Add many comments to TwoWaySearcher.
This commit is contained in:
parent
e9db8adebb
commit
d1bcd771a0
1 changed files with 87 additions and 10 deletions
|
@ -419,8 +419,76 @@ struct TwoWaySearcher {
|
|||
memory: uint
|
||||
}
|
||||
|
||||
// This is the Two-Way search algorithm, which was introduced in the paper:
|
||||
// Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675.
|
||||
/*
|
||||
This is the Two-Way search algorithm, which was introduced in the paper:
|
||||
Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675.
|
||||
|
||||
Here's some background information.
|
||||
|
||||
A *word* is a string of symbols. The *length* of a word should be a familiar
|
||||
notion, and here we denote it for any word x by |x|.
|
||||
(We also allow for the possibility of the *empty word*, a word of length zero).
|
||||
|
||||
If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be a
|
||||
*period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == x[i+p].
|
||||
For example, both 1 and 2 are periods for the string "aa". As another example,
|
||||
the only period of the string "abcd" is 4.
|
||||
|
||||
We denote by period(x) the *smallest* period of x (provided that x is non-empty).
|
||||
This is always well-defined since every non-empty word x has at least one period,
|
||||
|x|. We sometimes call this *the period* of x.
|
||||
|
||||
If u, v and x are words such that x = uv, where uv is the concatenation of u and
|
||||
v, then we say that (u, v) is a *factorization* of x.
|
||||
|
||||
Let (u, v) be a factorization for a word x. Then if w is a non-empty word such
|
||||
that both of the following hold
|
||||
|
||||
- either w is a suffix of u or u is a suffix of w
|
||||
- either w is a prefix of v or v is a prefix of w
|
||||
|
||||
then w is said to be a *repetition* for the factorization (u, v).
|
||||
|
||||
Just to unpack this, there are four possibilities here. Let w = "abc". Then we
|
||||
might have:
|
||||
|
||||
- w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde")
|
||||
- w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab")
|
||||
- u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi")
|
||||
- u is a suffix of w and v is a prefix of w. ex: ("bc", "a")
|
||||
|
||||
Note that the word vu is a repetition for any factorization (u,v) of x = uv,
|
||||
so every factorization has at least one repetition.
|
||||
|
||||
If x is a string and (u, v) is a factorization for x, then a *local period* for
|
||||
(u, v) is an integer r such that there is some word w such that |w| = r and w is
|
||||
a repetition for (u, v).
|
||||
|
||||
We denote by local_period(u, v) the smallest local period of (u, v). We sometimes
|
||||
call this *the local period* of (u, v). Provided that x = uv is non-empty, this
|
||||
is well-defined (because each non-empty word has at least one factorization, as
|
||||
noted above).
|
||||
|
||||
It can be proven that the following is an equivalent definition of a local period
|
||||
for a factorization (u, v): any positive integer r such that x[i] == x[i+r] for
|
||||
all i such that |u| - r <= i <= |u| - 1 and such that both x[i] and x[i+r] are
|
||||
defined. (i.e. i > 0 and i + r < |x|).
|
||||
|
||||
Using the above reformulation, it is easy to prove that
|
||||
|
||||
1 <= local_period(u, v) <= period(uv)
|
||||
|
||||
A factorization (u, v) of x such that local_period(u,v) = period(x) is called a
|
||||
*critical factorization*.
|
||||
|
||||
The algorithm hinges on the following theorem, which is stated without proof:
|
||||
|
||||
**Critical Factorization Theorem** Any word x has at least one critical
|
||||
factorization (u, v) such that |u| < period(x).
|
||||
|
||||
The purpose of maximal_suffix is to find such a critical factorization.
|
||||
|
||||
*/
|
||||
impl TwoWaySearcher {
|
||||
fn new(needle: &[u8]) -> TwoWaySearcher {
|
||||
let (crit_pos1, period1) = TwoWaySearcher::maximal_suffix(needle, false);
|
||||
|
@ -436,15 +504,19 @@ impl TwoWaySearcher {
|
|||
period = period2;
|
||||
}
|
||||
|
||||
// This isn't in the original algorithm, as far as I'm aware.
|
||||
let byteset = needle.iter()
|
||||
.fold(0, |a, &b| (1 << ((b & 0x3f) as uint)) | a);
|
||||
|
||||
// The logic here (calculating crit_pos and period, the final if statement to see which
|
||||
// period to use for the TwoWaySearcher) is essentially an implementation of the
|
||||
// "small-period" function from the paper (p. 670)
|
||||
// A particularly readable explanation of what's going on here can be found
|
||||
// in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically
|
||||
// see the code for "Algorithm CP" on p. 323.
|
||||
//
|
||||
// In the paper they check whether `needle.slice_to(crit_pos)` is a suffix of
|
||||
// `needle.slice(crit_pos, crit_pos + period)`, which is precisely what this does
|
||||
// What's going on is we have some critical factorization (u, v) of the
|
||||
// needle, and we want to determine whether u is a suffix of
|
||||
// v.slice_to(period). If it is, we use "Algorithm CP1". Otherwise we use
|
||||
// "Algorithm CP2", which is optimized for when the period of the needle
|
||||
// is large.
|
||||
if needle.slice_to(crit_pos) == needle.slice(period, period + crit_pos) {
|
||||
TwoWaySearcher {
|
||||
crit_pos: crit_pos,
|
||||
|
@ -466,6 +538,11 @@ impl TwoWaySearcher {
|
|||
}
|
||||
}
|
||||
|
||||
// One of the main ideas of Two-Way is that we factorize the needle into
|
||||
// two halves, (u, v), and begin trying to find v in the haystack by scanning
|
||||
// left to right. If v matches, we try to match u by scanning right to left.
|
||||
// How far we can jump when we encounter a mismatch is all based on the fact
|
||||
// that (u, v) is a critical factorization for the needle.
|
||||
#[inline]
|
||||
fn next(&mut self, haystack: &[u8], needle: &[u8], long_period: bool) -> Option<(uint, uint)> {
|
||||
'search: loop {
|
||||
|
@ -520,9 +597,9 @@ impl TwoWaySearcher {
|
|||
}
|
||||
}
|
||||
|
||||
// returns (i, p) where i is the "critical position", the starting index of
|
||||
// of maximal suffix, and p is the period of the suffix
|
||||
// see p. 668 of the paper
|
||||
// Computes a critical factorization (u, v) of `arr`.
|
||||
// Specifically, returns (i, p), where i is the starting index of v in some
|
||||
// critical factorization (u, v) and p = period(v)
|
||||
#[inline]
|
||||
fn maximal_suffix(arr: &[u8], reversed: bool) -> (uint, uint) {
|
||||
let mut left = -1; // Corresponds to i in the paper
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue