1
Fork 0

Auto merge of #105070 - matthiaskrgr:rollup-9b25khj, r=matthiaskrgr

Rollup of 14 pull requests

Successful merges:

 - #103876 (type alias impl trait: add tests showing that hidden type only outlives lifetimes that occur in bounds)
 - #104427 (Explain why `rematch_impl` fails to be infallible)
 - #104436 (Add slice to the stack allocated string comment)
 - #104523 (Don't use periods in target names)
 - #104627 (Print all features with --print target-features)
 - #104911 (Make inferred_outlives_crate return Clause)
 - #105002 (Add `PathBuf::as_mut_os_string` and `Path::as_mut_os_str`)
 - #105023 (Statics used in reachable function's inline asm are reachable)
 - #105045 (`rustc_ast_{passes,pretty}`: remove `ref` patterns)
 - #105049 (Hermit: Minor build fixes)
 - #105051 (Replace a macro with a function)
 - #105062 (rustdoc: use shorthand background for rustdoc toggle CSS)
 - #105066 (move `candidate_from_obligation` out of assembly)
 - #105068 (Run patchelf also on rust-analyzer-proc-macro-srv.)

Failed merges:

 - #105050 (Remove useless borrows and derefs)

r? `@ghost`
`@rustbot` modify labels: rollup
This commit is contained in:
bors 2022-11-30 00:42:43 +00:00
commit d38a99078c
38 changed files with 805 additions and 589 deletions

View file

@ -209,7 +209,7 @@ impl<'a> AstValidator<'a> {
// Mirrors `visit::walk_ty`, but tracks relevant state.
fn walk_ty(&mut self, t: &'a Ty) {
match t.kind {
match &t.kind {
TyKind::ImplTrait(..) => {
self.with_impl_trait(Some(t.span), |this| visit::walk_ty(this, t))
}
@ -217,7 +217,7 @@ impl<'a> AstValidator<'a> {
.with_banned_tilde_const(DisallowTildeConstContext::TraitObject, |this| {
visit::walk_ty(this, t)
}),
TyKind::Path(ref qself, ref path) => {
TyKind::Path(qself, path) => {
// We allow these:
// - `Option<impl Trait>`
// - `option::Option<impl Trait>`
@ -231,7 +231,7 @@ impl<'a> AstValidator<'a> {
// (for cases like `<impl Trait>::Foo>`)
// but we allow `impl Trait` in `GenericArgs`
// iff there are no more PathSegments.
if let Some(ref qself) = *qself {
if let Some(qself) = qself {
// `impl Trait` in `qself` is always illegal
self.with_banned_impl_trait(|this| this.visit_ty(&qself.ty));
}
@ -738,8 +738,8 @@ impl<'a> AstValidator<'a> {
}
fn visit_ty_common(&mut self, ty: &'a Ty) {
match ty.kind {
TyKind::BareFn(ref bfty) => {
match &ty.kind {
TyKind::BareFn(bfty) => {
self.check_fn_decl(&bfty.decl, SelfSemantic::No);
Self::check_decl_no_pat(&bfty.decl, |span, _, _| {
struct_span_err!(
@ -756,10 +756,10 @@ impl<'a> AstValidator<'a> {
self.maybe_lint_missing_abi(sig_span, ty.id);
}
}
TyKind::TraitObject(ref bounds, ..) => {
TyKind::TraitObject(bounds, ..) => {
let mut any_lifetime_bounds = false;
for bound in bounds {
if let GenericBound::Outlives(ref lifetime) = *bound {
if let GenericBound::Outlives(lifetime) = bound {
if any_lifetime_bounds {
struct_span_err!(
self.session,
@ -774,7 +774,7 @@ impl<'a> AstValidator<'a> {
}
}
}
TyKind::ImplTrait(_, ref bounds) => {
TyKind::ImplTrait(_, bounds) => {
if self.is_impl_trait_banned {
struct_span_err!(
self.session,
@ -842,8 +842,8 @@ fn validate_generic_param_order(
let (kind, bounds, span) = (&param.kind, &param.bounds, ident.span);
let (ord_kind, ident) = match &param.kind {
GenericParamKind::Lifetime => (ParamKindOrd::Lifetime, ident.to_string()),
GenericParamKind::Type { default: _ } => (ParamKindOrd::TypeOrConst, ident.to_string()),
GenericParamKind::Const { ref ty, kw_span: _, default: _ } => {
GenericParamKind::Type { .. } => (ParamKindOrd::TypeOrConst, ident.to_string()),
GenericParamKind::Const { ty, .. } => {
let ty = pprust::ty_to_string(ty);
(ParamKindOrd::TypeOrConst, format!("const {}: {}", ident, ty))
}
@ -948,8 +948,8 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
}
ExprKind::Paren(local_expr) => {
fn has_let_expr(expr: &Expr) -> bool {
match expr.kind {
ExprKind::Binary(_, ref lhs, ref rhs) => has_let_expr(lhs) || has_let_expr(rhs),
match &expr.kind {
ExprKind::Binary(_, lhs, rhs) => has_let_expr(lhs) || has_let_expr(rhs),
ExprKind::Let(..) => true,
_ => false,
}
@ -1005,18 +1005,18 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
self.check_nomangle_item_asciionly(item.ident, item.span);
}
match item.kind {
match &item.kind {
ItemKind::Impl(box Impl {
unsafety,
polarity,
defaultness: _,
constness,
ref generics,
of_trait: Some(ref t),
ref self_ty,
ref items,
generics,
of_trait: Some(t),
self_ty,
items,
}) => {
self.with_in_trait_impl(true, Some(constness), |this| {
self.with_in_trait_impl(true, Some(*constness), |this| {
this.invalid_visibility(&item.vis, None);
if let TyKind::Err = self_ty.kind {
this.err_handler()
@ -1027,7 +1027,8 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
.help("use `auto trait Trait {}` instead")
.emit();
}
if let (Unsafe::Yes(span), ImplPolarity::Negative(sp)) = (unsafety, polarity) {
if let (&Unsafe::Yes(span), &ImplPolarity::Negative(sp)) = (unsafety, polarity)
{
struct_span_err!(
this.session,
sp.to(t.path.span),
@ -1061,7 +1062,7 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
constness,
generics: _,
of_trait: None,
ref self_ty,
self_ty,
items: _,
}) => {
let error = |annotation_span, annotation| {
@ -1078,25 +1079,25 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
&item.vis,
Some(InvalidVisibilityNote::IndividualImplItems),
);
if let Unsafe::Yes(span) = unsafety {
if let &Unsafe::Yes(span) = unsafety {
error(span, "unsafe").code(error_code!(E0197)).emit();
}
if let ImplPolarity::Negative(span) = polarity {
if let &ImplPolarity::Negative(span) = polarity {
error(span, "negative").emit();
}
if let Defaultness::Default(def_span) = defaultness {
if let &Defaultness::Default(def_span) = defaultness {
error(def_span, "`default`")
.note("only trait implementations may be annotated with `default`")
.emit();
}
if let Const::Yes(span) = constness {
if let &Const::Yes(span) = constness {
error(span, "`const`")
.note("only trait implementations may be annotated with `const`")
.emit();
}
}
ItemKind::Fn(box Fn { defaultness, ref sig, ref generics, ref body }) => {
self.check_defaultness(item.span, defaultness);
ItemKind::Fn(box Fn { defaultness, sig, generics, body }) => {
self.check_defaultness(item.span, *defaultness);
if body.is_none() {
self.session.emit_err(FnWithoutBody {
@ -1132,7 +1133,7 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
&item.vis,
Some(InvalidVisibilityNote::IndividualForeignItems),
);
if let Unsafe::Yes(span) = unsafety {
if let &Unsafe::Yes(span) = unsafety {
self.err_handler().span_err(span, "extern block cannot be declared unsafe");
}
if abi.is_none() {
@ -1142,7 +1143,7 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
self.extern_mod = old_item;
return; // Avoid visiting again.
}
ItemKind::Enum(ref def, _) => {
ItemKind::Enum(def, _) => {
for variant in &def.variants {
self.invalid_visibility(&variant.vis, None);
for field in variant.data.fields() {
@ -1150,8 +1151,8 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
}
}
}
ItemKind::Trait(box Trait { is_auto, ref generics, ref bounds, ref items, .. }) => {
if is_auto == IsAuto::Yes {
ItemKind::Trait(box Trait { is_auto, generics, bounds, items, .. }) => {
if *is_auto == IsAuto::Yes {
// Auto traits cannot have generics, super traits nor contain items.
self.deny_generic_params(generics, item.ident.span);
self.deny_super_traits(bounds, item.ident.span);
@ -1171,8 +1172,8 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
walk_list!(self, visit_attribute, &item.attrs);
return; // Avoid visiting again
}
ItemKind::Mod(unsafety, ref mod_kind) => {
if let Unsafe::Yes(span) = unsafety {
ItemKind::Mod(unsafety, mod_kind) => {
if let &Unsafe::Yes(span) = unsafety {
self.err_handler().span_err(span, "module cannot be declared unsafe");
}
// Ensure that `path` attributes on modules are recorded as used (cf. issue #35584).
@ -1182,13 +1183,13 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
self.check_mod_file_item_asciionly(item.ident);
}
}
ItemKind::Union(ref vdata, ..) => {
ItemKind::Union(vdata, ..) => {
if vdata.fields().is_empty() {
self.err_handler().span_err(item.span, "unions cannot have zero fields");
}
}
ItemKind::Const(def, .., None) => {
self.check_defaultness(item.span, def);
self.check_defaultness(item.span, *def);
self.session.emit_err(ConstWithoutBody {
span: item.span,
replace_span: self.ending_semi_or_hi(item.span),
@ -1200,14 +1201,8 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
replace_span: self.ending_semi_or_hi(item.span),
});
}
ItemKind::TyAlias(box TyAlias {
defaultness,
where_clauses,
ref bounds,
ref ty,
..
}) => {
self.check_defaultness(item.span, defaultness);
ItemKind::TyAlias(box TyAlias { defaultness, where_clauses, bounds, ty, .. }) => {
self.check_defaultness(item.span, *defaultness);
if ty.is_none() {
self.session.emit_err(TyAliasWithoutBody {
span: item.span,
@ -1266,8 +1261,8 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
// Mirrors `visit::walk_generic_args`, but tracks relevant state.
fn visit_generic_args(&mut self, generic_args: &'a GenericArgs) {
match *generic_args {
GenericArgs::AngleBracketed(ref data) => {
match generic_args {
GenericArgs::AngleBracketed(data) => {
self.check_generic_args_before_constraints(data);
for arg in &data.args {
@ -1283,7 +1278,7 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
}
}
}
GenericArgs::Parenthesized(ref data) => {
GenericArgs::Parenthesized(data) => {
walk_list!(self, visit_ty, &data.inputs);
if let FnRetTy::Ty(ty) = &data.output {
// `-> Foo` syntax is essentially an associated type binding,
@ -1319,7 +1314,7 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
validate_generic_param_order(self.err_handler(), &generics.params, generics.span);
for predicate in &generics.where_clause.predicates {
if let WherePredicate::EqPredicate(ref predicate) = *predicate {
if let WherePredicate::EqPredicate(predicate) = predicate {
deny_equality_constraints(self, predicate, generics);
}
}
@ -1368,7 +1363,7 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
}
fn visit_param_bound(&mut self, bound: &'a GenericBound, ctxt: BoundKind) {
if let GenericBound::Trait(ref poly, modify) = *bound {
if let GenericBound::Trait(poly, modify) = bound {
match (ctxt, modify) {
(BoundKind::SuperTraits, TraitBoundModifier::Maybe) => {
let mut err = self
@ -1573,8 +1568,8 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
self.check_item_named(item.ident, "const");
}
match item.kind {
AssocItemKind::Type(box TyAlias { ref generics, ref bounds, ref ty, .. })
match &item.kind {
AssocItemKind::Type(box TyAlias { generics, bounds, ty, .. })
if ctxt == AssocCtxt::Trait =>
{
self.visit_vis(&item.vis);
@ -1586,7 +1581,7 @@ impl<'a> Visitor<'a> for AstValidator<'a> {
});
walk_list!(self, visit_ty, ty);
}
AssocItemKind::Fn(box Fn { ref sig, ref generics, ref body, .. })
AssocItemKind::Fn(box Fn { sig, generics, body, .. })
if self.in_const_trait_impl
|| ctxt == AssocCtxt::Trait
|| matches!(sig.header.constness, Const::Yes(_)) =>

View file

@ -198,8 +198,8 @@ impl<'a> Visitor<'a> for PostExpansionVisitor<'a> {
}
fn visit_item(&mut self, i: &'a ast::Item) {
match i.kind {
ast::ItemKind::ForeignMod(ref foreign_module) => {
match &i.kind {
ast::ItemKind::ForeignMod(foreign_module) => {
if let Some(abi) = foreign_module.abi {
self.check_abi(abi, ast::Const::No);
}
@ -233,8 +233,8 @@ impl<'a> Visitor<'a> for PostExpansionVisitor<'a> {
}
}
ast::ItemKind::Impl(box ast::Impl { polarity, defaultness, ref of_trait, .. }) => {
if let ast::ImplPolarity::Negative(span) = polarity {
ast::ItemKind::Impl(box ast::Impl { polarity, defaultness, of_trait, .. }) => {
if let &ast::ImplPolarity::Negative(span) = polarity {
gate_feature_post!(
&self,
negative_impls,
@ -267,7 +267,7 @@ impl<'a> Visitor<'a> for PostExpansionVisitor<'a> {
gate_feature_post!(&self, decl_macro, i.span, msg);
}
ast::ItemKind::TyAlias(box ast::TyAlias { ty: Some(ref ty), .. }) => {
ast::ItemKind::TyAlias(box ast::TyAlias { ty: Some(ty), .. }) => {
self.check_impl_trait(&ty)
}
@ -302,8 +302,8 @@ impl<'a> Visitor<'a> for PostExpansionVisitor<'a> {
}
fn visit_ty(&mut self, ty: &'a ast::Ty) {
match ty.kind {
ast::TyKind::BareFn(ref bare_fn_ty) => {
match &ty.kind {
ast::TyKind::BareFn(bare_fn_ty) => {
// Function pointers cannot be `const`
self.check_extern(bare_fn_ty.ext, ast::Const::No);
}
@ -319,7 +319,7 @@ impl<'a> Visitor<'a> for PostExpansionVisitor<'a> {
}
fn visit_fn_ret_ty(&mut self, ret_ty: &'a ast::FnRetTy) {
if let ast::FnRetTy::Ty(ref output_ty) = *ret_ty {
if let ast::FnRetTy::Ty(output_ty) = ret_ty {
if let ast::TyKind::Never = output_ty.kind {
// Do nothing.
} else {
@ -455,9 +455,9 @@ impl<'a> Visitor<'a> for PostExpansionVisitor<'a> {
}
fn visit_assoc_item(&mut self, i: &'a ast::AssocItem, ctxt: AssocCtxt) {
let is_fn = match i.kind {
let is_fn = match &i.kind {
ast::AssocItemKind::Fn(_) => true,
ast::AssocItemKind::Type(box ast::TyAlias { ref ty, .. }) => {
ast::AssocItemKind::Type(box ast::TyAlias { ty, .. }) => {
if let (Some(_), AssocCtxt::Trait) = (ty, ctxt) {
gate_feature_post!(
&self,

View file

@ -11,7 +11,7 @@ use rustc_ast::tokenstream::{TokenStream, TokenTree};
use rustc_ast::util::classify;
use rustc_ast::util::comments::{gather_comments, Comment, CommentStyle};
use rustc_ast::util::parser;
use rustc_ast::{self as ast, AttrArgs, AttrArgsEq, BlockCheckMode, Mutability, PatKind};
use rustc_ast::{self as ast, AttrArgs, AttrArgsEq, BlockCheckMode, PatKind};
use rustc_ast::{attr, BindingAnnotation, ByRef, DelimArgs, RangeEnd, RangeSyntax, Term};
use rustc_ast::{GenericArg, GenericBound, SelfKind, TraitBoundModifier};
use rustc_ast::{InlineAsmOperand, InlineAsmRegOrRegClass};
@ -64,6 +64,7 @@ impl<'a> Comments<'a> {
Comments { sm, comments, current: 0 }
}
// FIXME: This shouldn't probably clone lmao
pub fn next(&self) -> Option<Comment> {
self.comments.get(self.current).cloned()
}
@ -268,10 +269,10 @@ pub trait PrintState<'a>: std::ops::Deref<Target = pp::Printer> + std::ops::Dere
fn maybe_print_comment(&mut self, pos: BytePos) -> bool {
let mut has_comment = false;
while let Some(ref cmnt) = self.next_comment() {
while let Some(cmnt) = self.next_comment() {
if cmnt.pos < pos {
has_comment = true;
self.print_comment(cmnt);
self.print_comment(&cmnt);
} else {
break;
}
@ -366,8 +367,8 @@ pub trait PrintState<'a>: std::ops::Deref<Target = pp::Printer> + std::ops::Dere
if self.next_comment().is_none() {
self.hardbreak();
}
while let Some(ref cmnt) = self.next_comment() {
self.print_comment(cmnt)
while let Some(cmnt) = self.next_comment() {
self.print_comment(&cmnt)
}
}
@ -446,8 +447,8 @@ pub trait PrintState<'a>: std::ops::Deref<Target = pp::Printer> + std::ops::Dere
self.hardbreak_if_not_bol();
}
self.maybe_print_comment(attr.span.lo());
match attr.kind {
ast::AttrKind::Normal(ref normal) => {
match &attr.kind {
ast::AttrKind::Normal(normal) => {
match attr.style {
ast::AttrStyle::Inner => self.word("#!["),
ast::AttrStyle::Outer => self.word("#["),
@ -456,7 +457,7 @@ pub trait PrintState<'a>: std::ops::Deref<Target = pp::Printer> + std::ops::Dere
self.word("]");
}
ast::AttrKind::DocComment(comment_kind, data) => {
self.word(doc_comment_to_string(comment_kind, attr.style, data));
self.word(doc_comment_to_string(*comment_kind, attr.style, *data));
self.hardbreak()
}
}
@ -497,22 +498,22 @@ pub trait PrintState<'a>: std::ops::Deref<Target = pp::Printer> + std::ops::Dere
fn print_meta_list_item(&mut self, item: &ast::NestedMetaItem) {
match item {
ast::NestedMetaItem::MetaItem(ref mi) => self.print_meta_item(mi),
ast::NestedMetaItem::Lit(ref lit) => self.print_meta_item_lit(lit),
ast::NestedMetaItem::MetaItem(mi) => self.print_meta_item(mi),
ast::NestedMetaItem::Lit(lit) => self.print_meta_item_lit(lit),
}
}
fn print_meta_item(&mut self, item: &ast::MetaItem) {
self.ibox(INDENT_UNIT);
match item.kind {
match &item.kind {
ast::MetaItemKind::Word => self.print_path(&item.path, false, 0),
ast::MetaItemKind::NameValue(ref value) => {
ast::MetaItemKind::NameValue(value) => {
self.print_path(&item.path, false, 0);
self.space();
self.word_space("=");
self.print_meta_item_lit(value);
}
ast::MetaItemKind::List(ref items) => {
ast::MetaItemKind::List(items) => {
self.print_path(&item.path, false, 0);
self.popen();
self.commasep(Consistent, &items, |s, i| s.print_meta_list_item(i));
@ -657,7 +658,7 @@ pub trait PrintState<'a>: std::ops::Deref<Target = pp::Printer> + std::ops::Dere
fn print_path_segment(&mut self, segment: &ast::PathSegment, colons_before_params: bool) {
if segment.ident.name != kw::PathRoot {
self.print_ident(segment.ident);
if let Some(ref args) = segment.args {
if let Some(args) = &segment.args {
self.print_generic_args(args, colons_before_params);
}
}
@ -712,19 +713,19 @@ pub trait PrintState<'a>: std::ops::Deref<Target = pp::Printer> + std::ops::Dere
}
fn nonterminal_to_string(&self, nt: &Nonterminal) -> String {
match *nt {
token::NtExpr(ref e) => self.expr_to_string(e),
token::NtMeta(ref e) => self.attr_item_to_string(e),
token::NtTy(ref e) => self.ty_to_string(e),
token::NtPath(ref e) => self.path_to_string(e),
token::NtItem(ref e) => self.item_to_string(e),
token::NtBlock(ref e) => self.block_to_string(e),
token::NtStmt(ref e) => self.stmt_to_string(e),
token::NtPat(ref e) => self.pat_to_string(e),
token::NtIdent(e, is_raw) => IdentPrinter::for_ast_ident(e, is_raw).to_string(),
match nt {
token::NtExpr(e) => self.expr_to_string(e),
token::NtMeta(e) => self.attr_item_to_string(e),
token::NtTy(e) => self.ty_to_string(e),
token::NtPath(e) => self.path_to_string(e),
token::NtItem(e) => self.item_to_string(e),
token::NtBlock(e) => self.block_to_string(e),
token::NtStmt(e) => self.stmt_to_string(e),
token::NtPat(e) => self.pat_to_string(e),
token::NtIdent(e, is_raw) => IdentPrinter::for_ast_ident(*e, *is_raw).to_string(),
token::NtLifetime(e) => e.to_string(),
token::NtLiteral(ref e) => self.expr_to_string(e),
token::NtVis(ref e) => self.vis_to_string(e),
token::NtLiteral(e) => self.expr_to_string(e),
token::NtVis(e) => self.vis_to_string(e),
}
}
@ -917,8 +918,8 @@ impl<'a> PrintState<'a> for State<'a> {
self.word("::")
}
match *args {
ast::GenericArgs::AngleBracketed(ref data) => {
match args {
ast::GenericArgs::AngleBracketed(data) => {
self.word("<");
self.commasep(Inconsistent, &data.args, |s, arg| match arg {
ast::AngleBracketedArg::Arg(a) => s.print_generic_arg(a),
@ -927,7 +928,7 @@ impl<'a> PrintState<'a> for State<'a> {
self.word(">")
}
ast::GenericArgs::Parenthesized(ref data) => {
ast::GenericArgs::Parenthesized(data) => {
self.word("(");
self.commasep(Inconsistent, &data.inputs, |s, ty| s.print_type(ty));
self.word(")");
@ -1011,17 +1012,17 @@ impl<'a> State<'a> {
pub fn print_type(&mut self, ty: &ast::Ty) {
self.maybe_print_comment(ty.span.lo());
self.ibox(0);
match ty.kind {
ast::TyKind::Slice(ref ty) => {
match &ty.kind {
ast::TyKind::Slice(ty) => {
self.word("[");
self.print_type(ty);
self.word("]");
}
ast::TyKind::Ptr(ref mt) => {
ast::TyKind::Ptr(mt) => {
self.word("*");
self.print_mt(mt, true);
}
ast::TyKind::Rptr(ref lifetime, ref mt) => {
ast::TyKind::Rptr(lifetime, mt) => {
self.word("&");
self.print_opt_lifetime(lifetime);
self.print_mt(mt, false);
@ -1029,7 +1030,7 @@ impl<'a> State<'a> {
ast::TyKind::Never => {
self.word("!");
}
ast::TyKind::Tup(ref elts) => {
ast::TyKind::Tup(elts) => {
self.popen();
self.commasep(Inconsistent, &elts, |s, ty| s.print_type(ty));
if elts.len() == 1 {
@ -1037,36 +1038,36 @@ impl<'a> State<'a> {
}
self.pclose();
}
ast::TyKind::Paren(ref typ) => {
ast::TyKind::Paren(typ) => {
self.popen();
self.print_type(typ);
self.pclose();
}
ast::TyKind::BareFn(ref f) => {
ast::TyKind::BareFn(f) => {
self.print_ty_fn(f.ext, f.unsafety, &f.decl, None, &f.generic_params);
}
ast::TyKind::Path(None, ref path) => {
ast::TyKind::Path(None, path) => {
self.print_path(path, false, 0);
}
ast::TyKind::Path(Some(ref qself), ref path) => self.print_qpath(path, qself, false),
ast::TyKind::TraitObject(ref bounds, syntax) => {
if syntax == ast::TraitObjectSyntax::Dyn {
ast::TyKind::Path(Some(qself), path) => self.print_qpath(path, qself, false),
ast::TyKind::TraitObject(bounds, syntax) => {
if *syntax == ast::TraitObjectSyntax::Dyn {
self.word_nbsp("dyn");
}
self.print_type_bounds(bounds);
}
ast::TyKind::ImplTrait(_, ref bounds) => {
ast::TyKind::ImplTrait(_, bounds) => {
self.word_nbsp("impl");
self.print_type_bounds(bounds);
}
ast::TyKind::Array(ref ty, ref length) => {
ast::TyKind::Array(ty, length) => {
self.word("[");
self.print_type(ty);
self.word("; ");
self.print_expr(&length.value);
self.word("]");
}
ast::TyKind::Typeof(ref e) => {
ast::TyKind::Typeof(e) => {
self.word("typeof(");
self.print_expr(&e.value);
self.word(")");
@ -1082,7 +1083,7 @@ impl<'a> State<'a> {
ast::TyKind::ImplicitSelf => {
self.word("Self");
}
ast::TyKind::MacCall(ref m) => {
ast::TyKind::MacCall(m) => {
self.print_mac(m);
}
ast::TyKind::CVarArgs => {
@ -1111,8 +1112,8 @@ impl<'a> State<'a> {
pub(crate) fn print_stmt(&mut self, st: &ast::Stmt) {
self.maybe_print_comment(st.span.lo());
match st.kind {
ast::StmtKind::Local(ref loc) => {
match &st.kind {
ast::StmtKind::Local(loc) => {
self.print_outer_attributes(&loc.attrs);
self.space_if_not_bol();
self.ibox(INDENT_UNIT);
@ -1135,15 +1136,15 @@ impl<'a> State<'a> {
self.word(";");
self.end(); // `let` ibox
}
ast::StmtKind::Item(ref item) => self.print_item(item),
ast::StmtKind::Expr(ref expr) => {
ast::StmtKind::Item(item) => self.print_item(item),
ast::StmtKind::Expr(expr) => {
self.space_if_not_bol();
self.print_expr_outer_attr_style(expr, false);
if classify::expr_requires_semi_to_be_stmt(expr) {
self.word(";");
}
}
ast::StmtKind::Semi(ref expr) => {
ast::StmtKind::Semi(expr) => {
self.space_if_not_bol();
self.print_expr_outer_attr_style(expr, false);
self.word(";");
@ -1152,7 +1153,7 @@ impl<'a> State<'a> {
self.space_if_not_bol();
self.word(";");
}
ast::StmtKind::MacCall(ref mac) => {
ast::StmtKind::MacCall(mac) => {
self.space_if_not_bol();
self.print_outer_attributes(&mac.attrs);
self.print_mac(&mac.mac);
@ -1193,8 +1194,8 @@ impl<'a> State<'a> {
let has_attrs = self.print_inner_attributes(attrs);
for (i, st) in blk.stmts.iter().enumerate() {
match st.kind {
ast::StmtKind::Expr(ref expr) if i == blk.stmts.len() - 1 => {
match &st.kind {
ast::StmtKind::Expr(expr) if i == blk.stmts.len() - 1 => {
self.maybe_print_comment(st.span.lo());
self.space_if_not_bol();
self.print_expr_outer_attr_style(expr, false);
@ -1362,7 +1363,7 @@ impl<'a> State<'a> {
pub(crate) fn print_local_decl(&mut self, loc: &ast::Local) {
self.print_pat(&loc.pat);
if let Some(ref ty) = loc.ty {
if let Some(ty) = &loc.ty {
self.word_space(":");
self.print_type(ty);
}
@ -1386,7 +1387,7 @@ impl<'a> State<'a> {
for item_segment in &path.segments[qself.position..] {
self.word("::");
self.print_ident(item_segment.ident);
if let Some(ref args) = item_segment.args {
if let Some(args) = &item_segment.args {
self.print_generic_args(args, colons_before_params)
}
}
@ -1397,23 +1398,23 @@ impl<'a> State<'a> {
self.ann.pre(self, AnnNode::Pat(pat));
/* Pat isn't normalized, but the beauty of it
is that it doesn't matter */
match pat.kind {
match &pat.kind {
PatKind::Wild => self.word("_"),
PatKind::Ident(BindingAnnotation(by_ref, mutbl), ident, ref sub) => {
if by_ref == ByRef::Yes {
PatKind::Ident(BindingAnnotation(by_ref, mutbl), ident, sub) => {
if *by_ref == ByRef::Yes {
self.word_nbsp("ref");
}
if mutbl == Mutability::Mut {
if mutbl.is_mut() {
self.word_nbsp("mut");
}
self.print_ident(ident);
if let Some(ref p) = *sub {
self.print_ident(*ident);
if let Some(p) = sub {
self.space();
self.word_space("@");
self.print_pat(p);
}
}
PatKind::TupleStruct(ref qself, ref path, ref elts) => {
PatKind::TupleStruct(qself, path, elts) => {
if let Some(qself) = qself {
self.print_qpath(path, qself, true);
} else {
@ -1423,16 +1424,16 @@ impl<'a> State<'a> {
self.commasep(Inconsistent, &elts, |s, p| s.print_pat(p));
self.pclose();
}
PatKind::Or(ref pats) => {
PatKind::Or(pats) => {
self.strsep("|", true, Inconsistent, &pats, |s, p| s.print_pat(p));
}
PatKind::Path(None, ref path) => {
PatKind::Path(None, path) => {
self.print_path(path, true, 0);
}
PatKind::Path(Some(ref qself), ref path) => {
PatKind::Path(Some(qself), path) => {
self.print_qpath(path, qself, false);
}
PatKind::Struct(ref qself, ref path, ref fields, etc) => {
PatKind::Struct(qself, path, fields, etc) => {
if let Some(qself) = qself {
self.print_qpath(path, qself, true);
} else {
@ -1458,7 +1459,7 @@ impl<'a> State<'a> {
},
|f| f.pat.span,
);
if etc {
if *etc {
if !fields.is_empty() {
self.word_space(",");
}
@ -1469,7 +1470,7 @@ impl<'a> State<'a> {
}
self.word("}");
}
PatKind::Tuple(ref elts) => {
PatKind::Tuple(elts) => {
self.popen();
self.commasep(Inconsistent, &elts, |s, p| s.print_pat(p));
if elts.len() == 1 {
@ -1477,13 +1478,13 @@ impl<'a> State<'a> {
}
self.pclose();
}
PatKind::Box(ref inner) => {
PatKind::Box(inner) => {
self.word("box ");
self.print_pat(inner);
}
PatKind::Ref(ref inner, mutbl) => {
PatKind::Ref(inner, mutbl) => {
self.word("&");
if mutbl == Mutability::Mut {
if mutbl.is_mut() {
self.word("mut ");
}
if let PatKind::Ident(ast::BindingAnnotation::MUT, ..) = inner.kind {
@ -1494,12 +1495,12 @@ impl<'a> State<'a> {
self.print_pat(inner);
}
}
PatKind::Lit(ref e) => self.print_expr(&**e),
PatKind::Range(ref begin, ref end, Spanned { node: ref end_kind, .. }) => {
PatKind::Lit(e) => self.print_expr(&**e),
PatKind::Range(begin, end, Spanned { node: end_kind, .. }) => {
if let Some(e) = begin {
self.print_expr(e);
}
match *end_kind {
match end_kind {
RangeEnd::Included(RangeSyntax::DotDotDot) => self.word("..."),
RangeEnd::Included(RangeSyntax::DotDotEq) => self.word("..="),
RangeEnd::Excluded => self.word(".."),
@ -1508,36 +1509,36 @@ impl<'a> State<'a> {
self.print_expr(e);
}
}
PatKind::Slice(ref elts) => {
PatKind::Slice(elts) => {
self.word("[");
self.commasep(Inconsistent, &elts, |s, p| s.print_pat(p));
self.word("]");
}
PatKind::Rest => self.word(".."),
PatKind::Paren(ref inner) => {
PatKind::Paren(inner) => {
self.popen();
self.print_pat(inner);
self.pclose();
}
PatKind::MacCall(ref m) => self.print_mac(m),
PatKind::MacCall(m) => self.print_mac(m),
}
self.ann.post(self, AnnNode::Pat(pat))
}
fn print_explicit_self(&mut self, explicit_self: &ast::ExplicitSelf) {
match explicit_self.node {
match &explicit_self.node {
SelfKind::Value(m) => {
self.print_mutability(m, false);
self.print_mutability(*m, false);
self.word("self")
}
SelfKind::Region(ref lt, m) => {
SelfKind::Region(lt, m) => {
self.word("&");
self.print_opt_lifetime(lt);
self.print_mutability(m, false);
self.print_mutability(*m, false);
self.word("self")
}
SelfKind::Explicit(ref typ, m) => {
self.print_mutability(m, false);
SelfKind::Explicit(typ, m) => {
self.print_mutability(*m, false);
self.word("self");
self.word_space(":");
self.print_type(typ)
@ -1599,7 +1600,7 @@ impl<'a> State<'a> {
self.commasep(Inconsistent, &generic_params, |s, param| {
s.print_outer_attributes_inline(&param.attrs);
match param.kind {
match &param.kind {
ast::GenericParamKind::Lifetime => {
let lt = ast::Lifetime { id: param.id, ident: param.ident };
s.print_lifetime(lt);
@ -1608,19 +1609,19 @@ impl<'a> State<'a> {
s.print_lifetime_bounds(&param.bounds)
}
}
ast::GenericParamKind::Type { ref default } => {
ast::GenericParamKind::Type { default } => {
s.print_ident(param.ident);
if !param.bounds.is_empty() {
s.word_nbsp(":");
s.print_type_bounds(&param.bounds);
}
if let Some(ref default) = default {
if let Some(default) = default {
s.space();
s.word_space("=");
s.print_type(default)
}
}
ast::GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
ast::GenericParamKind::Const { ty, default, .. } => {
s.word_space("const");
s.print_ident(param.ident);
s.space();
@ -1630,7 +1631,7 @@ impl<'a> State<'a> {
s.word_nbsp(":");
s.print_type_bounds(&param.bounds);
}
if let Some(ref default) = default {
if let Some(default) = default {
s.space();
s.word_space("=");
s.print_expr(&default.value);

View file

@ -8,9 +8,9 @@ use rustc_ast::{self as ast, BlockCheckMode};
impl<'a> State<'a> {
fn print_else(&mut self, els: Option<&ast::Expr>) {
if let Some(_else) = els {
match _else.kind {
match &_else.kind {
// Another `else if` block.
ast::ExprKind::If(ref i, ref then, ref e) => {
ast::ExprKind::If(i, then, e) => {
self.cbox(INDENT_UNIT - 1);
self.ibox(0);
self.word(" else if ");
@ -20,7 +20,7 @@ impl<'a> State<'a> {
self.print_else(e.as_deref())
}
// Final `else` block.
ast::ExprKind::Block(ref b, _) => {
ast::ExprKind::Block(b, _) => {
self.cbox(INDENT_UNIT - 1);
self.ibox(0);
self.word(" else ");
@ -202,7 +202,7 @@ impl<'a> State<'a> {
self.print_expr_maybe_paren(receiver, parser::PREC_POSTFIX);
self.word(".");
self.print_ident(segment.ident);
if let Some(ref args) = segment.args {
if let Some(args) = &segment.args {
self.print_generic_args(args, true);
}
self.print_call_post(base_args)
@ -284,73 +284,66 @@ impl<'a> State<'a> {
self.ibox(INDENT_UNIT);
self.ann.pre(self, AnnNode::Expr(expr));
match expr.kind {
ast::ExprKind::Box(ref expr) => {
match &expr.kind {
ast::ExprKind::Box(expr) => {
self.word_space("box");
self.print_expr_maybe_paren(expr, parser::PREC_PREFIX);
}
ast::ExprKind::Array(ref exprs) => {
ast::ExprKind::Array(exprs) => {
self.print_expr_vec(exprs);
}
ast::ExprKind::ConstBlock(ref anon_const) => {
ast::ExprKind::ConstBlock(anon_const) => {
self.print_expr_anon_const(anon_const, attrs);
}
ast::ExprKind::Repeat(ref element, ref count) => {
ast::ExprKind::Repeat(element, count) => {
self.print_expr_repeat(element, count);
}
ast::ExprKind::Struct(ref se) => {
ast::ExprKind::Struct(se) => {
self.print_expr_struct(&se.qself, &se.path, &se.fields, &se.rest);
}
ast::ExprKind::Tup(ref exprs) => {
ast::ExprKind::Tup(exprs) => {
self.print_expr_tup(exprs);
}
ast::ExprKind::Call(ref func, ref args) => {
ast::ExprKind::Call(func, args) => {
self.print_expr_call(func, &args);
}
ast::ExprKind::MethodCall(box ast::MethodCall {
ref seg,
ref receiver,
ref args,
..
}) => {
ast::ExprKind::MethodCall(box ast::MethodCall { seg, receiver, args, .. }) => {
self.print_expr_method_call(seg, &receiver, &args);
}
ast::ExprKind::Binary(op, ref lhs, ref rhs) => {
self.print_expr_binary(op, lhs, rhs);
ast::ExprKind::Binary(op, lhs, rhs) => {
self.print_expr_binary(*op, lhs, rhs);
}
ast::ExprKind::Unary(op, ref expr) => {
self.print_expr_unary(op, expr);
ast::ExprKind::Unary(op, expr) => {
self.print_expr_unary(*op, expr);
}
ast::ExprKind::AddrOf(k, m, ref expr) => {
self.print_expr_addr_of(k, m, expr);
ast::ExprKind::AddrOf(k, m, expr) => {
self.print_expr_addr_of(*k, *m, expr);
}
ast::ExprKind::Lit(token_lit) => {
self.print_token_literal(token_lit, expr.span);
self.print_token_literal(*token_lit, expr.span);
}
ast::ExprKind::IncludedBytes(ref bytes) => {
ast::ExprKind::IncludedBytes(bytes) => {
let lit = ast::LitKind::ByteStr(bytes.clone()).to_token_lit();
self.print_token_literal(lit, expr.span)
}
ast::ExprKind::Cast(ref expr, ref ty) => {
ast::ExprKind::Cast(expr, ty) => {
let prec = AssocOp::As.precedence() as i8;
self.print_expr_maybe_paren(expr, prec);
self.space();
self.word_space("as");
self.print_type(ty);
}
ast::ExprKind::Type(ref expr, ref ty) => {
ast::ExprKind::Type(expr, ty) => {
let prec = AssocOp::Colon.precedence() as i8;
self.print_expr_maybe_paren(expr, prec);
self.word_space(":");
self.print_type(ty);
}
ast::ExprKind::Let(ref pat, ref scrutinee, _) => {
ast::ExprKind::Let(pat, scrutinee, _) => {
self.print_let(pat, scrutinee);
}
ast::ExprKind::If(ref test, ref blk, ref elseopt) => {
self.print_if(test, blk, elseopt.as_deref())
}
ast::ExprKind::While(ref test, ref blk, opt_label) => {
ast::ExprKind::If(test, blk, elseopt) => self.print_if(test, blk, elseopt.as_deref()),
ast::ExprKind::While(test, blk, opt_label) => {
if let Some(label) = opt_label {
self.print_ident(label.ident);
self.word_space(":");
@ -362,7 +355,7 @@ impl<'a> State<'a> {
self.space();
self.print_block_with_attrs(blk, attrs);
}
ast::ExprKind::ForLoop(ref pat, ref iter, ref blk, opt_label) => {
ast::ExprKind::ForLoop(pat, iter, blk, opt_label) => {
if let Some(label) = opt_label {
self.print_ident(label.ident);
self.word_space(":");
@ -377,7 +370,7 @@ impl<'a> State<'a> {
self.space();
self.print_block_with_attrs(blk, attrs);
}
ast::ExprKind::Loop(ref blk, opt_label, _) => {
ast::ExprKind::Loop(blk, opt_label, _) => {
if let Some(label) = opt_label {
self.print_ident(label.ident);
self.word_space(":");
@ -387,7 +380,7 @@ impl<'a> State<'a> {
self.word_nbsp("loop");
self.print_block_with_attrs(blk, attrs);
}
ast::ExprKind::Match(ref expr, ref arms) => {
ast::ExprKind::Match(expr, arms) => {
self.cbox(0);
self.ibox(0);
self.word_nbsp("match");
@ -402,18 +395,18 @@ impl<'a> State<'a> {
self.bclose(expr.span, empty);
}
ast::ExprKind::Closure(box ast::Closure {
ref binder,
binder,
capture_clause,
asyncness,
movability,
ref fn_decl,
ref body,
fn_decl,
body,
fn_decl_span: _,
}) => {
self.print_closure_binder(binder);
self.print_movability(movability);
self.print_asyncness(asyncness);
self.print_capture_clause(capture_clause);
self.print_movability(*movability);
self.print_asyncness(*asyncness);
self.print_capture_clause(*capture_clause);
self.print_fn_params_and_ret(fn_decl, true);
self.space();
@ -425,7 +418,7 @@ impl<'a> State<'a> {
// empty box to satisfy the close.
self.ibox(0);
}
ast::ExprKind::Block(ref blk, opt_label) => {
ast::ExprKind::Block(blk, opt_label) => {
if let Some(label) = opt_label {
self.print_ident(label.ident);
self.word_space(":");
@ -436,26 +429,26 @@ impl<'a> State<'a> {
self.ibox(0);
self.print_block_with_attrs(blk, attrs);
}
ast::ExprKind::Async(capture_clause, _, ref blk) => {
ast::ExprKind::Async(capture_clause, _, blk) => {
self.word_nbsp("async");
self.print_capture_clause(capture_clause);
self.print_capture_clause(*capture_clause);
// cbox/ibox in analogy to the `ExprKind::Block` arm above
self.cbox(0);
self.ibox(0);
self.print_block_with_attrs(blk, attrs);
}
ast::ExprKind::Await(ref expr) => {
ast::ExprKind::Await(expr) => {
self.print_expr_maybe_paren(expr, parser::PREC_POSTFIX);
self.word(".await");
}
ast::ExprKind::Assign(ref lhs, ref rhs, _) => {
ast::ExprKind::Assign(lhs, rhs, _) => {
let prec = AssocOp::Assign.precedence() as i8;
self.print_expr_maybe_paren(lhs, prec + 1);
self.space();
self.word_space("=");
self.print_expr_maybe_paren(rhs, prec);
}
ast::ExprKind::AssignOp(op, ref lhs, ref rhs) => {
ast::ExprKind::AssignOp(op, lhs, rhs) => {
let prec = AssocOp::Assign.precedence() as i8;
self.print_expr_maybe_paren(lhs, prec + 1);
self.space();
@ -463,45 +456,44 @@ impl<'a> State<'a> {
self.word_space("=");
self.print_expr_maybe_paren(rhs, prec);
}
ast::ExprKind::Field(ref expr, ident) => {
ast::ExprKind::Field(expr, ident) => {
self.print_expr_maybe_paren(expr, parser::PREC_POSTFIX);
self.word(".");
self.print_ident(ident);
self.print_ident(*ident);
}
ast::ExprKind::Index(ref expr, ref index) => {
ast::ExprKind::Index(expr, index) => {
self.print_expr_maybe_paren(expr, parser::PREC_POSTFIX);
self.word("[");
self.print_expr(index);
self.word("]");
}
ast::ExprKind::Range(ref start, ref end, limits) => {
ast::ExprKind::Range(start, end, limits) => {
// Special case for `Range`. `AssocOp` claims that `Range` has higher precedence
// than `Assign`, but `x .. x = x` gives a parse error instead of `x .. (x = x)`.
// Here we use a fake precedence value so that any child with lower precedence than
// a "normal" binop gets parenthesized. (`LOr` is the lowest-precedence binop.)
let fake_prec = AssocOp::LOr.precedence() as i8;
if let Some(ref e) = *start {
if let Some(e) = start {
self.print_expr_maybe_paren(e, fake_prec);
}
if limits == ast::RangeLimits::HalfOpen {
self.word("..");
} else {
self.word("..=");
match limits {
ast::RangeLimits::HalfOpen => self.word(".."),
ast::RangeLimits::Closed => self.word("..="),
}
if let Some(ref e) = *end {
if let Some(e) = end {
self.print_expr_maybe_paren(e, fake_prec);
}
}
ast::ExprKind::Underscore => self.word("_"),
ast::ExprKind::Path(None, ref path) => self.print_path(path, true, 0),
ast::ExprKind::Path(Some(ref qself), ref path) => self.print_qpath(path, qself, true),
ast::ExprKind::Break(opt_label, ref opt_expr) => {
ast::ExprKind::Path(None, path) => self.print_path(path, true, 0),
ast::ExprKind::Path(Some(qself), path) => self.print_qpath(path, qself, true),
ast::ExprKind::Break(opt_label, opt_expr) => {
self.word("break");
if let Some(label) = opt_label {
self.space();
self.print_ident(label.ident);
}
if let Some(ref expr) = *opt_expr {
if let Some(expr) = opt_expr {
self.space();
self.print_expr_maybe_paren(expr, parser::PREC_JUMP);
}
@ -513,45 +505,45 @@ impl<'a> State<'a> {
self.print_ident(label.ident);
}
}
ast::ExprKind::Ret(ref result) => {
ast::ExprKind::Ret(result) => {
self.word("return");
if let Some(ref expr) = *result {
if let Some(expr) = result {
self.word(" ");
self.print_expr_maybe_paren(expr, parser::PREC_JUMP);
}
}
ast::ExprKind::Yeet(ref result) => {
ast::ExprKind::Yeet(result) => {
self.word("do");
self.word(" ");
self.word("yeet");
if let Some(ref expr) = *result {
if let Some(expr) = result {
self.word(" ");
self.print_expr_maybe_paren(expr, parser::PREC_JUMP);
}
}
ast::ExprKind::InlineAsm(ref a) => {
ast::ExprKind::InlineAsm(a) => {
self.word("asm!");
self.print_inline_asm(a);
}
ast::ExprKind::MacCall(ref m) => self.print_mac(m),
ast::ExprKind::Paren(ref e) => {
ast::ExprKind::MacCall(m) => self.print_mac(m),
ast::ExprKind::Paren(e) => {
self.popen();
self.print_expr(e);
self.pclose();
}
ast::ExprKind::Yield(ref e) => {
ast::ExprKind::Yield(e) => {
self.word("yield");
if let Some(ref expr) = *e {
if let Some(expr) = e {
self.space();
self.print_expr_maybe_paren(expr, parser::PREC_JUMP);
}
}
ast::ExprKind::Try(ref e) => {
ast::ExprKind::Try(e) => {
self.print_expr_maybe_paren(e, parser::PREC_POSTFIX);
self.word("?")
}
ast::ExprKind::TryBlock(ref blk) => {
ast::ExprKind::TryBlock(blk) => {
self.cbox(0);
self.ibox(0);
self.word_nbsp("try");
@ -578,15 +570,15 @@ impl<'a> State<'a> {
self.print_outer_attributes(&arm.attrs);
self.print_pat(&arm.pat);
self.space();
if let Some(ref e) = arm.guard {
if let Some(e) = &arm.guard {
self.word_space("if");
self.print_expr(e);
self.space();
}
self.word_space("=>");
match arm.body.kind {
ast::ExprKind::Block(ref blk, opt_label) => {
match &arm.body.kind {
ast::ExprKind::Block(blk, opt_label) => {
if let Some(label) = opt_label {
self.print_ident(label.ident);
self.word_space(":");

View file

@ -136,10 +136,10 @@ impl<'a> State<'a> {
self.maybe_print_comment(item.span.lo());
self.print_outer_attributes(&item.attrs);
self.ann.pre(self, AnnNode::Item(item));
match item.kind {
match &item.kind {
ast::ItemKind::ExternCrate(orig_name) => {
self.head(visibility_qualified(&item.vis, "extern crate"));
if let Some(orig_name) = orig_name {
if let &Some(orig_name) = orig_name {
self.print_name(orig_name);
self.space();
self.word("as");
@ -150,35 +150,41 @@ impl<'a> State<'a> {
self.end(); // end inner head-block
self.end(); // end outer head-block
}
ast::ItemKind::Use(ref tree) => {
ast::ItemKind::Use(tree) => {
self.print_visibility(&item.vis);
self.word_nbsp("use");
self.print_use_tree(tree);
self.word(";");
}
ast::ItemKind::Static(ref ty, mutbl, ref body) => {
ast::ItemKind::Static(ty, mutbl, body) => {
let def = ast::Defaultness::Final;
self.print_item_const(item.ident, Some(mutbl), ty, body.as_deref(), &item.vis, def);
self.print_item_const(
item.ident,
Some(*mutbl),
ty,
body.as_deref(),
&item.vis,
def,
);
}
ast::ItemKind::Const(def, ref ty, ref body) => {
self.print_item_const(item.ident, None, ty, body.as_deref(), &item.vis, def);
ast::ItemKind::Const(def, ty, body) => {
self.print_item_const(item.ident, None, ty, body.as_deref(), &item.vis, *def);
}
ast::ItemKind::Fn(box ast::Fn { defaultness, ref sig, ref generics, ref body }) => {
let body = body.as_deref();
ast::ItemKind::Fn(box ast::Fn { defaultness, sig, generics, body }) => {
self.print_fn_full(
sig,
item.ident,
generics,
&item.vis,
defaultness,
body,
*defaultness,
body.as_deref(),
&item.attrs,
);
}
ast::ItemKind::Mod(unsafety, ref mod_kind) => {
ast::ItemKind::Mod(unsafety, mod_kind) => {
self.head(Self::to_string(|s| {
s.print_visibility(&item.vis);
s.print_unsafety(unsafety);
s.print_unsafety(*unsafety);
s.word("mod");
}));
self.print_ident(item.ident);
@ -201,7 +207,7 @@ impl<'a> State<'a> {
}
}
}
ast::ItemKind::ForeignMod(ref nmod) => {
ast::ItemKind::ForeignMod(nmod) => {
self.head(Self::to_string(|s| {
s.print_unsafety(nmod.unsafety);
s.word("extern");
@ -215,7 +221,7 @@ impl<'a> State<'a> {
let empty = item.attrs.is_empty() && nmod.items.is_empty();
self.bclose(item.span, empty);
}
ast::ItemKind::GlobalAsm(ref asm) => {
ast::ItemKind::GlobalAsm(asm) => {
self.head(visibility_qualified(&item.vis, "global_asm!"));
self.print_inline_asm(asm);
self.word(";");
@ -224,32 +230,31 @@ impl<'a> State<'a> {
}
ast::ItemKind::TyAlias(box ast::TyAlias {
defaultness,
ref generics,
generics,
where_clauses,
where_predicates_split,
ref bounds,
ref ty,
bounds,
ty,
}) => {
let ty = ty.as_deref();
self.print_associated_type(
item.ident,
generics,
where_clauses,
where_predicates_split,
*where_clauses,
*where_predicates_split,
bounds,
ty,
ty.as_deref(),
&item.vis,
defaultness,
*defaultness,
);
}
ast::ItemKind::Enum(ref enum_definition, ref params) => {
ast::ItemKind::Enum(enum_definition, params) => {
self.print_enum_def(enum_definition, params, item.ident, item.span, &item.vis);
}
ast::ItemKind::Struct(ref struct_def, ref generics) => {
ast::ItemKind::Struct(struct_def, generics) => {
self.head(visibility_qualified(&item.vis, "struct"));
self.print_struct(struct_def, generics, item.ident, item.span, true);
}
ast::ItemKind::Union(ref struct_def, ref generics) => {
ast::ItemKind::Union(struct_def, generics) => {
self.head(visibility_qualified(&item.vis, "union"));
self.print_struct(struct_def, generics, item.ident, item.span, true);
}
@ -258,15 +263,15 @@ impl<'a> State<'a> {
polarity,
defaultness,
constness,
ref generics,
ref of_trait,
ref self_ty,
ref items,
generics,
of_trait,
self_ty,
items,
}) => {
self.head("");
self.print_visibility(&item.vis);
self.print_defaultness(defaultness);
self.print_unsafety(unsafety);
self.print_defaultness(*defaultness);
self.print_unsafety(*unsafety);
self.word("impl");
if generics.params.is_empty() {
@ -276,13 +281,13 @@ impl<'a> State<'a> {
self.space();
}
self.print_constness(constness);
self.print_constness(*constness);
if let ast::ImplPolarity::Negative(_) = polarity {
self.word("!");
}
if let Some(ref t) = *of_trait {
if let Some(t) = of_trait {
self.print_trait_ref(t);
self.space();
self.word_space("for");
@ -303,21 +308,21 @@ impl<'a> State<'a> {
ast::ItemKind::Trait(box ast::Trait {
is_auto,
unsafety,
ref generics,
ref bounds,
ref items,
generics,
bounds,
items,
..
}) => {
self.head("");
self.print_visibility(&item.vis);
self.print_unsafety(unsafety);
self.print_is_auto(is_auto);
self.print_unsafety(*unsafety);
self.print_is_auto(*is_auto);
self.word_nbsp("trait");
self.print_ident(item.ident);
self.print_generic_params(&generics.params);
let mut real_bounds = Vec::with_capacity(bounds.len());
for b in bounds.iter() {
if let GenericBound::Trait(ref ptr, ast::TraitBoundModifier::Maybe) = *b {
if let GenericBound::Trait(ptr, ast::TraitBoundModifier::Maybe) = b {
self.space();
self.word_space("for ?");
self.print_trait_ref(&ptr.trait_ref);
@ -339,14 +344,14 @@ impl<'a> State<'a> {
let empty = item.attrs.is_empty() && items.is_empty();
self.bclose(item.span, empty);
}
ast::ItemKind::TraitAlias(ref generics, ref bounds) => {
ast::ItemKind::TraitAlias(generics, bounds) => {
self.head(visibility_qualified(&item.vis, "trait"));
self.print_ident(item.ident);
self.print_generic_params(&generics.params);
let mut real_bounds = Vec::with_capacity(bounds.len());
// FIXME(durka) this seems to be some quite outdated syntax
for b in bounds.iter() {
if let GenericBound::Trait(ref ptr, ast::TraitBoundModifier::Maybe) = *b {
if let GenericBound::Trait(ptr, ast::TraitBoundModifier::Maybe) = b {
self.space();
self.word_space("for ?");
self.print_trait_ref(&ptr.trait_ref);
@ -364,13 +369,13 @@ impl<'a> State<'a> {
self.end(); // end inner head-block
self.end(); // end outer head-block
}
ast::ItemKind::MacCall(ref mac) => {
ast::ItemKind::MacCall(mac) => {
self.print_mac(mac);
if mac.args.need_semicolon() {
self.word(";");
}
}
ast::ItemKind::MacroDef(ref macro_def) => {
ast::ItemKind::MacroDef(macro_def) => {
self.print_mac_def(macro_def, &item.ident, item.span, |state| {
state.print_visibility(&item.vis)
});
@ -412,11 +417,11 @@ impl<'a> State<'a> {
}
pub(crate) fn print_visibility(&mut self, vis: &ast::Visibility) {
match vis.kind {
match &vis.kind {
ast::VisibilityKind::Public => self.word_nbsp("pub"),
ast::VisibilityKind::Restricted { ref path, id: _, shorthand } => {
ast::VisibilityKind::Restricted { path, shorthand, .. } => {
let path = Self::to_string(|s| s.print_path(path, false, 0));
if shorthand && (path == "crate" || path == "self" || path == "super") {
if *shorthand && (path == "crate" || path == "self" || path == "super") {
self.word_nbsp(format!("pub({})", path))
} else {
self.word_nbsp(format!("pub(in {})", path))
@ -465,7 +470,7 @@ impl<'a> State<'a> {
) {
self.print_ident(ident);
self.print_generic_params(&generics.params);
match struct_def {
match &struct_def {
ast::VariantData::Tuple(..) | ast::VariantData::Unit(..) => {
if let ast::VariantData::Tuple(..) = struct_def {
self.popen();
@ -484,7 +489,7 @@ impl<'a> State<'a> {
self.end();
self.end(); // Close the outer-box.
}
ast::VariantData::Struct(ref fields, ..) => {
ast::VariantData::Struct(fields, ..) => {
self.print_where_clause(&generics.where_clause);
self.print_record_struct_body(fields, span);
}
@ -496,7 +501,7 @@ impl<'a> State<'a> {
self.print_visibility(&v.vis);
let generics = ast::Generics::default();
self.print_struct(&v.data, &generics, v.ident, v.span, false);
if let Some(ref d) = v.disr_expr {
if let Some(d) = &v.disr_expr {
self.space();
self.word_space("=");
self.print_expr(&d.value)
@ -657,10 +662,10 @@ impl<'a> State<'a> {
}
fn print_use_tree(&mut self, tree: &ast::UseTree) {
match tree.kind {
match &tree.kind {
ast::UseTreeKind::Simple(rename, ..) => {
self.print_path(&tree.prefix, false, 0);
if let Some(rename) = rename {
if let &Some(rename) = rename {
self.nbsp();
self.word_nbsp("as");
self.print_ident(rename);
@ -673,7 +678,7 @@ impl<'a> State<'a> {
}
self.word("*");
}
ast::UseTreeKind::Nested(ref items) => {
ast::UseTreeKind::Nested(items) => {
if !tree.prefix.segments.is_empty() {
self.print_path(&tree.prefix, false, 0);
self.word("::");

View file

@ -1705,6 +1705,7 @@ impl<'tcx> RegionInferenceContext<'tcx> {
});
}
#[instrument(level = "debug", skip(self, infcx, errors_buffer))]
fn check_member_constraints(
&self,
infcx: &InferCtxt<'tcx>,
@ -1712,22 +1713,21 @@ impl<'tcx> RegionInferenceContext<'tcx> {
) {
let member_constraints = self.member_constraints.clone();
for m_c_i in member_constraints.all_indices() {
debug!("check_member_constraint(m_c_i={:?})", m_c_i);
debug!(?m_c_i);
let m_c = &member_constraints[m_c_i];
let member_region_vid = m_c.member_region_vid;
debug!(
"check_member_constraint: member_region_vid={:?} with value {}",
member_region_vid,
self.region_value_str(member_region_vid),
?member_region_vid,
value = ?self.region_value_str(member_region_vid),
);
let choice_regions = member_constraints.choice_regions(m_c_i);
debug!("check_member_constraint: choice_regions={:?}", choice_regions);
debug!(?choice_regions);
// Did the member region wind up equal to any of the option regions?
if let Some(o) =
choice_regions.iter().find(|&&o_r| self.eval_equal(o_r, m_c.member_region_vid))
{
debug!("check_member_constraint: evaluated as equal to {:?}", o);
debug!("evaluated as equal to {:?}", o);
continue;
}

View file

@ -292,30 +292,33 @@ fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> {
}
fn print_target_features(sess: &Session, tm: &llvm::TargetMachine) {
let mut target_features = llvm_target_features(tm);
let mut llvm_target_features = llvm_target_features(tm);
let mut known_llvm_target_features = FxHashSet::<&'static str>::default();
let mut rustc_target_features = supported_target_features(sess)
.iter()
.filter_map(|(feature, _gate)| {
for llvm_feature in to_llvm_features(sess, *feature) {
.map(|(feature, _gate)| {
let desc = if let Some(llvm_feature) = to_llvm_features(sess, *feature).first() {
// LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these strings.
match target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok().map(
|index| {
let (_f, desc) = target_features.remove(index);
(*feature, desc)
},
) {
Some(v) => return Some(v),
None => {}
match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() {
Some(index) => {
known_llvm_target_features.insert(llvm_feature);
llvm_target_features[index].1
}
None => "",
}
}
None
} else {
""
};
(*feature, desc)
})
.collect::<Vec<_>>();
rustc_target_features.extend_from_slice(&[(
"crt-static",
"Enables C Run-time Libraries to be statically linked",
)]);
let max_feature_len = target_features
llvm_target_features.retain(|(f, _d)| !known_llvm_target_features.contains(f));
let max_feature_len = llvm_target_features
.iter()
.chain(rustc_target_features.iter())
.map(|(feature, _desc)| feature.len())
@ -327,10 +330,10 @@ fn print_target_features(sess: &Session, tm: &llvm::TargetMachine) {
println!(" {1:0$} - {2}.", max_feature_len, feature, desc);
}
println!("\nCode-generation features supported by LLVM for this target:");
for (feature, desc) in &target_features {
for (feature, desc) in &llvm_target_features {
println!(" {1:0$} - {2}.", max_feature_len, feature, desc);
}
if target_features.is_empty() {
if llvm_target_features.is_empty() {
println!(" Target features listing is not supported by this LLVM version.");
}
println!("\nUse +feature to enable a feature, or -feature to disable it.");

View file

@ -33,7 +33,7 @@ use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs}
use rustc_middle::mir::mono::Linkage;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::util::{Discr, IntTypeExt};
use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, IsSuggestable, Ty, TyCtxt};
use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, IsSuggestable, ToPredicate, Ty, TyCtxt};
use rustc_session::lint;
use rustc_session::parse::feature_err;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
@ -1366,12 +1366,14 @@ fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicate
"predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
def_id, inferred_outlives,
);
let inferred_outlives_iter =
inferred_outlives.iter().map(|(clause, span)| ((*clause).to_predicate(tcx), *span));
if result.predicates.is_empty() {
result.predicates = inferred_outlives;
result.predicates = tcx.arena.alloc_from_iter(inferred_outlives_iter);
} else {
result.predicates = tcx
.arena
.alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
result.predicates = tcx.arena.alloc_from_iter(
result.predicates.into_iter().copied().chain(inferred_outlives_iter),
);
}
}

View file

@ -3,7 +3,7 @@ use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::subst::GenericArgKind;
use rustc_middle::ty::{self, CratePredicatesMap, ToPredicate, TyCtxt};
use rustc_middle::ty::{self, CratePredicatesMap, TyCtxt};
use rustc_span::symbol::sym;
use rustc_span::Span;
@ -17,7 +17,7 @@ pub fn provide(providers: &mut Providers) {
*providers = Providers { inferred_outlives_of, inferred_outlives_crate, ..*providers };
}
fn inferred_outlives_of(tcx: TyCtxt<'_>, item_def_id: DefId) -> &[(ty::Predicate<'_>, Span)] {
fn inferred_outlives_of(tcx: TyCtxt<'_>, item_def_id: DefId) -> &[(ty::Clause<'_>, Span)] {
let id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
if matches!(tcx.def_kind(item_def_id), hir::def::DefKind::AnonConst) && tcx.lazy_normalization()
@ -50,12 +50,10 @@ fn inferred_outlives_of(tcx: TyCtxt<'_>, item_def_id: DefId) -> &[(ty::Predicate
if tcx.has_attr(item_def_id, sym::rustc_outlives) {
let mut pred: Vec<String> = predicates
.iter()
.map(|(out_pred, _)| match out_pred.kind().skip_binder() {
ty::PredicateKind::Clause(ty::Clause::RegionOutlives(p)) => {
p.to_string()
}
ty::PredicateKind::Clause(ty::Clause::TypeOutlives(p)) => p.to_string(),
err => bug!("unexpected predicate {:?}", err),
.map(|(out_pred, _)| match out_pred {
ty::Clause::RegionOutlives(p) => p.to_string(),
ty::Clause::TypeOutlives(p) => p.to_string(),
err => bug!("unexpected clause {:?}", err),
})
.collect();
pred.sort();
@ -103,19 +101,11 @@ fn inferred_outlives_crate(tcx: TyCtxt<'_>, (): ()) -> CratePredicatesMap<'_> {
|(ty::OutlivesPredicate(kind1, region2), &span)| {
match kind1.unpack() {
GenericArgKind::Type(ty1) => Some((
ty::Binder::dummy(ty::PredicateKind::Clause(ty::Clause::TypeOutlives(
ty::OutlivesPredicate(ty1, *region2),
)))
.to_predicate(tcx),
ty::Clause::TypeOutlives(ty::OutlivesPredicate(ty1, *region2)),
span,
)),
GenericArgKind::Lifetime(region1) => Some((
ty::Binder::dummy(ty::PredicateKind::Clause(
ty::Clause::RegionOutlives(ty::OutlivesPredicate(
region1, *region2,
)),
))
.to_predicate(tcx),
ty::Clause::RegionOutlives(ty::OutlivesPredicate(region1, *region2)),
span,
)),
GenericArgKind::Const(_) => {

View file

@ -2046,16 +2046,13 @@ declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMEN
impl ExplicitOutlivesRequirements {
fn lifetimes_outliving_lifetime<'tcx>(
inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)],
def_id: DefId,
) -> Vec<ty::Region<'tcx>> {
inferred_outlives
.iter()
.filter_map(|(pred, _)| match pred.kind().skip_binder() {
ty::PredicateKind::Clause(ty::Clause::RegionOutlives(ty::OutlivesPredicate(
a,
b,
))) => match *a {
.filter_map(|(clause, _)| match *clause {
ty::Clause::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
ty::ReEarlyBound(ebr) if ebr.def_id == def_id => Some(b),
_ => None,
},
@ -2065,16 +2062,15 @@ impl ExplicitOutlivesRequirements {
}
fn lifetimes_outliving_type<'tcx>(
inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)],
index: u32,
) -> Vec<ty::Region<'tcx>> {
inferred_outlives
.iter()
.filter_map(|(pred, _)| match pred.kind().skip_binder() {
ty::PredicateKind::Clause(ty::Clause::TypeOutlives(ty::OutlivesPredicate(
a,
b,
))) => a.is_param(index).then_some(b),
.filter_map(|(clause, _)| match *clause {
ty::Clause::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
a.is_param(index).then_some(b)
}
_ => None,
})
.collect()

View file

@ -353,7 +353,7 @@ define_tables! {
explicit_predicates_of: Table<DefIndex, LazyValue<ty::GenericPredicates<'static>>>,
generics_of: Table<DefIndex, LazyValue<ty::Generics>>,
// As an optimization, a missing entry indicates an empty `&[]`.
inferred_outlives_of: Table<DefIndex, LazyArray<(ty::Predicate<'static>, Span)>>,
inferred_outlives_of: Table<DefIndex, LazyArray<(ty::Clause<'static>, Span)>>,
super_predicates_of: Table<DefIndex, LazyValue<ty::GenericPredicates<'static>>>,
type_of: Table<DefIndex, LazyValue<Ty<'static>>>,
variances_of: Table<DefIndex, LazyArray<ty::Variance>>,

View file

@ -562,7 +562,7 @@ rustc_queries! {
/// Returns the inferred outlives predicates (e.g., for `struct
/// Foo<'a, T> { x: &'a T }`, this would return `T: 'a`).
query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Clause<'tcx>, Span)] {
desc { |tcx| "computing inferred outlives predicates of `{}`", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
separate_provide_extern

View file

@ -345,6 +345,14 @@ impl<'tcx, D: TyDecoder<I = TyCtxt<'tcx>>> RefDecodable<'tcx, D>
}
}
impl<'tcx, D: TyDecoder<I = TyCtxt<'tcx>>> RefDecodable<'tcx, D> for [(ty::Clause<'tcx>, Span)] {
fn decode(decoder: &mut D) -> &'tcx Self {
decoder.interner().arena.alloc_from_iter(
(0..decoder.read_usize()).map(|_| Decodable::decode(decoder)).collect::<Vec<_>>(),
)
}
}
impl<'tcx, D: TyDecoder<I = TyCtxt<'tcx>>> RefDecodable<'tcx, D>
for ty::List<ty::BoundVariableKind>
{

View file

@ -734,7 +734,7 @@ pub struct CratePredicatesMap<'tcx> {
/// For each struct with outlive bounds, maps to a vector of the
/// predicate of its outlive bounds. If an item has no outlives
/// bounds, it will have no entry.
pub predicates: FxHashMap<DefId, &'tcx [(Predicate<'tcx>, Span)]>,
pub predicates: FxHashMap<DefId, &'tcx [(Clause<'tcx>, Span)]>,
}
impl<'tcx> Predicate<'tcx> {
@ -1167,6 +1167,13 @@ impl<'tcx> ToPredicate<'tcx, Predicate<'tcx>> for Binder<'tcx, PredicateKind<'tc
}
}
impl<'tcx> ToPredicate<'tcx, Predicate<'tcx>> for Clause<'tcx> {
#[inline(always)]
fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
tcx.mk_predicate(ty::Binder::dummy(ty::PredicateKind::Clause(self)))
}
}
impl<'tcx> ToPredicate<'tcx, Predicate<'tcx>> for Binder<'tcx, TraitRef<'tcx>> {
#[inline(always)]
fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {

View file

@ -5,7 +5,7 @@ use rustc_index::vec::{Idx, IndexVec};
use crate::middle::exported_symbols::ExportedSymbol;
use crate::mir::Body;
use crate::ty::{
self, Const, FnSig, GeneratorDiagnosticData, GenericPredicates, Predicate, TraitRef, Ty,
self, Clause, Const, FnSig, GeneratorDiagnosticData, GenericPredicates, Predicate, TraitRef, Ty,
};
pub trait ParameterizedOverTcx: 'static {
@ -121,6 +121,7 @@ parameterized_over_tcx! {
TraitRef,
Const,
Predicate,
Clause,
GeneratorDiagnosticData,
Body,
ExportedSymbol,

View file

@ -116,6 +116,17 @@ impl<'tcx> Visitor<'tcx> for ReachableContext<'tcx> {
intravisit::walk_expr(self, expr)
}
fn visit_inline_asm(&mut self, asm: &'tcx hir::InlineAsm<'tcx>, id: hir::HirId) {
for (op, _) in asm.operands {
if let hir::InlineAsmOperand::SymStatic { def_id, .. } = op {
if let Some(def_id) = def_id.as_local() {
self.reachable_symbols.insert(def_id);
}
}
}
intravisit::walk_inline_asm(self, asm, id);
}
}
impl<'tcx> ReachableContext<'tcx> {

View file

@ -818,6 +818,12 @@ impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for &'tcx [(ty::Predicate<'tcx>
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for &'tcx [(ty::Clause<'tcx>, Span)] {
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Self {
RefDecodable::decode(d)
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for &'tcx [rustc_ast::InlineAsmTemplatePiece] {
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Self {
RefDecodable::decode(d)

View file

@ -1,22 +1,19 @@
#![macro_use]
macro_rules! max_leb128_len {
($int_ty:ty) => {
// The longest LEB128 encoding for an integer uses 7 bits per byte.
(std::mem::size_of::<$int_ty>() * 8 + 6) / 7
};
/// Returns the length of the longest LEB128 encoding for `T`, assuming `T` is an integer type
pub const fn max_leb128_len<T>() -> usize {
// The longest LEB128 encoding for an integer uses 7 bits per byte.
(std::mem::size_of::<T>() * 8 + 6) / 7
}
/// Returns the longest LEB128 encoding of all supported integer types.
pub const fn max_leb128_len() -> usize {
max_leb128_len!(u128)
/// Returns the length of the longest LEB128 encoding of all supported integer types.
pub const fn largest_max_leb128_len() -> usize {
max_leb128_len::<u128>()
}
macro_rules! impl_write_unsigned_leb128 {
($fn_name:ident, $int_ty:ty) => {
#[inline]
pub fn $fn_name(
out: &mut [::std::mem::MaybeUninit<u8>; max_leb128_len!($int_ty)],
out: &mut [::std::mem::MaybeUninit<u8>; max_leb128_len::<$int_ty>()],
mut value: $int_ty,
) -> &[u8] {
let mut i = 0;
@ -90,7 +87,7 @@ macro_rules! impl_write_signed_leb128 {
($fn_name:ident, $int_ty:ty) => {
#[inline]
pub fn $fn_name(
out: &mut [::std::mem::MaybeUninit<u8>; max_leb128_len!($int_ty)],
out: &mut [::std::mem::MaybeUninit<u8>; max_leb128_len::<$int_ty>()],
mut value: $int_ty,
) -> &[u8] {
let mut i = 0;

View file

@ -1,4 +1,4 @@
use crate::leb128::{self, max_leb128_len};
use crate::leb128::{self, largest_max_leb128_len};
use crate::serialize::{Decodable, Decoder, Encodable, Encoder};
use std::convert::TryInto;
use std::fs::File;
@ -32,7 +32,7 @@ impl MemEncoder {
macro_rules! write_leb128 {
($enc:expr, $value:expr, $int_ty:ty, $fun:ident) => {{
const MAX_ENCODED_LEN: usize = max_leb128_len!($int_ty);
const MAX_ENCODED_LEN: usize = $crate::leb128::max_leb128_len::<$int_ty>();
let old_len = $enc.data.len();
if MAX_ENCODED_LEN > $enc.data.capacity() - old_len {
@ -186,12 +186,12 @@ impl FileEncoder {
pub fn with_capacity<P: AsRef<Path>>(path: P, capacity: usize) -> io::Result<Self> {
// Require capacity at least as large as the largest LEB128 encoding
// here, so that we don't have to check or handle this on every write.
assert!(capacity >= max_leb128_len());
assert!(capacity >= largest_max_leb128_len());
// Require capacity small enough such that some capacity checks can be
// done using guaranteed non-overflowing add rather than sub, which
// shaves an instruction off those code paths (on x86 at least).
assert!(capacity <= usize::MAX - max_leb128_len());
assert!(capacity <= usize::MAX - largest_max_leb128_len());
// Create the file for reading and writing, because some encoders do both
// (e.g. the metadata encoder when -Zmeta-stats is enabled)
@ -411,7 +411,7 @@ impl Drop for FileEncoder {
macro_rules! file_encoder_write_leb128 {
($enc:expr, $value:expr, $int_ty:ty, $fun:ident) => {{
const MAX_ENCODED_LEN: usize = max_leb128_len!($int_ty);
const MAX_ENCODED_LEN: usize = $crate::leb128::max_leb128_len::<$int_ty>();
// We ensure this during `FileEncoder` construction.
debug_assert!($enc.capacity() >= MAX_ENCODED_LEN);

View file

@ -1250,8 +1250,8 @@ supported_targets! {
("mips64-openwrt-linux-musl", mips64_openwrt_linux_musl),
("aarch64-unknown-nto-qnx7.1.0", aarch64_unknown_nto_qnx_710),
("x86_64-pc-nto-qnx7.1.0", x86_64_pc_nto_qnx710),
("aarch64-unknown-nto-qnx710", aarch64_unknown_nto_qnx_710),
("x86_64-pc-nto-qnx710", x86_64_pc_nto_qnx710),
}
/// Cow-Vec-Str: Cow<'static, [Cow<'static, str>]>

View file

@ -9,225 +9,18 @@ use hir::LangItem;
use rustc_hir as hir;
use rustc_infer::traits::ObligationCause;
use rustc_infer::traits::{Obligation, SelectionError, TraitObligation};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{self, Ty, TypeVisitable};
use rustc_target::spec::abi::Abi;
use crate::traits;
use crate::traits::coherence::Conflict;
use crate::traits::query::evaluate_obligation::InferCtxtExt;
use crate::traits::{util, SelectionResult};
use crate::traits::{ErrorReporting, Overflow, Unimplemented};
use crate::traits::util;
use super::BuiltinImplConditions;
use super::IntercrateAmbiguityCause;
use super::OverflowError;
use super::SelectionCandidate::{self, *};
use super::{EvaluatedCandidate, SelectionCandidateSet, SelectionContext, TraitObligationStack};
use super::SelectionCandidate::*;
use super::{SelectionCandidateSet, SelectionContext, TraitObligationStack};
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
#[instrument(level = "debug", skip(self), ret)]
pub(super) fn candidate_from_obligation<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
// Watch out for overflow. This intentionally bypasses (and does
// not update) the cache.
self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
// Check the cache. Note that we freshen the trait-ref
// separately rather than using `stack.fresh_trait_ref` --
// this is because we want the unbound variables to be
// replaced with fresh types starting from index 0.
let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
debug!(?cache_fresh_trait_pred);
debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
if let Some(c) =
self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
{
debug!("CACHE HIT");
return c;
}
// If no match, compute result and insert into cache.
//
// FIXME(nikomatsakis) -- this cache is not taking into
// account cycles that may have occurred in forming the
// candidate. I don't know of any specific problems that
// result but it seems awfully suspicious.
let (candidate, dep_node) =
self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
debug!("CACHE MISS");
self.insert_candidate_cache(
stack.obligation.param_env,
cache_fresh_trait_pred,
dep_node,
candidate.clone(),
);
candidate
}
fn candidate_from_obligation_no_cache<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
if let Err(conflict) = self.is_knowable(stack) {
debug!("coherence stage: not knowable");
if self.intercrate_ambiguity_causes.is_some() {
debug!("evaluate_stack: intercrate_ambiguity_causes is some");
// Heuristics: show the diagnostics when there are no candidates in crate.
if let Ok(candidate_set) = self.assemble_candidates(stack) {
let mut no_candidates_apply = true;
for c in candidate_set.vec.iter() {
if self.evaluate_candidate(stack, &c)?.may_apply() {
no_candidates_apply = false;
break;
}
}
if !candidate_set.ambiguous && no_candidates_apply {
let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
let self_ty = trait_ref.self_ty();
let (trait_desc, self_desc) = with_no_trimmed_paths!({
let trait_desc = trait_ref.print_only_trait_path().to_string();
let self_desc = if self_ty.has_concrete_skeleton() {
Some(self_ty.to_string())
} else {
None
};
(trait_desc, self_desc)
});
let cause = if let Conflict::Upstream = conflict {
IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
} else {
IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
};
debug!(?cause, "evaluate_stack: pushing cause");
self.intercrate_ambiguity_causes.as_mut().unwrap().insert(cause);
}
}
}
return Ok(None);
}
let candidate_set = self.assemble_candidates(stack)?;
if candidate_set.ambiguous {
debug!("candidate set contains ambig");
return Ok(None);
}
let candidates = candidate_set.vec;
debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
// At this point, we know that each of the entries in the
// candidate set is *individually* applicable. Now we have to
// figure out if they contain mutual incompatibilities. This
// frequently arises if we have an unconstrained input type --
// for example, we are looking for `$0: Eq` where `$0` is some
// unconstrained type variable. In that case, we'll get a
// candidate which assumes $0 == int, one that assumes `$0 ==
// usize`, etc. This spells an ambiguity.
let mut candidates = self.filter_impls(candidates, stack.obligation);
// If there is more than one candidate, first winnow them down
// by considering extra conditions (nested obligations and so
// forth). We don't winnow if there is exactly one
// candidate. This is a relatively minor distinction but it
// can lead to better inference and error-reporting. An
// example would be if there was an impl:
//
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
//
// and we were to see some code `foo.push_clone()` where `boo`
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
// we were to winnow, we'd wind up with zero candidates.
// Instead, we select the right impl now but report "`Bar` does
// not implement `Clone`".
if candidates.len() == 1 {
return self.filter_reservation_impls(candidates.pop().unwrap(), stack.obligation);
}
// Winnow, but record the exact outcome of evaluation, which
// is needed for specialization. Propagate overflow if it occurs.
let mut candidates = candidates
.into_iter()
.map(|c| match self.evaluate_candidate(stack, &c) {
Ok(eval) if eval.may_apply() => {
Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
}
Ok(_) => Ok(None),
Err(OverflowError::Canonical) => Err(Overflow(OverflowError::Canonical)),
Err(OverflowError::ErrorReporting) => Err(ErrorReporting),
Err(OverflowError::Error(e)) => Err(Overflow(OverflowError::Error(e))),
})
.flat_map(Result::transpose)
.collect::<Result<Vec<_>, _>>()?;
debug!(?stack, ?candidates, "winnowed to {} candidates", candidates.len());
let needs_infer = stack.obligation.predicate.has_non_region_infer();
// If there are STILL multiple candidates, we can further
// reduce the list by dropping duplicates -- including
// resolving specializations.
if candidates.len() > 1 {
let mut i = 0;
while i < candidates.len() {
let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
self.candidate_should_be_dropped_in_favor_of(
&candidates[i],
&candidates[j],
needs_infer,
)
});
if is_dup {
debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
candidates.swap_remove(i);
} else {
debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
i += 1;
// If there are *STILL* multiple candidates, give up
// and report ambiguity.
if i > 1 {
debug!("multiple matches, ambig");
return Ok(None);
}
}
}
}
// If there are *NO* candidates, then there are no impls --
// that we know of, anyway. Note that in the case where there
// are unbound type variables within the obligation, it might
// be the case that you could still satisfy the obligation
// from another crate by instantiating the type variables with
// a type from another crate that does have an impl. This case
// is checked for in `evaluate_stack` (and hence users
// who might care about this case, like coherence, should use
// that function).
if candidates.is_empty() {
// If there's an error type, 'downgrade' our result from
// `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
// emitting additional spurious errors, since we're guaranteed
// to have emitted at least one.
if stack.obligation.predicate.references_error() {
debug!(?stack.obligation.predicate, "found error type in predicate, treating as ambiguous");
return Ok(None);
}
return Err(Unimplemented);
}
// Just one candidate left.
self.filter_reservation_impls(candidates.pop().unwrap().candidate, stack.obligation)
}
#[instrument(skip(self, stack), level = "debug")]
pub(super) fn assemble_candidates<'o>(
&mut self,

View file

@ -30,6 +30,7 @@ use crate::traits::error_reporting::TypeErrCtxtExt;
use crate::traits::project::ProjectAndUnifyResult;
use crate::traits::project::ProjectionCacheKeyExt;
use crate::traits::ProjectionCacheKey;
use crate::traits::Unimplemented;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::fx::{FxHashSet, FxIndexSet};
use rustc_data_structures::stack::ensure_sufficient_stack;
@ -55,6 +56,7 @@ use std::fmt::{self, Display};
use std::iter;
pub use rustc_middle::traits::select::*;
use rustc_middle::ty::print::with_no_trimmed_paths;
mod candidate_assembly;
mod confirmation;
@ -305,6 +307,208 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
self.candidate_from_obligation(&stack)
}
#[instrument(level = "debug", skip(self), ret)]
fn candidate_from_obligation<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
// Watch out for overflow. This intentionally bypasses (and does
// not update) the cache.
self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
// Check the cache. Note that we freshen the trait-ref
// separately rather than using `stack.fresh_trait_ref` --
// this is because we want the unbound variables to be
// replaced with fresh types starting from index 0.
let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
debug!(?cache_fresh_trait_pred);
debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
if let Some(c) =
self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
{
debug!("CACHE HIT");
return c;
}
// If no match, compute result and insert into cache.
//
// FIXME(nikomatsakis) -- this cache is not taking into
// account cycles that may have occurred in forming the
// candidate. I don't know of any specific problems that
// result but it seems awfully suspicious.
let (candidate, dep_node) =
self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
debug!("CACHE MISS");
self.insert_candidate_cache(
stack.obligation.param_env,
cache_fresh_trait_pred,
dep_node,
candidate.clone(),
);
candidate
}
fn candidate_from_obligation_no_cache<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
if let Err(conflict) = self.is_knowable(stack) {
debug!("coherence stage: not knowable");
if self.intercrate_ambiguity_causes.is_some() {
debug!("evaluate_stack: intercrate_ambiguity_causes is some");
// Heuristics: show the diagnostics when there are no candidates in crate.
if let Ok(candidate_set) = self.assemble_candidates(stack) {
let mut no_candidates_apply = true;
for c in candidate_set.vec.iter() {
if self.evaluate_candidate(stack, &c)?.may_apply() {
no_candidates_apply = false;
break;
}
}
if !candidate_set.ambiguous && no_candidates_apply {
let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
let self_ty = trait_ref.self_ty();
let (trait_desc, self_desc) = with_no_trimmed_paths!({
let trait_desc = trait_ref.print_only_trait_path().to_string();
let self_desc = if self_ty.has_concrete_skeleton() {
Some(self_ty.to_string())
} else {
None
};
(trait_desc, self_desc)
});
let cause = if let Conflict::Upstream = conflict {
IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
} else {
IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
};
debug!(?cause, "evaluate_stack: pushing cause");
self.intercrate_ambiguity_causes.as_mut().unwrap().insert(cause);
}
}
}
return Ok(None);
}
let candidate_set = self.assemble_candidates(stack)?;
if candidate_set.ambiguous {
debug!("candidate set contains ambig");
return Ok(None);
}
let candidates = candidate_set.vec;
debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
// At this point, we know that each of the entries in the
// candidate set is *individually* applicable. Now we have to
// figure out if they contain mutual incompatibilities. This
// frequently arises if we have an unconstrained input type --
// for example, we are looking for `$0: Eq` where `$0` is some
// unconstrained type variable. In that case, we'll get a
// candidate which assumes $0 == int, one that assumes `$0 ==
// usize`, etc. This spells an ambiguity.
let mut candidates = self.filter_impls(candidates, stack.obligation);
// If there is more than one candidate, first winnow them down
// by considering extra conditions (nested obligations and so
// forth). We don't winnow if there is exactly one
// candidate. This is a relatively minor distinction but it
// can lead to better inference and error-reporting. An
// example would be if there was an impl:
//
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
//
// and we were to see some code `foo.push_clone()` where `boo`
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
// we were to winnow, we'd wind up with zero candidates.
// Instead, we select the right impl now but report "`Bar` does
// not implement `Clone`".
if candidates.len() == 1 {
return self.filter_reservation_impls(candidates.pop().unwrap(), stack.obligation);
}
// Winnow, but record the exact outcome of evaluation, which
// is needed for specialization. Propagate overflow if it occurs.
let mut candidates = candidates
.into_iter()
.map(|c| match self.evaluate_candidate(stack, &c) {
Ok(eval) if eval.may_apply() => {
Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
}
Ok(_) => Ok(None),
Err(OverflowError::Canonical) => Err(Overflow(OverflowError::Canonical)),
Err(OverflowError::ErrorReporting) => Err(ErrorReporting),
Err(OverflowError::Error(e)) => Err(Overflow(OverflowError::Error(e))),
})
.flat_map(Result::transpose)
.collect::<Result<Vec<_>, _>>()?;
debug!(?stack, ?candidates, "winnowed to {} candidates", candidates.len());
let needs_infer = stack.obligation.predicate.has_non_region_infer();
// If there are STILL multiple candidates, we can further
// reduce the list by dropping duplicates -- including
// resolving specializations.
if candidates.len() > 1 {
let mut i = 0;
while i < candidates.len() {
let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
self.candidate_should_be_dropped_in_favor_of(
&candidates[i],
&candidates[j],
needs_infer,
)
});
if is_dup {
debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
candidates.swap_remove(i);
} else {
debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
i += 1;
// If there are *STILL* multiple candidates, give up
// and report ambiguity.
if i > 1 {
debug!("multiple matches, ambig");
return Ok(None);
}
}
}
}
// If there are *NO* candidates, then there are no impls --
// that we know of, anyway. Note that in the case where there
// are unbound type variables within the obligation, it might
// be the case that you could still satisfy the obligation
// from another crate by instantiating the type variables with
// a type from another crate that does have an impl. This case
// is checked for in `evaluate_stack` (and hence users
// who might care about this case, like coherence, should use
// that function).
if candidates.is_empty() {
// If there's an error type, 'downgrade' our result from
// `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
// emitting additional spurious errors, since we're guaranteed
// to have emitted at least one.
if stack.obligation.predicate.references_error() {
debug!(?stack.obligation.predicate, "found error type in predicate, treating as ambiguous");
return Ok(None);
}
return Err(Unimplemented);
}
// Just one candidate left.
self.filter_reservation_impls(candidates.pop().unwrap().candidate, stack.obligation)
}
///////////////////////////////////////////////////////////////////////////
// EVALUATION
//
@ -2140,6 +2344,13 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
match self.match_impl(impl_def_id, impl_trait_ref, obligation) {
Ok(substs) => substs,
Err(()) => {
// FIXME: A rematch may fail when a candidate cache hit occurs
// on thefreshened form of the trait predicate, but the match
// fails for some reason that is not captured in the freshened
// cache key. For example, equating an impl trait ref against
// the placeholder trait ref may fail due the Generalizer relation
// raising a CyclicalTy error due to a sub_root_var relation
// for a variable being generalized...
self.infcx.tcx.sess.delay_span_bug(
obligation.cause.span,
&format!(