1
Fork 0

Rollup merge of #131473 - workingjubilee:move-that-abi-up, r=saethlin

compiler: `{TyAnd,}Layout` comes home

The `Layout` and `TyAndLayout` types are heavily abstract and have no particular target-specific qualities, though we do use them to answer questions particular to targets. We can keep it that way if we simply move them out of `rustc_target` and into `rustc_abi`. They bring a small entourage of connected types with them, but that's fine.

This will allow us to strengthen a few abstraction barriers over time and thus make the notoriously gnarly layout code easier to refactor. For now, we don't need to worry about that and deliberately use reexports to minimize this particular diff.
This commit is contained in:
Matthias Krüger 2024-10-14 06:04:28 +02:00 committed by GitHub
commit cb140dcb00
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
32 changed files with 285 additions and 261 deletions

View file

@ -1,277 +0,0 @@
use std::fmt;
use std::ops::Deref;
use Float::*;
use Primitive::*;
use rustc_data_structures::intern::Interned;
use rustc_macros::HashStable_Generic;
use crate::json::{Json, ToJson};
pub mod call;
// Explicitly import `Float` to avoid ambiguity with `Primitive::Float`.
pub use rustc_abi::{Float, *};
impl ToJson for Endian {
fn to_json(&self) -> Json {
self.as_str().to_json()
}
}
rustc_index::newtype_index! {
/// The *source-order* index of a field in a variant.
///
/// This is how most code after type checking refers to fields, rather than
/// using names (as names have hygiene complications and more complex lookup).
///
/// Particularly for `repr(Rust)` types, this may not be the same as *layout* order.
/// (It is for `repr(C)` `struct`s, however.)
///
/// For example, in the following types,
/// ```rust
/// # enum Never {}
/// # #[repr(u16)]
/// enum Demo1 {
/// Variant0 { a: Never, b: i32 } = 100,
/// Variant1 { c: u8, d: u64 } = 10,
/// }
/// struct Demo2 { e: u8, f: u16, g: u8 }
/// ```
/// `b` is `FieldIdx(1)` in `VariantIdx(0)`,
/// `d` is `FieldIdx(1)` in `VariantIdx(1)`, and
/// `f` is `FieldIdx(1)` in `VariantIdx(0)`.
#[derive(HashStable_Generic)]
#[encodable]
#[orderable]
pub struct FieldIdx {}
}
rustc_index::newtype_index! {
/// The *source-order* index of a variant in a type.
///
/// For enums, these are always `0..variant_count`, regardless of any
/// custom discriminants that may have been defined, and including any
/// variants that may end up uninhabited due to field types. (Some of the
/// variants may not be present in a monomorphized ABI [`Variants`], but
/// those skipped variants are always counted when determining the *index*.)
///
/// `struct`s, `tuples`, and `unions`s are considered to have a single variant
/// with variant index zero, aka [`FIRST_VARIANT`].
#[derive(HashStable_Generic)]
#[encodable]
#[orderable]
pub struct VariantIdx {
/// Equivalent to `VariantIdx(0)`.
const FIRST_VARIANT = 0;
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable_Generic)]
#[rustc_pass_by_value]
pub struct Layout<'a>(pub Interned<'a, LayoutS<FieldIdx, VariantIdx>>);
impl<'a> fmt::Debug for Layout<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// See comment on `<LayoutS as Debug>::fmt` above.
self.0.0.fmt(f)
}
}
impl<'a> Deref for Layout<'a> {
type Target = &'a LayoutS<FieldIdx, VariantIdx>;
fn deref(&self) -> &&'a LayoutS<FieldIdx, VariantIdx> {
&self.0.0
}
}
impl<'a> Layout<'a> {
pub fn fields(self) -> &'a FieldsShape<FieldIdx> {
&self.0.0.fields
}
pub fn variants(self) -> &'a Variants<FieldIdx, VariantIdx> {
&self.0.0.variants
}
pub fn abi(self) -> Abi {
self.0.0.abi
}
pub fn largest_niche(self) -> Option<Niche> {
self.0.0.largest_niche
}
pub fn align(self) -> AbiAndPrefAlign {
self.0.0.align
}
pub fn size(self) -> Size {
self.0.0.size
}
pub fn max_repr_align(self) -> Option<Align> {
self.0.0.max_repr_align
}
pub fn unadjusted_abi_align(self) -> Align {
self.0.0.unadjusted_abi_align
}
/// Whether the layout is from a type that implements [`std::marker::PointerLike`].
///
/// Currently, that means that the type is pointer-sized, pointer-aligned,
/// and has a initialized (non-union), scalar ABI.
pub fn is_pointer_like(self, data_layout: &TargetDataLayout) -> bool {
self.size() == data_layout.pointer_size
&& self.align().abi == data_layout.pointer_align.abi
&& matches!(self.abi(), Abi::Scalar(Scalar::Initialized { .. }))
}
}
/// The layout of a type, alongside the type itself.
/// Provides various type traversal APIs (e.g., recursing into fields).
///
/// Note that the layout is NOT guaranteed to always be identical
/// to that obtained from `layout_of(ty)`, as we need to produce
/// layouts for which Rust types do not exist, such as enum variants
/// or synthetic fields of enums (i.e., discriminants) and wide pointers.
#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable_Generic)]
pub struct TyAndLayout<'a, Ty> {
pub ty: Ty,
pub layout: Layout<'a>,
}
impl<'a, Ty: fmt::Display> fmt::Debug for TyAndLayout<'a, Ty> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Print the type in a readable way, not its debug representation.
f.debug_struct("TyAndLayout")
.field("ty", &format_args!("{}", self.ty))
.field("layout", &self.layout)
.finish()
}
}
impl<'a, Ty> Deref for TyAndLayout<'a, Ty> {
type Target = &'a LayoutS<FieldIdx, VariantIdx>;
fn deref(&self) -> &&'a LayoutS<FieldIdx, VariantIdx> {
&self.layout.0.0
}
}
/// Trait that needs to be implemented by the higher-level type representation
/// (e.g. `rustc_middle::ty::Ty`), to provide `rustc_target::abi` functionality.
pub trait TyAbiInterface<'a, C>: Sized + std::fmt::Debug {
fn ty_and_layout_for_variant(
this: TyAndLayout<'a, Self>,
cx: &C,
variant_index: VariantIdx,
) -> TyAndLayout<'a, Self>;
fn ty_and_layout_field(this: TyAndLayout<'a, Self>, cx: &C, i: usize) -> TyAndLayout<'a, Self>;
fn ty_and_layout_pointee_info_at(
this: TyAndLayout<'a, Self>,
cx: &C,
offset: Size,
) -> Option<PointeeInfo>;
fn is_adt(this: TyAndLayout<'a, Self>) -> bool;
fn is_never(this: TyAndLayout<'a, Self>) -> bool;
fn is_tuple(this: TyAndLayout<'a, Self>) -> bool;
fn is_unit(this: TyAndLayout<'a, Self>) -> bool;
fn is_transparent(this: TyAndLayout<'a, Self>) -> bool;
}
impl<'a, Ty> TyAndLayout<'a, Ty> {
pub fn for_variant<C>(self, cx: &C, variant_index: VariantIdx) -> Self
where
Ty: TyAbiInterface<'a, C>,
{
Ty::ty_and_layout_for_variant(self, cx, variant_index)
}
pub fn field<C>(self, cx: &C, i: usize) -> Self
where
Ty: TyAbiInterface<'a, C>,
{
Ty::ty_and_layout_field(self, cx, i)
}
pub fn pointee_info_at<C>(self, cx: &C, offset: Size) -> Option<PointeeInfo>
where
Ty: TyAbiInterface<'a, C>,
{
Ty::ty_and_layout_pointee_info_at(self, cx, offset)
}
pub fn is_single_fp_element<C>(self, cx: &C) -> bool
where
Ty: TyAbiInterface<'a, C>,
C: HasDataLayout,
{
match self.abi {
Abi::Scalar(scalar) => matches!(scalar.primitive(), Float(F32 | F64)),
Abi::Aggregate { .. } => {
if self.fields.count() == 1 && self.fields.offset(0).bytes() == 0 {
self.field(cx, 0).is_single_fp_element(cx)
} else {
false
}
}
_ => false,
}
}
pub fn is_adt<C>(self) -> bool
where
Ty: TyAbiInterface<'a, C>,
{
Ty::is_adt(self)
}
pub fn is_never<C>(self) -> bool
where
Ty: TyAbiInterface<'a, C>,
{
Ty::is_never(self)
}
pub fn is_tuple<C>(self) -> bool
where
Ty: TyAbiInterface<'a, C>,
{
Ty::is_tuple(self)
}
pub fn is_unit<C>(self) -> bool
where
Ty: TyAbiInterface<'a, C>,
{
Ty::is_unit(self)
}
pub fn is_transparent<C>(self) -> bool
where
Ty: TyAbiInterface<'a, C>,
{
Ty::is_transparent(self)
}
/// Finds the one field that is not a 1-ZST.
/// Returns `None` if there are multiple non-1-ZST fields or only 1-ZST-fields.
pub fn non_1zst_field<C>(&self, cx: &C) -> Option<(usize, Self)>
where
Ty: TyAbiInterface<'a, C> + Copy,
{
let mut found = None;
for field_idx in 0..self.fields.count() {
let field = self.field(cx, field_idx);
if field.is_1zst() {
continue;
}
if found.is_some() {
// More than one non-1-ZST field.
return None;
}
found = Some((field_idx, field));
}
found
}
}

View file

@ -1,10 +1,11 @@
use std::fmt;
use std::str::FromStr;
pub use rustc_abi::{Reg, RegKind};
use rustc_macros::HashStable_Generic;
use rustc_span::Symbol;
use crate::abi::{self, Abi, Align, FieldsShape, HasDataLayout, Size, TyAbiInterface, TyAndLayout};
use crate::abi::{self, Abi, Align, HasDataLayout, Size, TyAbiInterface, TyAndLayout};
use crate::spec::{self, HasTargetSpec, HasWasmCAbiOpt, WasmCAbi};
mod aarch64;
@ -192,63 +193,6 @@ impl ArgAttributes {
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub enum RegKind {
Integer,
Float,
Vector,
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub struct Reg {
pub kind: RegKind,
pub size: Size,
}
macro_rules! reg_ctor {
($name:ident, $kind:ident, $bits:expr) => {
pub fn $name() -> Reg {
Reg { kind: RegKind::$kind, size: Size::from_bits($bits) }
}
};
}
impl Reg {
reg_ctor!(i8, Integer, 8);
reg_ctor!(i16, Integer, 16);
reg_ctor!(i32, Integer, 32);
reg_ctor!(i64, Integer, 64);
reg_ctor!(i128, Integer, 128);
reg_ctor!(f32, Float, 32);
reg_ctor!(f64, Float, 64);
}
impl Reg {
pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
let dl = cx.data_layout();
match self.kind {
RegKind::Integer => match self.size.bits() {
1 => dl.i1_align.abi,
2..=8 => dl.i8_align.abi,
9..=16 => dl.i16_align.abi,
17..=32 => dl.i32_align.abi,
33..=64 => dl.i64_align.abi,
65..=128 => dl.i128_align.abi,
_ => panic!("unsupported integer: {self:?}"),
},
RegKind::Float => match self.size.bits() {
16 => dl.f16_align.abi,
32 => dl.f32_align.abi,
64 => dl.f64_align.abi,
128 => dl.f128_align.abi,
_ => panic!("unsupported float: {self:?}"),
},
RegKind::Vector => dl.vector_align(self.size).abi,
}
}
}
/// An argument passed entirely registers with the
/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
@ -380,195 +324,6 @@ impl CastTarget {
}
}
/// Return value from the `homogeneous_aggregate` test function.
#[derive(Copy, Clone, Debug)]
pub enum HomogeneousAggregate {
/// Yes, all the "leaf fields" of this struct are passed in the
/// same way (specified in the `Reg` value).
Homogeneous(Reg),
/// There are no leaf fields at all.
NoData,
}
/// Error from the `homogeneous_aggregate` test function, indicating
/// there are distinct leaf fields passed in different ways,
/// or this is uninhabited.
#[derive(Copy, Clone, Debug)]
pub struct Heterogeneous;
impl HomogeneousAggregate {
/// If this is a homogeneous aggregate, returns the homogeneous
/// unit, else `None`.
pub fn unit(self) -> Option<Reg> {
match self {
HomogeneousAggregate::Homogeneous(reg) => Some(reg),
HomogeneousAggregate::NoData => None,
}
}
/// Try to combine two `HomogeneousAggregate`s, e.g. from two fields in
/// the same `struct`. Only succeeds if only one of them has any data,
/// or both units are identical.
fn merge(self, other: HomogeneousAggregate) -> Result<HomogeneousAggregate, Heterogeneous> {
match (self, other) {
(x, HomogeneousAggregate::NoData) | (HomogeneousAggregate::NoData, x) => Ok(x),
(HomogeneousAggregate::Homogeneous(a), HomogeneousAggregate::Homogeneous(b)) => {
if a != b {
return Err(Heterogeneous);
}
Ok(self)
}
}
}
}
impl<'a, Ty> TyAndLayout<'a, Ty> {
/// Returns `true` if this is an aggregate type (including a ScalarPair!)
fn is_aggregate(&self) -> bool {
match self.abi {
Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } => false,
Abi::ScalarPair(..) | Abi::Aggregate { .. } => true,
}
}
/// Returns `Homogeneous` if this layout is an aggregate containing fields of
/// only a single type (e.g., `(u32, u32)`). Such aggregates are often
/// special-cased in ABIs.
///
/// Note: We generally ignore 1-ZST fields when computing this value (see #56877).
///
/// This is public so that it can be used in unit tests, but
/// should generally only be relevant to the ABI details of
/// specific targets.
pub fn homogeneous_aggregate<C>(&self, cx: &C) -> Result<HomogeneousAggregate, Heterogeneous>
where
Ty: TyAbiInterface<'a, C> + Copy,
{
match self.abi {
Abi::Uninhabited => Err(Heterogeneous),
// The primitive for this algorithm.
Abi::Scalar(scalar) => {
let kind = match scalar.primitive() {
abi::Int(..) | abi::Pointer(_) => RegKind::Integer,
abi::Float(_) => RegKind::Float,
};
Ok(HomogeneousAggregate::Homogeneous(Reg { kind, size: self.size }))
}
Abi::Vector { .. } => {
assert!(!self.is_zst());
Ok(HomogeneousAggregate::Homogeneous(Reg {
kind: RegKind::Vector,
size: self.size,
}))
}
Abi::ScalarPair(..) | Abi::Aggregate { sized: true } => {
// Helper for computing `homogeneous_aggregate`, allowing a custom
// starting offset (used below for handling variants).
let from_fields_at =
|layout: Self,
start: Size|
-> Result<(HomogeneousAggregate, Size), Heterogeneous> {
let is_union = match layout.fields {
FieldsShape::Primitive => {
unreachable!("aggregates can't have `FieldsShape::Primitive`")
}
FieldsShape::Array { count, .. } => {
assert_eq!(start, Size::ZERO);
let result = if count > 0 {
layout.field(cx, 0).homogeneous_aggregate(cx)?
} else {
HomogeneousAggregate::NoData
};
return Ok((result, layout.size));
}
FieldsShape::Union(_) => true,
FieldsShape::Arbitrary { .. } => false,
};
let mut result = HomogeneousAggregate::NoData;
let mut total = start;
for i in 0..layout.fields.count() {
let field = layout.field(cx, i);
if field.is_1zst() {
// No data here and no impact on layout, can be ignored.
// (We might be able to also ignore all aligned ZST but that's less clear.)
continue;
}
if !is_union && total != layout.fields.offset(i) {
// This field isn't just after the previous one we considered, abort.
return Err(Heterogeneous);
}
result = result.merge(field.homogeneous_aggregate(cx)?)?;
// Keep track of the offset (without padding).
let size = field.size;
if is_union {
total = total.max(size);
} else {
total += size;
}
}
Ok((result, total))
};
let (mut result, mut total) = from_fields_at(*self, Size::ZERO)?;
match &self.variants {
abi::Variants::Single { .. } => {}
abi::Variants::Multiple { variants, .. } => {
// Treat enum variants like union members.
// HACK(eddyb) pretend the `enum` field (discriminant)
// is at the start of every variant (otherwise the gap
// at the start of all variants would disqualify them).
//
// NB: for all tagged `enum`s (which include all non-C-like
// `enum`s with defined FFI representation), this will
// match the homogeneous computation on the equivalent
// `struct { tag; union { variant1; ... } }` and/or
// `union { struct { tag; variant1; } ... }`
// (the offsets of variant fields should be identical
// between the two for either to be a homogeneous aggregate).
let variant_start = total;
for variant_idx in variants.indices() {
let (variant_result, variant_total) =
from_fields_at(self.for_variant(cx, variant_idx), variant_start)?;
result = result.merge(variant_result)?;
total = total.max(variant_total);
}
}
}
// There needs to be no padding.
if total != self.size {
Err(Heterogeneous)
} else {
match result {
HomogeneousAggregate::Homogeneous(_) => {
assert_ne!(total, Size::ZERO);
}
HomogeneousAggregate::NoData => {
assert_eq!(total, Size::ZERO);
}
}
Ok(result)
}
}
Abi::Aggregate { sized: false } => Err(Heterogeneous),
}
}
}
/// Information about how to pass an argument to,
/// or return a value from, a function, under some ABI.
#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]

View file

@ -134,3 +134,9 @@ impl ToJson for TargetMetadata {
})
}
}
impl ToJson for rustc_abi::Endian {
fn to_json(&self) -> Json {
self.as_str().to_json()
}
}

View file

@ -21,8 +21,8 @@
use std::path::{Path, PathBuf};
pub mod abi;
pub mod asm;
pub mod callconv;
pub mod json;
pub mod spec;
pub mod target_features;
@ -30,6 +30,15 @@ pub mod target_features;
#[cfg(test)]
mod tests;
pub mod abi {
pub(crate) use Float::*;
pub(crate) use Primitive::*;
// Explicitly import `Float` to avoid ambiguity with `Primitive::Float`.
pub use rustc_abi::{Float, *};
pub use crate::callconv as call;
}
pub use rustc_abi::HashStableContext;
/// The name of rustc's own place to organize libraries.