1
Fork 0

interpret: ensure we check bool/char for validity when they are used in a cast

This commit is contained in:
Ralf Jung 2024-06-11 12:12:21 +02:00
parent aec67e238d
commit db44cae343
10 changed files with 159 additions and 36 deletions

View file

@ -274,9 +274,13 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
// Let's make sure v is sign-extended *if* it has a signed type.
let signed = src_layout.abi.is_signed(); // Also asserts that abi is `Scalar`.
let v = scalar.to_bits(src_layout.size)?;
let v = if signed { self.sign_extend(v, src_layout) } else { v };
trace!("cast_from_scalar: {}, {} -> {}", v, src_layout.ty, cast_ty);
let v = match src_layout.ty.kind() {
Uint(_) | RawPtr(..) | FnPtr(..) => scalar.to_uint(src_layout.size)?,
Int(_) => scalar.to_int(src_layout.size)? as u128, // we will cast back to `i128` below if the sign matters
Bool => scalar.to_bool()?.into(),
Char => scalar.to_char()?.into(),
_ => span_bug!(self.cur_span(), "invalid int-like cast from {}", src_layout.ty),
};
Ok(match *cast_ty.kind() {
// int -> int

View file

@ -197,7 +197,7 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
// rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
let layout_val = self.layout_of(instance_args.type_at(0))?;
let val = self.read_scalar(&args[0])?;
let val_bits = val.to_bits(layout_val.size)?;
let val_bits = val.to_bits(layout_val.size)?; // sign is ignored here
let layout_raw_shift = self.layout_of(self.tcx.types.u32)?;
let raw_shift = self.read_scalar(&args[1])?;
@ -484,7 +484,7 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
ret_layout: TyAndLayout<'tcx>,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
assert!(layout.ty.is_integral(), "invalid type for numeric intrinsic: {}", layout.ty);
let bits = val.to_bits(layout.size)?;
let bits = val.to_bits(layout.size)?; // these operations all ignore the sign
let extra = 128 - u128::from(layout.size.bits());
let bits_out = match name {
sym::ctpop => u128::from(bits.count_ones()),
@ -519,6 +519,7 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
// `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`.
// First, check x % y != 0 (or if that computation overflows).
let rem = self.binary_op(BinOp::Rem, a, b)?;
// sign does not matter for 0 test, so `to_bits` is fine
if rem.to_scalar().to_bits(a.layout.size)? != 0 {
throw_ub_custom!(
fluent::const_eval_exact_div_has_remainder,
@ -545,22 +546,19 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
self.binary_op(mir_op.wrapping_to_overflowing().unwrap(), l, r)?.to_scalar_pair();
Ok(if overflowed.to_bool()? {
let size = l.layout.size;
let num_bits = size.bits();
if l.layout.abi.is_signed() {
// For signed ints the saturated value depends on the sign of the first
// term since the sign of the second term can be inferred from this and
// the fact that the operation has overflowed (if either is 0 no
// overflow can occur)
let first_term: u128 = l.to_scalar().to_bits(l.layout.size)?;
let first_term_positive = first_term & (1 << (num_bits - 1)) == 0;
if first_term_positive {
let first_term: i128 = l.to_scalar().to_int(l.layout.size)?;
if first_term >= 0 {
// Negative overflow not possible since the positive first term
// can only increase an (in range) negative term for addition
// or corresponding negated positive term for subtraction
// or corresponding negated positive term for subtraction.
Scalar::from_int(size.signed_int_max(), size)
} else {
// Positive overflow not possible for similar reason
// max negative
// Positive overflow not possible for similar reason.
Scalar::from_int(size.signed_int_min(), size)
}
} else {

View file

@ -437,23 +437,24 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
};
Ok(ImmTy::from_scalar(res, layout))
}
_ if layout.ty.is_integral() => {
let val = val.to_scalar();
let val = val.to_bits(layout.size)?;
ty::Int(..) => {
let val = val.to_scalar().to_int(layout.size)?;
let res = match un_op {
Not => self.truncate(!val, layout), // bitwise negation, then truncate
Neg => {
// arithmetic negation
assert!(layout.abi.is_signed());
let val = self.sign_extend(val, layout) as i128;
let res = val.wrapping_neg();
let res = res as u128;
// Truncate to target type.
self.truncate(res, layout)
}
Not => !val,
Neg => val.wrapping_neg(),
_ => span_bug!(self.cur_span(), "Invalid integer op {:?}", un_op),
};
Ok(ImmTy::from_uint(res, layout))
let res = ScalarInt::truncate_from_int(res, layout.size).0;
Ok(ImmTy::from_scalar(res.into(), layout))
}
ty::Uint(..) => {
let val = val.to_scalar().to_uint(layout.size)?;
let res = match un_op {
Not => !val,
_ => span_bug!(self.cur_span(), "Invalid unsigned integer op {:?}", un_op),
};
let res = ScalarInt::truncate_from_uint(res, layout.size).0;
Ok(ImmTy::from_scalar(res.into(), layout))
}
ty::RawPtr(..) => {
assert_eq!(un_op, PtrMetadata);