common::{AsInner, FromInner, IntoInner};
/// A borrowed handle.
@ -144,6 +146,36 @@ impl TryFrom<HandleOrNull> for OwnedHandle {
}
}
impl OwnedHandle {
/// Creates a new `OwnedHandle` instance that shares the same underlying file handle
/// as the existing `OwnedHandle` instance.
pub fn try_clone(&self) -> crate::io::Result<Self> {
self.duplicate(0, false, c::DUPLICATE_SAME_ACCESS)
}
pub(crate) fn duplicate(
&self,
access: c::DWORD,
inherit: bool,
options: c::DWORD,
) -> io::Result<Self> {
let mut ret = 0 as c::HANDLE;
cvt(unsafe {
let cur_proc = c::GetCurrentProcess();
c::DuplicateHandle(
cur_proc,
self.as_raw_handle(),
cur_proc,
&mut ret,
access,
inherit as c::BOOL,
options,
)
})?;
unsafe { Ok(Self::from_raw_handle(ret)) }
}
}
impl TryFrom<HandleOrInvalid> for OwnedHandle {
type Error = ();

View file

@ -4,9 +4,13 @@
use super::raw::{AsRawSocket, FromRawSocket, IntoRawSocket, RawSocket};
use crate::fmt;
use crate::io;
use crate::marker::PhantomData;
use crate::mem;
use crate::mem::forget;
use crate::sys;
use crate::sys::c;
use crate::sys::cvt;
/// A borrowed socket.
///
@ -69,6 +73,77 @@ impl BorrowedSocket<'_> {
}
}
impl OwnedSocket {
/// Creates a new `OwnedSocket` instance that shares the same underlying socket
/// as the existing `OwnedSocket` instance.
pub fn try_clone(&self) -> io::Result<Self> {
let mut info = unsafe { mem::zeroed::<c::WSAPROTOCOL_INFO>() };
let result = unsafe {
c::WSADuplicateSocketW(self.as_raw_socket(), c::GetCurrentProcessId(), &mut info)
};
sys::net::cvt(result)?;
let socket = unsafe {
c::WSASocketW(
info.iAddressFamily,
info.iSocketType,
info.iProtocol,
&mut info,
0,
c::WSA_FLAG_OVERLAPPED | c::WSA_FLAG_NO_HANDLE_INHERIT,
)
};
if socket != c::INVALID_SOCKET {
unsafe { Ok(OwnedSocket::from_raw_socket(socket)) }
} else {
let error = unsafe { c::WSAGetLastError() };
if error != c::WSAEPROTOTYPE && error != c::WSAEINVAL {
return Err(io::Error::from_raw_os_error(error));
}
let socket = unsafe {
c::WSASocketW(
info.iAddressFamily,
info.iSocketType,
info.iProtocol,
&mut info,
0,
c::WSA_FLAG_OVERLAPPED,
)
};
if socket == c::INVALID_SOCKET {
return Err(last_error());
}
unsafe {
let socket = OwnedSocket::from_raw_socket(socket);
socket.set_no_inherit()?;
Ok(socket)
}
}
}
#[cfg(not(target_vendor = "uwp"))]
pub(crate) fn set_no_inherit(&self) -> io::Result<()> {
cvt(unsafe {
c::SetHandleInformation(self.as_raw_socket() as c::HANDLE, c::HANDLE_FLAG_INHERIT, 0)
})
.map(drop)
}
#[cfg(target_vendor = "uwp")]
pub(crate) fn set_no_inherit(&self) -> io::Result<()> {
Err(io::Error::new_const(io::ErrorKind::Unsupported, &"Unavailable on UWP"))
}
}
/// Returns the last error from the Windows socket interface.
fn last_error() -> io::Error {
io::Error::from_raw_os_error(unsafe { c::WSAGetLastError() })
}
impl AsRawSocket for BorrowedSocket<'_> {
#[inline]
fn as_raw_socket(&self) -> RawSocket {

View file

@ -259,22 +259,9 @@ impl FileDesc {
}
}
#[inline]
pub fn duplicate(&self) -> io::Result<FileDesc> {
// We want to atomically duplicate this file descriptor and set the
// CLOEXEC flag, and currently that's done via F_DUPFD_CLOEXEC. This
// is a POSIX flag that was added to Linux in 2.6.24.
#[cfg(not(target_os = "espidf"))]
let cmd = libc::F_DUPFD_CLOEXEC;
// For ESP-IDF, F_DUPFD is used instead, because the CLOEXEC semantics
// will never be supported, as this is a bare metal framework with
// no capabilities for multi-process execution. While F_DUPFD is also
// not supported yet, it might be (currently it returns ENOSYS).
#[cfg(target_os = "espidf")]
let cmd = libc::F_DUPFD;
let fd = cvt(unsafe { libc::fcntl(self.as_raw_fd(), cmd, 0) })?;
Ok(unsafe { FileDesc::from_raw_fd(fd) })
Ok(Self(self.0.try_clone()?))
}
}

View file

@ -460,7 +460,7 @@ impl File {
}
pub fn duplicate(&self) -> io::Result<File> {
Ok(File { handle: self.handle.duplicate(0, false, c::DUPLICATE_SAME_ACCESS)? })
Ok(Self { handle: self.handle.try_clone()? })
}
fn reparse_point<'a>(

View file

@ -262,26 +262,17 @@ impl Handle {
Ok(written as usize)
}
pub fn try_clone(&self) -> io::Result<Self> {
Ok(Self(self.0.try_clone()?))
}
pub fn duplicate(
&self,
access: c::DWORD,
inherit: bool,
options: c::DWORD,
) -> io::Result<Handle> {
let mut ret = 0 as c::HANDLE;
cvt(unsafe {
let cur_proc = c::GetCurrentProcess();
c::DuplicateHandle(
cur_proc,
self.as_raw_handle(),
cur_proc,
&mut ret,
access,
inherit as c::BOOL,
options,
)
})?;
unsafe { Ok(Handle::from_raw_handle(ret)) }
) -> io::Result<Self> {
Ok(Self(self.0.duplicate(access, inherit, options)?))
}
}

View file

@ -134,7 +134,7 @@ impl Socket {
unsafe {
let socket = Self::from_raw_socket(socket);
socket.set_no_inherit()?;
socket.0.set_no_inherit()?;
Ok(socket)
}
}
@ -213,52 +213,7 @@ impl Socket {
}
pub fn duplicate(&self) -> io::Result<Socket> {
let mut info = unsafe { mem::zeroed::<c::WSAPROTOCOL_INFO>() };
let result = unsafe {
c::WSADuplicateSocketW(self.as_raw_socket(), c::GetCurrentProcessId(), &mut info)
};
cvt(result)?;
let socket = unsafe {
c::WSASocketW(
info.iAddressFamily,
info.iSocketType,
info.iProtocol,
&mut info,
0,
c::WSA_FLAG_OVERLAPPED | c::WSA_FLAG_NO_HANDLE_INHERIT,
)
};
if socket != c::INVALID_SOCKET {
unsafe { Ok(Self::from_inner(OwnedSocket::from_raw_socket(socket))) }
} else {
let error = unsafe { c::WSAGetLastError() };
if error != c::WSAEPROTOTYPE && error != c::WSAEINVAL {
return Err(io::Error::from_raw_os_error(error));
}
let socket = unsafe {
c::WSASocketW(
info.iAddressFamily,
info.iSocketType,
info.iProtocol,
&mut info,
0,
c::WSA_FLAG_OVERLAPPED,
)
};
if socket == c::INVALID_SOCKET {
return Err(last_error());
}
unsafe {
let socket = Self::from_inner(OwnedSocket::from_raw_socket(socket));
socket.set_no_inherit()?;
Ok(socket)
}
}
Ok(Self(self.0.try_clone()?))
}
fn recv_with_flags(&self, buf: &mut [u8], flags: c_int) -> io::Result<usize> {
@ -421,19 +376,6 @@ impl Socket {
}
}
#[cfg(not(target_vendor = "uwp"))]
fn set_no_inherit(&self) -> io::Result<()> {
sys::cvt(unsafe {
c::SetHandleInformation(self.as_raw_socket() as c::HANDLE, c::HANDLE_FLAG_INHERIT, 0)
})
.map(drop)
}
#[cfg(target_vendor = "uwp")]
fn set_no_inherit(&self) -> io::Result<()> {
Err(io::Error::new_const(io::ErrorKind::Unsupported, &"Unavailable on UWP"))
}
pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
let how = match how {
Shutdown::Write => c::SD_SEND,

View file

@ -101,6 +101,27 @@ impl<'a, 'tcx> BlanketImplFinder<'a, 'tcx> {
cx.generated_synthetics.insert((ty, trait_def_id));
let hir_imp = impl_def_id.as_local()
.map(|local| cx.tcx.hir().expect_item(local))
.and_then(|item| if let hir::ItemKind::Impl(i) = &item.kind {
Some(i)
} else {
None
});
let items = match hir_imp {
Some(imp) => imp
.items
.iter()
.map(|ii| cx.tcx.hir().impl_item(ii.id).clean(cx))
.collect::<Vec<_>>(),
None => cx.tcx
.associated_items(impl_def_id)
.in_definition_order()
.map(|x| x.clean(cx))
.collect::<Vec<_>>(),
};
impls.push(Item {
name: None,
attrs: Default::default(),
@ -117,12 +138,7 @@ impl<'a, 'tcx> BlanketImplFinder<'a, 'tcx> {
// the post-inference `trait_ref`, as it's more accurate.
trait_: Some(trait_ref.clean(cx)),
for_: ty.clean(cx),
items: cx
.tcx
.associated_items(impl_def_id)
.in_definition_order()
.map(|x| x.clean(cx))
.collect::<Vec<_>>(),
items,
polarity: ty::ImplPolarity::Positive,
kind: ImplKind::Blanket(box trait_ref.self_ty().clean(cx)),
}),

View file

@ -376,25 +376,21 @@ impl Setting {
description,
),
Setting::Select { js_data_name, description, default_value, ref options } => format!(
"<div class=\"setting-line\">\
<div>{}</div>\
<label class=\"select-wrapper\">\
<select id=\"{}\" autocomplete=\"off\">{}</select>\
<img src=\"{}down-arrow{}.svg\" alt=\"Select item\">\
</label>\
</div>",
description,
"<div class=\"setting-line\"><div class=\"radio-line\" id=\"{}\"><span class=\"setting-name\">{}</span>{}</div></div>",
js_data_name,
description,
options
.iter()
.map(|opt| format!(
"<option value=\"{name}\" {}>{name}</option>",
if opt == default_value { "selected" } else { "" },
"<label for=\"{js_data_name}-{name}\" class=\"choice\">
<input type=\"radio\" name=\"{js_data_name}\" id=\"{js_data_name}-{name}\" value=\"{name}\" {checked}>\
{name}\
</label>",
js_data_name = js_data_name,
name = opt,
checked = if opt == default_value { "checked" } else { "" },
))
.collect::<String>(),
root_path,
suffix,
),
}
}
@ -418,31 +414,25 @@ impl<T: Into<Setting>> From<(&'static str, Vec<T>)> for Setting {
fn settings(root_path: &str, suffix: &str, theme_names: Vec<String>) -> Result<String, Error> {
// (id, explanation, default value)
let settings: &[Setting] = &[
(
"Theme preferences",
vec![
Setting::from(("use-system-theme", "Use system theme", true)),
Setting::Select {
js_data_name: "theme",
description: "Theme",
default_value: "light",
options: theme_names.clone(),
},
Setting::Select {
js_data_name: "preferred-dark-theme",
description: "Preferred dark theme",
default_value: "dark",
options: theme_names.clone(),
},
Setting::Select {
js_data_name: "preferred-light-theme",
description: "Preferred light theme",
default_value: "light",
options: theme_names,
},
],
)
.into(),
Setting::from(("use-system-theme", "Use system theme", true)),
Setting::Select {
js_data_name: "theme",
description: "Theme",
default_value: "light",
options: theme_names.clone(),
},
Setting::Select {
js_data_name: "preferred-light-theme",
description: "Preferred light theme",
default_value: "light",
options: theme_names.clone(),
},
Setting::Select {
js_data_name: "preferred-dark-theme",
description: "Preferred dark theme",
default_value: "dark",
options: theme_names,
},
("auto-hide-large-items", "Auto-hide item contents for large items.", true).into(),
("auto-hide-method-docs", "Auto-hide item methods' documentation", false).into(),
("auto-hide-trait-implementations", "Auto-hide trait implementation documentation", false)
@ -454,9 +444,14 @@ fn settings(root_path: &str, suffix: &str, theme_names: Vec<String>) -> Result<S
];
Ok(format!(
"<h1 class=\"fqn\">\
<span class=\"in-band\">Rustdoc settings</span>\
</h1>\
"<div class=\"main-heading\">
<h1 class=\"fqn\">\
<span class=\"in-band\">Rustdoc settings</span>\
</h1>\
<span class=\"out-of-band\">\
<a id=\"back\" href=\"javascript:void(0)\">Back</a>\
</span>\
</div>\
<div class=\"settings\">{}</div>\
<link rel=\"stylesheet\" href=\"{root_path}settings{suffix}.css\">\
<script src=\"{root_path}settings{suffix}.js\"></script>",

View file

@ -17,6 +17,30 @@
border-bottom: 1px solid;
}
.setting-line .radio-line {
display: flex;
flex-wrap: wrap;
}
.setting-line .radio-line > * {
padding: 0.3em;
}
.setting-line .radio-line .setting-name {
flex-grow: 1;
}
.setting-line .radio-line input {
margin-right: 0.3em;
}
.radio-line .choice {
border-radius: 0.1em;
border: 1px solid;
margin-left: 0.5em;
min-width: 3.5em;
}
.toggle {
position: relative;
display: inline-block;

View file

@ -33,19 +33,15 @@
}
function showLightAndDark() {
addClass(document.getElementById("theme").parentElement.parentElement, "hidden");
removeClass(document.getElementById("preferred-light-theme").parentElement.parentElement,
"hidden");
removeClass(document.getElementById("preferred-dark-theme").parentElement.parentElement,
"hidden");
addClass(document.getElementById("theme").parentElement, "hidden");
removeClass(document.getElementById("preferred-light-theme").parentElement, "hidden");
removeClass(document.getElementById("preferred-dark-theme").parentElement, "hidden");
}
function hideLightAndDark() {
addClass(document.getElementById("preferred-light-theme").parentElement.parentElement,
"hidden");
addClass(document.getElementById("preferred-dark-theme").parentElement.parentElement,
"hidden");
removeClass(document.getElementById("theme").parentElement.parentElement, "hidden");
addClass(document.getElementById("preferred-light-theme").parentElement, "hidden");
addClass(document.getElementById("preferred-dark-theme").parentElement, "hidden");
removeClass(document.getElementById("theme").parentElement, "hidden");
}
function updateLightAndDark() {
@ -82,6 +78,19 @@
changeSetting(this.id, this.value);
};
});
onEachLazy(document.querySelectorAll("input[type=\"radio\"]"), function(elem) {
const settingId = elem.name;
const settingValue = getSettingValue(settingId);
if (settingValue !== null && settingValue !== "null") {
elem.checked = settingValue === elem.value;
}
elem.addEventListener("change", function(ev) {
changeSetting(ev.target.name, ev.target.value);
});
});
document.getElementById("back").addEventListener("click", function() {
history.back();
});
}
window.addEventListener("DOMContentLoaded", setEvents);

View file

@ -172,21 +172,8 @@ impl<'tcx> FormatRenderer<'tcx> for JsonRenderer<'tcx> {
/// the hashmap because certain items (traits and types) need to have their mappings for trait
/// implementations filled out before they're inserted.
fn item(&mut self, item: clean::Item) -> Result<(), Error> {
let local_blanket_impl = match item.def_id {
clean::ItemId::Blanket { impl_id, .. } => impl_id.is_local(),
clean::ItemId::Auto { .. }
| clean::ItemId::DefId(_)
| clean::ItemId::Primitive(_, _) => false,
};
// Flatten items that recursively store other items
// FIXME(CraftSpider): We skip children of local blanket implementations, as we'll have
// already seen the actual generic impl, and the generated ones don't need documenting.
// This is necessary due to the visibility, return type, and self arg of the generated
// impls not quite matching, and will no longer be necessary when the mismatch is fixed.
if !local_blanket_impl {
item.kind.inner_items().for_each(|i| self.item(i.clone()).unwrap());
}
item.kind.inner_items().for_each(|i| self.item(i.clone()).unwrap());
let id = item.def_id;
if let Some(mut new_item) = self.convert_item(item) {

View file

@ -0,0 +1,24 @@
// revisions: rpass1 rpass2
// Regression test for issue #92987
// Tests that we properly manage `DepNode`s during trait evaluation
// involing an auto-trait cycle.
#[cfg(rpass1)]
struct CycleOne(Box<CycleTwo>);
#[cfg(rpass2)]
enum CycleOne {
Variant(Box<CycleTwo>)
}
struct CycleTwo(CycleOne);
fn assert_send<T: Send>() {}
fn bar() {
assert_send::<CycleOne>();
assert_send::<CycleTwo>();
}
fn main() {}

View file

@ -0,0 +1,29 @@
1| |// Regression test for #93054: Functions using uninhabited types often only have a single,
2| |// unreachable basic block which doesn't get instrumented. This should not cause llvm-cov to fail.
3| |// Since these kinds functions can't be invoked anyway, it's ok to not have coverage data for them.
4| |
5| |// compile-flags: --edition=2021
6| |
7| |enum Never { }
8| |
9| |impl Never {
10| | fn foo(self) {
11| | match self { }
12| | make().map(|never| match never { });
13| | }
14| |
15| | fn bar(&self) {
16| | match *self { }
17| | }
18| |}
19| |
20| 0|async fn foo2(never: Never) {
21| | match never { }
22| |}
23| |
24| 0|fn make() -> Option<Never> {
25| 0| None
26| 0|}
27| |
28| 1|fn main() { }

View file

@ -0,0 +1,28 @@
// Regression test for #93054: Functions using uninhabited types often only have a single,
// unreachable basic block which doesn't get instrumented. This should not cause llvm-cov to fail.
// Since these kinds functions can't be invoked anyway, it's ok to not have coverage data for them.
// compile-flags: --edition=2021
enum Never { }
impl Never {
fn foo(self) {
match self { }
make().map(|never| match never { });
}
fn bar(&self) {
match *self { }
}
}
async fn foo2(never: Never) {
match never { }
}
fn make() -> Option<Never> {
None
}
fn main() { }

View file

@ -3,11 +3,15 @@
// @has blanket_with_local.json "$.index[*][?(@.name=='Load')]"
pub trait Load {
// @has - "$.index[*][?(@.name=='load')]"
fn load() {}
// @has - "$.index[*][?(@.name=='write')]"
fn write(self) {}
}
impl<P> Load for P {
fn load() {}
fn write(self) {}
}
// @has - "$.index[*][?(@.name=='Wrapper')]"

View file

@ -0,0 +1,8 @@
#![crate_type = "lib"]
#![feature(negative_impls)]
#![feature(rustc_attrs)]
pub trait Future {}
#[rustc_with_negative_coherence]
impl<E> !Future for Option<E> where E: Sized {}

View file

@ -0,0 +1,18 @@
// check-pass
// aux-build:option_future.rs
//
// Check that if we promise to not impl what would overlap it doesn't actually overlap
#![feature(rustc_attrs)]
extern crate option_future as lib;
use lib::Future;
trait Termination {}
#[rustc_with_negative_coherence]
impl<E> Termination for Option<E> where E: Sized {}
#[rustc_with_negative_coherence]
impl<F> Termination for F where F: Future + Sized {}
fn main() {}

View file

@ -30,4 +30,5 @@ fn main() {
//~^ ERROR this function takes 1 argument but 0 arguments were supplied
let ans = s("burma", "shave");
//~^ ERROR this function takes 1 argument but 2 arguments were supplied
//~| ERROR mismatched types
}

View file

@ -18,6 +18,12 @@ note: associated function defined here
LL | extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output;
| ^^^^^^^^
error[E0308]: mismatched types
--> $DIR/overloaded-calls-bad.rs:31:17
|
LL | let ans = s("burma", "shave");
| ^^^^^^^ expected `isize`, found `&str`
error[E0057]: this function takes 1 argument but 2 arguments were supplied
--> $DIR/overloaded-calls-bad.rs:31:15
|
@ -32,7 +38,7 @@ note: associated function defined here
LL | extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output;
| ^^^^^^^^
error: aborting due to 3 previous errors
error: aborting due to 4 previous errors
Some errors have detailed explanations: E0057, E0308.
For more information about an error, try `rustc --explain E0057`.