Rollup merge of #120958 - ShoyuVanilla:remove-subst, r=oli-obk

Dejargonize `subst`

In favor of #110793, replace almost every occurence of `subst` and `substitution` from rustc codes, but they still remains in subtrees under `src/tools/` like clippy and test codes (I'd like to replace them after this)
This commit is contained in:
Matthias Krüger 2024-02-12 23:18:54 +01:00 committed by GitHub
commit cb0d74be28
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
130 changed files with 576 additions and 543 deletions

View file

@ -576,7 +576,7 @@ pub(in crate::solve) fn predicates_for_object_candidate<'tcx>(
assert_eq!(
old_ty,
None,
"{} has two substitutions: {} and {}",
"{} has two generic parameters: {} and {}",
proj.projection_ty,
proj.term,
old_ty.unwrap()

View file

@ -192,11 +192,14 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
original_values: Vec<ty::GenericArg<'tcx>>,
response: CanonicalResponse<'tcx>,
) -> Result<(Certainty, Vec<Goal<'tcx, ty::Predicate<'tcx>>>), NoSolution> {
let substitution =
Self::compute_query_response_substitution(self.infcx, &original_values, &response);
let instantiation = Self::compute_query_response_instantiation_values(
self.infcx,
&original_values,
&response,
);
let Response { var_values, external_constraints, certainty } =
response.substitute(self.tcx(), &substitution);
response.instantiate(self.tcx(), &instantiation);
let nested_goals =
Self::unify_query_var_values(self.infcx, param_env, &original_values, var_values)?;
@ -209,10 +212,10 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
Ok((certainty, nested_goals))
}
/// This returns the substitutions to instantiate the bound variables of
/// This returns the canoncial variable values to instantiate the bound variables of
/// the canonical response. This depends on the `original_values` for the
/// bound variables.
fn compute_query_response_substitution<T: ResponseT<'tcx>>(
fn compute_query_response_instantiation_values<T: ResponseT<'tcx>>(
infcx: &InferCtxt<'tcx>,
original_values: &[ty::GenericArg<'tcx>],
response: &Canonical<'tcx, T>,
@ -369,10 +372,10 @@ impl<'tcx> inspect::ProofTreeBuilder<'tcx> {
original_values: &[ty::GenericArg<'tcx>],
state: inspect::CanonicalState<'tcx, T>,
) -> Result<(Vec<Goal<'tcx, ty::Predicate<'tcx>>>, T), NoSolution> {
let substitution =
EvalCtxt::compute_query_response_substitution(infcx, original_values, &state);
let instantiation =
EvalCtxt::compute_query_response_instantiation_values(infcx, original_values, &state);
let inspect::State { var_values, data } = state.substitute(infcx.tcx, &substitution);
let inspect::State { var_values, data } = state.instantiate(infcx.tcx, &instantiation);
let nested_goals =
EvalCtxt::unify_query_var_values(infcx, param_env, original_values, var_values)?;

View file

@ -312,8 +312,8 @@ fn rematch_unsize<'tcx>(
let a_tail_ty = tail_field_ty.instantiate(tcx, a_args);
let b_tail_ty = tail_field_ty.instantiate(tcx, b_args);
// Substitute just the unsizing params from B into A. The type after
// this substitution must be equal to B. This is so we don't unsize
// Instantiate just the unsizing params from B into A. The type after
// this instantiation must be equal to B. This is so we don't unsize
// unrelated type parameters.
let new_a_args = tcx.mk_args_from_iter(
a_args
@ -349,7 +349,7 @@ fn rematch_unsize<'tcx>(
let (a_last_ty, a_rest_tys) = a_tys.split_last().unwrap();
let b_last_ty = b_tys.last().unwrap();
// Substitute just the tail field of B., and require that they're equal.
// Instantiate just the tail field of B., and require that they're equal.
let unsized_a_ty =
Ty::new_tup_from_iter(tcx, a_rest_tys.iter().chain([b_last_ty]).copied());
nested.extend(

View file

@ -1,7 +1,7 @@
//! Computes a normalizes-to (projection) goal for inherent associated types,
//! `#![feature(inherent_associated_type)]`. Since astconv already determines
//! which impl the IAT is being projected from, we just:
//! 1. instantiate substs,
//! 1. instantiate generic parameters,
//! 2. equate the self type, and
//! 3. instantiate and register where clauses.
use rustc_middle::traits::solve::{Certainty, Goal, GoalSource, QueryResult};
@ -19,21 +19,21 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
let expected = goal.predicate.term.ty().expect("inherent consts are treated separately");
let impl_def_id = tcx.parent(inherent.def_id);
let impl_substs = self.fresh_args_for_item(impl_def_id);
let impl_args = self.fresh_args_for_item(impl_def_id);
// Equate impl header and add impl where clauses
self.eq(
goal.param_env,
inherent.self_ty(),
tcx.type_of(impl_def_id).instantiate(tcx, impl_substs),
tcx.type_of(impl_def_id).instantiate(tcx, impl_args),
)?;
// Equate IAT with the RHS of the project goal
let inherent_substs = inherent.rebase_inherent_args_onto_impl(impl_substs, tcx);
let inherent_args = inherent.rebase_inherent_args_onto_impl(impl_args, tcx);
self.eq(
goal.param_env,
expected,
tcx.type_of(inherent.def_id).instantiate(tcx, inherent_substs),
tcx.type_of(inherent.def_id).instantiate(tcx, inherent_args),
)
.expect("expected goal term to be fully unconstrained");
@ -46,7 +46,7 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
self.add_goals(
GoalSource::Misc,
tcx.predicates_of(inherent.def_id)
.instantiate(tcx, inherent_substs)
.instantiate(tcx, inherent_args)
.into_iter()
.map(|(pred, _)| goal.with(tcx, pred)),
);

View file

@ -877,8 +877,8 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
let a_tail_ty = tail_field_ty.instantiate(tcx, a_args);
let b_tail_ty = tail_field_ty.instantiate(tcx, b_args);
// Substitute just the unsizing params from B into A. The type after
// this substitution must be equal to B. This is so we don't unsize
// Instantiate just the unsizing params from B into A. The type after
// this instantiation must be equal to B. This is so we don't unsize
// unrelated type parameters.
let new_a_args = tcx.mk_args_from_iter(
a_args
@ -927,7 +927,7 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
let (&a_last_ty, a_rest_tys) = a_tys.split_last().unwrap();
let &b_last_ty = b_tys.last().unwrap();
// Substitute just the tail field of B., and require that they're equal.
// Instantiate just the tail field of B., and require that they're equal.
let unsized_a_ty =
Ty::new_tup_from_iter(tcx, a_rest_tys.iter().copied().chain([b_last_ty]));
self.eq(goal.param_env, unsized_a_ty, b_ty)?;

View file

@ -84,7 +84,7 @@ impl TrackAmbiguityCauses {
/// If there are types that satisfy both impls, returns `Some`
/// with a suitably-freshened `ImplHeader` with those types
/// substituted. Otherwise, returns `None`.
/// instantiated. Otherwise, returns `None`.
#[instrument(skip(tcx, skip_leak_check), level = "debug")]
pub fn overlapping_impls(
tcx: TyCtxt<'_>,
@ -561,21 +561,21 @@ pub fn trait_ref_is_knowable<'tcx, E: Debug>(
) -> Result<Result<(), Conflict>, E> {
if orphan_check_trait_ref(trait_ref, InCrate::Remote, &mut lazily_normalize_ty)?.is_ok() {
// A downstream or cousin crate is allowed to implement some
// substitution of this trait-ref.
// generic parameters of this trait-ref.
return Ok(Err(Conflict::Downstream));
}
if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
// This is a local or fundamental trait, so future-compatibility
// is no concern. We know that downstream/cousin crates are not
// allowed to implement a substitution of this trait ref, which
// means impls could only come from dependencies of this crate,
// which we already know about.
// allowed to implement a generic parameter of this trait ref,
// which means impls could only come from dependencies of this
// crate, which we already know about.
return Ok(Ok(()));
}
// This is a remote non-fundamental trait, so if another crate
// can be the "final owner" of a substitution of this trait-ref,
// can be the "final owner" of the generic parameters of this trait-ref,
// they are allowed to implement it future-compatibly.
//
// However, if we are a final owner, then nobody else can be,
@ -628,8 +628,8 @@ pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanChe
///
/// The current rule is that a trait-ref orphan checks in a crate C:
///
/// 1. Order the parameters in the trait-ref in subst order - Self first,
/// others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
/// 1. Order the parameters in the trait-ref in generic parameters order
/// - Self first, others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
/// 2. Of these type parameters, there is at least one type parameter
/// in which, walking the type as a tree, you can reach a type local
/// to C where all types in-between are fundamental types. Call the
@ -696,7 +696,7 @@ pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanChe
///
/// Because we never perform negative reasoning generically (coherence does
/// not involve type parameters), this can be interpreted as doing the full
/// orphan check (using InCrate::Local mode), substituting non-local known
/// orphan check (using InCrate::Local mode), instantiating non-local known
/// types for all inference variables.
///
/// This allows for crates to future-compatibly add impls as long as they

View file

@ -242,7 +242,7 @@ impl<'tcx> InferCtxtExt<'tcx> for InferCtxt<'tcx> {
self.tcx.lang_items().fn_once_trait(),
] {
let Some(trait_def_id) = trait_def_id else { continue };
// Make a fresh inference variable so we can determine what the substitutions
// Make a fresh inference variable so we can determine what the generic parameters
// of the trait are.
let var = self.next_ty_var(TypeVariableOrigin {
span: DUMMY_SP,

View file

@ -814,7 +814,7 @@ impl<'tcx> OnUnimplementedFormatString {
tcx.dcx(),
self.span,
E0231,
"only named substitution parameters are allowed"
"only named generic parameters are allowed"
)
.emit();
result = Err(reported);

View file

@ -635,7 +635,7 @@ impl<'tcx> TypeErrCtxtExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
| hir::Node::ImplItem(hir::ImplItem { generics, .. })
if param_ty =>
{
// We skip the 0'th subst (self) because we do not want
// We skip the 0'th arg (self) because we do not want
// to consider the predicate as not suggestible if the
// self type is an arg position `impl Trait` -- instead,
// we handle that by adding ` + Bound` below.
@ -2343,7 +2343,7 @@ impl<'tcx> TypeErrCtxtExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
err: &mut DiagnosticBuilder<'tcx>,
) {
// First, look for an `ExprBindingObligation`, which means we can get
// the unsubstituted predicate list of the called function. And check
// the uninstantiated predicate list of the called function. And check
// that the predicate that we failed to satisfy is a `Fn`-like trait.
if let ObligationCauseCode::ExprBindingObligation(def_id, _, _, idx) = cause
&& let predicates = self.tcx.predicates_of(def_id).instantiate_identity(self.tcx)

View file

@ -2422,16 +2422,16 @@ impl<'tcx> InferCtxtPrivExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
// known, since we don't dispatch based on region
// relationships.
// Pick the first substitution that still contains inference variables as the one
// Pick the first generic parameter that still contains inference variables as the one
// we're going to emit an error for. If there are none (see above), fall back to
// a more general error.
let subst = data.trait_ref.args.iter().find(|s| s.has_non_region_infer());
let arg = data.trait_ref.args.iter().find(|s| s.has_non_region_infer());
let mut err = if let Some(subst) = subst {
let mut err = if let Some(arg) = arg {
self.emit_inference_failure_err(
obligation.cause.body_id,
span,
subst,
arg,
ErrorCode::E0283,
true,
)
@ -2469,9 +2469,9 @@ impl<'tcx> InferCtxtPrivExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
}
if ambiguities.len() > 1 && ambiguities.len() < 10 && has_non_region_infer {
if let Some(e) = self.tainted_by_errors()
&& subst.is_none()
&& arg.is_none()
{
// If `subst.is_none()`, then this is probably two param-env
// If `arg.is_none()`, then this is probably two param-env
// candidates or impl candidates that are equal modulo lifetimes.
// Therefore, if we've already emitted an error, just skip this
// one, since it's not particularly actionable.
@ -2505,7 +2505,7 @@ impl<'tcx> InferCtxtPrivExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
self.suggest_fully_qualified_path(&mut err, def_id, span, trait_ref.def_id());
}
if let Some(ty::GenericArgKind::Type(_)) = subst.map(|subst| subst.unpack())
if let Some(ty::GenericArgKind::Type(_)) = arg.map(|arg| arg.unpack())
&& let Some(body_id) =
self.tcx.hir().maybe_body_owned_by(obligation.cause.body_id)
{
@ -2683,23 +2683,23 @@ impl<'tcx> InferCtxtPrivExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
// other `Foo` impls are incoherent.
return guar;
}
let subst = data
let arg = data
.projection_ty
.args
.iter()
.chain(Some(data.term.into_arg()))
.find(|g| g.has_non_region_infer());
if let Some(subst) = subst {
if let Some(arg) = arg {
self.emit_inference_failure_err(
obligation.cause.body_id,
span,
subst,
arg,
ErrorCode::E0284,
true,
)
.with_note(format!("cannot satisfy `{predicate}`"))
} else {
// If we can't find a substitution, just print a generic error
// If we can't find a generic parameter, just print a generic error
struct_span_code_err!(
self.dcx(),
span,
@ -2718,18 +2718,18 @@ impl<'tcx> InferCtxtPrivExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
if let Some(e) = self.tainted_by_errors() {
return e;
}
let subst = data.walk().find(|g| g.is_non_region_infer());
if let Some(subst) = subst {
let arg = data.walk().find(|g| g.is_non_region_infer());
if let Some(arg) = arg {
let err = self.emit_inference_failure_err(
obligation.cause.body_id,
span,
subst,
arg,
ErrorCode::E0284,
true,
);
err
} else {
// If we can't find a substitution, just print a generic error
// If we can't find a generic parameter, just print a generic error
struct_span_code_err!(
self.dcx(),
span,

View file

@ -443,11 +443,11 @@ pub fn impossible_predicates<'tcx>(tcx: TyCtxt<'tcx>, predicates: Vec<ty::Clause
result
}
fn subst_and_check_impossible_predicates<'tcx>(
fn instantiate_and_check_impossible_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
key: (DefId, GenericArgsRef<'tcx>),
) -> bool {
debug!("subst_and_check_impossible_predicates(key={:?})", key);
debug!("instantiate_and_check_impossible_predicates(key={:?})", key);
let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;
@ -461,7 +461,7 @@ fn subst_and_check_impossible_predicates<'tcx>(
predicates.retain(|predicate| !predicate.has_param());
let result = impossible_predicates(tcx, predicates);
debug!("subst_and_check_impossible_predicates(key={:?}) = {:?}", key, result);
debug!("instantiate_and_check_impossible_predicates(key={:?}) = {:?}", key, result);
result
}
@ -548,7 +548,7 @@ pub fn provide(providers: &mut Providers) {
*providers = Providers {
specialization_graph_of: specialize::specialization_graph_provider,
specializes: specialize::specializes,
subst_and_check_impossible_predicates,
instantiate_and_check_impossible_predicates,
check_tys_might_be_eq: misc::check_tys_might_be_eq,
is_impossible_associated_item,
..*providers

View file

@ -263,7 +263,7 @@ fn predicates_reference_self(
predicates
.predicates
.iter()
.map(|&(predicate, sp)| (predicate.subst_supertrait(tcx, &trait_ref), sp))
.map(|&(predicate, sp)| (predicate.instantiate_supertrait(tcx, &trait_ref), sp))
.filter_map(|predicate| predicate_references_self(tcx, predicate))
.collect()
}
@ -607,7 +607,7 @@ fn virtual_call_violations_for_method<'tcx>(
errors
}
/// Performs a type substitution to produce the version of `receiver_ty` when `Self = self_ty`.
/// Performs a type instantiation to produce the version of `receiver_ty` when `Self = self_ty`.
/// For example, for `receiver_ty = Rc<Self>` and `self_ty = Foo`, returns `Rc<Foo>`.
fn receiver_for_self_ty<'tcx>(
tcx: TyCtxt<'tcx>,
@ -682,7 +682,7 @@ fn object_ty_for_trait<'tcx>(
/// ```
///
/// where `Foo[X => Y]` means "the same type as `Foo`, but with `X` replaced with `Y`"
/// (substitution notation).
/// (instantiation notation).
///
/// Some examples of receiver types and their required obligation:
/// - `&'a mut self` requires `&'a mut Self: DispatchFromDyn<&'a mut dyn Trait>`,

View file

@ -266,7 +266,7 @@ pub(super) fn poly_project_and_unify_type<'cx, 'tcx>(
// universe just created. Otherwise, we can end up with something like `for<'a> I: 'a`,
// which isn't quite what we want. Ideally, we want either an implied
// `for<'a where I: 'a> I: 'a` or we want to "lazily" check these hold when we
// substitute concrete regions. There is design work to be done here; until then,
// instantiate concrete regions. There is design work to be done here; until then,
// however, this allows experimenting potential GAT features without running into
// well-formedness issues.
let new_obligations = obligations
@ -1115,7 +1115,7 @@ impl<'tcx> TypeFolder<TyCtxt<'tcx>> for PlaceholderReplacer<'_, 'tcx> {
/// as Trait>::Item`. The result is always a type (and possibly
/// additional obligations). If ambiguity arises, which implies that
/// there are unresolved type variables in the projection, we will
/// substitute a fresh type variable `$X` and generate a new
/// instantiate it with a fresh type variable `$X` and generate a new
/// obligation `<T as Trait>::Item == $X` for later.
pub fn normalize_projection_type<'a, 'b, 'tcx>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
@ -1400,7 +1400,7 @@ pub fn normalize_inherent_projection<'a, 'b, 'tcx>(
cause.span,
cause.body_id,
// FIXME(inherent_associated_types): Since we can't pass along the self type to the
// cause code, inherent projections will be printed with identity substitutions in
// cause code, inherent projections will be printed with identity instantiation in
// diagnostics which is not ideal.
// Consider creating separate cause codes for this specific situation.
if span.is_dummy() {

View file

@ -116,7 +116,7 @@ fn relate_mir_and_user_args<'tcx>(
ocx.register_obligation(Obligation::new(tcx, cause, param_env, instantiated_predicate));
}
// Now prove the well-formedness of `def_id` with `substs`.
// Now prove the well-formedness of `def_id` with `args`.
// Note for some items, proving the WF of `ty` is not sufficient because the
// well-formedness of an item may depend on the WF of gneneric args not present in the
// item's type. Currently this is true for associated consts, e.g.:

View file

@ -170,7 +170,7 @@ pub fn compute_implied_outlives_bounds_compat_inner<'tcx>(
}
// Compute the obligations for `arg` to be well-formed. If `arg` is
// an unresolved inference variable, just substituted an empty set
// an unresolved inference variable, just instantiated an empty set
// -- because the return type here is going to be things we *add*
// to the environment, it's always ok for this set to be smaller
// than the ultimate set. (Note: normally there won't be

View file

@ -557,7 +557,7 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
obligation.predicate.def_id(),
obligation.predicate.skip_binder().trait_ref.self_ty(),
|impl_def_id| {
// Before we create the substitutions and everything, first
// Before we create the generic parameters and everything, first
// consider a "quick reject". This avoids creating more types
// and so forth that we need to.
let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();

View file

@ -444,7 +444,7 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
) -> ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>> {
debug!(?obligation, ?impl_def_id, "confirm_impl_candidate");
// First, create the substitutions by matching the impl again,
// First, create the generic parameters by matching the impl again,
// this time not in a probe.
let args = self.rematch_impl(impl_def_id, obligation);
debug!(?args, "impl args");
@ -585,7 +585,7 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
// higher-ranked things.
// Prevent, e.g., `dyn Iterator<Item = str>`.
for bound in self.tcx().item_bounds(assoc_type).transpose_iter() {
let subst_bound = if defs.count() == 0 {
let arg_bound = if defs.count() == 0 {
bound.instantiate(tcx, trait_predicate.trait_ref.args)
} else {
let mut args = smallvec::SmallVec::with_capacity(defs.count());
@ -649,7 +649,7 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
subst_bound,
arg_bound,
&mut nested,
);
nested.push(obligation.with(tcx, normalized_bound));

View file

@ -1684,7 +1684,7 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
/// Return `Yes` if the obligation's predicate type applies to the env_predicate, and
/// `No` if it does not. Return `Ambiguous` in the case that the projection type is a GAT,
/// and applying this env_predicate constrains any of the obligation's GAT substitutions.
/// and applying this env_predicate constrains any of the obligation's GAT parameters.
///
/// This behavior is a somewhat of a hack to prevent over-constraining inference variables
/// in cases like #91762.
@ -2681,7 +2681,7 @@ impl<'tcx> SelectionContext<'_, 'tcx> {
}
/// Returns the obligations that are implied by instantiating an
/// impl or trait. The obligations are substituted and fully
/// impl or trait. The obligations are instantiated and fully
/// normalized. This is used when confirming an impl or default
/// impl.
#[instrument(level = "debug", skip(self, cause, param_env))]
@ -2706,7 +2706,7 @@ impl<'tcx> SelectionContext<'_, 'tcx> {
// U: Iterator, U: Sized,
// V: Iterator, V: Sized,
// <U as Iterator>::Item: Copy
// When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
// When we instantiate, say, `V => IntoIter<u32>, U => $0`, the last
// obligation will normalize to `<$0 as Iterator>::Item = $1` and
// `$1: Copy`, so we must ensure the obligations are emitted in
// that order.

View file

@ -41,17 +41,17 @@ pub struct OverlapError<'tcx> {
pub involves_placeholder: bool,
}
/// Given a subst for the requested impl, translate it to a subst
/// Given the generic parameters for the requested impl, translate it to the generic parameters
/// appropriate for the actual item definition (whether it be in that impl,
/// a parent impl, or the trait).
///
/// When we have selected one impl, but are actually using item definitions from
/// a parent impl providing a default, we need a way to translate between the
/// type parameters of the two impls. Here the `source_impl` is the one we've
/// selected, and `source_args` is a substitution of its generics.
/// selected, and `source_args` is its generic parameters.
/// And `target_node` is the impl/trait we're actually going to get the
/// definition from. The resulting substitution will map from `target_node`'s
/// generics to `source_impl`'s generics as instantiated by `source_subst`.
/// definition from. The resulting instantiation will map from `target_node`'s
/// generics to `source_impl`'s generics as instantiated by `source_args`.
///
/// For example, consider the following scenario:
///
@ -62,7 +62,7 @@ pub struct OverlapError<'tcx> {
/// ```
///
/// Suppose we have selected "source impl" with `V` instantiated with `u32`.
/// This function will produce a substitution with `T` and `U` both mapping to `u32`.
/// This function will produce an instantiation with `T` and `U` both mapping to `u32`.
///
/// where-clauses add some trickiness here, because they can be used to "define"
/// an argument indirectly:
@ -72,7 +72,7 @@ pub struct OverlapError<'tcx> {
/// where I: Iterator<Item = &'a T>, T: Clone
/// ```
///
/// In a case like this, the substitution for `T` is determined indirectly,
/// In a case like this, the instantiation for `T` is determined indirectly,
/// through associated type projection. We deal with such cases by using
/// *fulfillment* to relate the two impls, requiring that all projections are
/// resolved.
@ -109,7 +109,7 @@ pub fn translate_args_with_cause<'tcx>(
let source_trait_ref =
infcx.tcx.impl_trait_ref(source_impl).unwrap().instantiate(infcx.tcx, source_args);
// translate the Self and Param parts of the substitution, since those
// translate the Self and Param parts of the generic parameters, since those
// vary across impls
let target_args = match target_node {
specialization_graph::Node::Impl(target_impl) => {
@ -121,8 +121,8 @@ pub fn translate_args_with_cause<'tcx>(
fulfill_implication(infcx, param_env, source_trait_ref, source_impl, target_impl, cause)
.unwrap_or_else(|()| {
bug!(
"When translating substitutions from {source_impl:?} to {target_impl:?}, \
the expected specialization failed to hold"
"When translating generic parameters from {source_impl:?} to \
{target_impl:?}, the expected specialization failed to hold"
)
})
}
@ -200,7 +200,7 @@ pub(super) fn specializes(tcx: TyCtxt<'_>, (impl1_def_id, impl2_def_id): (DefId,
}
/// Attempt to fulfill all obligations of `target_impl` after unification with
/// `source_trait_ref`. If successful, returns a substitution for *all* the
/// `source_trait_ref`. If successful, returns the generic parameters for *all* the
/// generics of `target_impl`, including both those needed to unify with
/// `source_trait_ref` and those whose identity is determined via a where
/// clause in the impl.
@ -247,7 +247,7 @@ fn fulfill_implication<'tcx>(
};
// Needs to be `in_snapshot` because this function is used to rebase
// substitutions, which may happen inside of a select within a probe.
// generic parameters, which may happen inside of a select within a probe.
let ocx = ObligationCtxt::new(infcx);
// attempt to prove all of the predicates for impl2 given those for impl1
// (which are packed up in penv)
@ -269,7 +269,7 @@ fn fulfill_implication<'tcx>(
debug!("fulfill_implication: an impl for {:?} specializes {:?}", source_trait, target_trait);
// Now resolve the *substitution* we built for the target earlier, replacing
// Now resolve the *generic parameters* we built for the target earlier, replacing
// the inference variables inside with whatever we got from fulfillment.
Ok(infcx.resolve_vars_if_possible(target_args))
}

View file

@ -128,7 +128,7 @@ impl<'tcx> TraitAliasExpander<'tcx> {
debug!(?predicates);
let items = predicates.predicates.iter().rev().filter_map(|(pred, span)| {
pred.subst_supertrait(tcx, &trait_ref)
pred.instantiate_supertrait(tcx, &trait_ref)
.as_trait_clause()
.map(|trait_ref| item.clone_and_push(trait_ref.map_bound(|t| t.trait_ref), *span))
});

View file

@ -124,7 +124,7 @@ fn prepare_vtable_segments_inner<'tcx, T>(
.predicates
.into_iter()
.filter_map(move |(pred, _)| {
pred.subst_supertrait(tcx, &inner_most_trait_ref).as_trait_clause()
pred.instantiate_supertrait(tcx, &inner_most_trait_ref).as_trait_clause()
});
// Find an unvisited supertrait

View file

@ -380,7 +380,7 @@ impl<'a, 'tcx> WfPredicates<'a, 'tcx> {
.filter(|(_, arg)| !arg.has_escaping_bound_vars())
.map(|(i, arg)| {
let mut cause = traits::ObligationCause::misc(self.span, self.body_id);
// The first subst is the self ty - use the correct span for it.
// The first arg is the self ty - use the correct span for it.
if i == 0 {
if let Some(hir::ItemKind::Impl(hir::Impl { self_ty, .. })) =
item.map(|i| &i.kind)