1
Fork 0

Implement midpoint for all floating point f32 and f64

This commit is contained in:
Loïc BRANSTETT 2021-12-17 20:01:19 +01:00 committed by Urgau
parent 1a72d7c7c4
commit bf73234d92
3 changed files with 125 additions and 3 deletions

View file

@ -940,6 +940,42 @@ impl f32 {
}
}
/// Calculates the middle point of `self` and `rhs`.
///
/// This returns NaN when *either* argument is NaN or if a combination of
/// +inf and -inf is provided as arguments.
///
/// # Examples
///
/// ```
/// #![feature(num_midpoint)]
/// assert_eq!(1f32.midpoint(4.0), 2.5);
/// assert_eq!((-5.5f32).midpoint(8.0), 1.25);
/// ```
#[unstable(feature = "num_midpoint", issue = "110840")]
pub fn midpoint(self, other: f32) -> f32 {
const LO: f32 = f32::MIN_POSITIVE * 2.;
const HI: f32 = f32::MAX / 2.;
let (a, b) = (self, other);
let abs_a = a.abs_private();
let abs_b = b.abs_private();
if abs_a <= HI && abs_b <= HI {
// Overflow is impossible
(a + b) / 2.
} else if abs_a < LO {
// Not safe to halve a
a + (b / 2.)
} else if abs_b < LO {
// Not safe to halve b
(a / 2.) + b
} else {
// Not safe to halve a and b
(a / 2.) + (b / 2.)
}
}
/// Rounds toward zero and converts to any primitive integer type,
/// assuming that the value is finite and fits in that type.
///

View file

@ -951,6 +951,42 @@ impl f64 {
}
}
/// Calculates the middle point of `self` and `rhs`.
///
/// This returns NaN when *either* argument is NaN or if a combination of
/// +inf and -inf is provided as arguments.
///
/// # Examples
///
/// ```
/// #![feature(num_midpoint)]
/// assert_eq!(1f64.midpoint(4.0), 2.5);
/// assert_eq!((-5.5f64).midpoint(8.0), 1.25);
/// ```
#[unstable(feature = "num_midpoint", issue = "110840")]
pub fn midpoint(self, other: f64) -> f64 {
const LO: f64 = f64::MIN_POSITIVE * 2.;
const HI: f64 = f64::MAX / 2.;
let (a, b) = (self, other);
let abs_a = a.abs_private();
let abs_b = b.abs_private();
if abs_a <= HI && abs_b <= HI {
// Overflow is impossible
(a + b) / 2.
} else if abs_a < LO {
// Not safe to halve a
a + (b / 2.)
} else if abs_b < LO {
// Not safe to halve b
(a / 2.) + b
} else {
// Not safe to halve a and b
(a / 2.) + (b / 2.)
}
}
/// Rounds toward zero and converts to any primitive integer type,
/// assuming that the value is finite and fits in that type.
///