Rollup merge of #110577 - compiler-errors:drop-impl-fulfill, r=lcnr
Use fulfillment to check `Drop` impl compatibility Use an `ObligationCtxt` to ensure that a `Drop` impl does not have stricter requirements than the ADT that it's implemented for, rather than using a `SimpleEqRelation` to (more or less) syntactically equate predicates on an ADT with predicates on an impl. r? types ### Some background The old code reads: ```rust // An earlier version of this code attempted to do this checking // via the traits::fulfill machinery. However, it ran into trouble // since the fulfill machinery merely turns outlives-predicates // 'a:'b and T:'b into region inference constraints. It is simpler // just to look for all the predicates directly. ``` I'm not sure what this means, but perhaps in the 8 years since that this comment was written (cc #23638) it's gotten easier to process region constraints after doing fulfillment? I don't know how this logic differs from anything we do in the `compare_impl_item` module. Ironically, later on it says: ```rust // However, it may be more efficient in the future to batch // the analysis together via the fulfill (see comment above regarding // the usage of the fulfill machinery), rather than the // repeated `.iter().any(..)` calls. ``` Also: * Removes `SimpleEqRelation` which was far too syntactical in its relation. * Fixes #110557
This commit is contained in:
commit
bcc9aa01b5
17 changed files with 445 additions and 231 deletions
|
@ -1,12 +1,14 @@
|
|||
// FIXME(@lcnr): Move this module out of `rustc_hir_analysis`.
|
||||
//
|
||||
// We don't do any drop checking during hir typeck.
|
||||
use rustc_data_structures::fx::FxHashSet;
|
||||
use rustc_errors::{struct_span_err, ErrorGuaranteed};
|
||||
use rustc_middle::ty::error::TypeError;
|
||||
use rustc_middle::ty::relate::{Relate, RelateResult, TypeRelation};
|
||||
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
|
||||
use rustc_infer::infer::{RegionResolutionError, TyCtxtInferExt};
|
||||
use rustc_middle::ty::subst::SubstsRef;
|
||||
use rustc_middle::ty::util::IgnoreRegions;
|
||||
use rustc_middle::ty::{self, Predicate, Ty, TyCtxt};
|
||||
use rustc_middle::ty::{self, TyCtxt};
|
||||
use rustc_trait_selection::traits::{self, ObligationCtxt};
|
||||
|
||||
use crate::errors;
|
||||
use crate::hir::def_id::{DefId, LocalDefId};
|
||||
|
@ -43,21 +45,20 @@ pub fn check_drop_impl(tcx: TyCtxt<'_>, drop_impl_did: DefId) -> Result<(), Erro
|
|||
}
|
||||
}
|
||||
let dtor_self_type = tcx.type_of(drop_impl_did).subst_identity();
|
||||
let dtor_predicates = tcx.predicates_of(drop_impl_did);
|
||||
match dtor_self_type.kind() {
|
||||
ty::Adt(adt_def, self_to_impl_substs) => {
|
||||
ty::Adt(adt_def, adt_to_impl_substs) => {
|
||||
ensure_drop_params_and_item_params_correspond(
|
||||
tcx,
|
||||
drop_impl_did.expect_local(),
|
||||
adt_def.did(),
|
||||
self_to_impl_substs,
|
||||
adt_to_impl_substs,
|
||||
)?;
|
||||
|
||||
ensure_drop_predicates_are_implied_by_item_defn(
|
||||
tcx,
|
||||
dtor_predicates,
|
||||
drop_impl_did.expect_local(),
|
||||
adt_def.did().expect_local(),
|
||||
self_to_impl_substs,
|
||||
adt_to_impl_substs,
|
||||
)
|
||||
}
|
||||
_ => {
|
||||
|
@ -78,9 +79,9 @@ fn ensure_drop_params_and_item_params_correspond<'tcx>(
|
|||
tcx: TyCtxt<'tcx>,
|
||||
drop_impl_did: LocalDefId,
|
||||
self_type_did: DefId,
|
||||
drop_impl_substs: SubstsRef<'tcx>,
|
||||
adt_to_impl_substs: SubstsRef<'tcx>,
|
||||
) -> Result<(), ErrorGuaranteed> {
|
||||
let Err(arg) = tcx.uses_unique_generic_params(drop_impl_substs, IgnoreRegions::No) else {
|
||||
let Err(arg) = tcx.uses_unique_generic_params(adt_to_impl_substs, IgnoreRegions::No) else {
|
||||
return Ok(())
|
||||
};
|
||||
|
||||
|
@ -111,237 +112,94 @@ fn ensure_drop_params_and_item_params_correspond<'tcx>(
|
|||
/// implied by assuming the predicates attached to self_type_did.
|
||||
fn ensure_drop_predicates_are_implied_by_item_defn<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
dtor_predicates: ty::GenericPredicates<'tcx>,
|
||||
self_type_did: LocalDefId,
|
||||
self_to_impl_substs: SubstsRef<'tcx>,
|
||||
drop_impl_def_id: LocalDefId,
|
||||
adt_def_id: LocalDefId,
|
||||
adt_to_impl_substs: SubstsRef<'tcx>,
|
||||
) -> Result<(), ErrorGuaranteed> {
|
||||
let mut result = Ok(());
|
||||
let infcx = tcx.infer_ctxt().build();
|
||||
let ocx = ObligationCtxt::new(&infcx);
|
||||
|
||||
// Here is an example, analogous to that from
|
||||
// `compare_impl_method`.
|
||||
// Take the param-env of the adt and substitute the substs that show up in
|
||||
// the implementation's self type. This gives us the assumptions that the
|
||||
// self ty of the implementation is allowed to know just from it being a
|
||||
// well-formed adt, since that's all we're allowed to assume while proving
|
||||
// the Drop implementation is not specialized.
|
||||
//
|
||||
// Consider a struct type:
|
||||
//
|
||||
// struct Type<'c, 'b:'c, 'a> {
|
||||
// x: &'a Contents // (contents are irrelevant;
|
||||
// y: &'c Cell<&'b Contents>, // only the bounds matter for our purposes.)
|
||||
// }
|
||||
//
|
||||
// and a Drop impl:
|
||||
//
|
||||
// impl<'z, 'y:'z, 'x:'y> Drop for P<'z, 'y, 'x> {
|
||||
// fn drop(&mut self) { self.y.set(self.x); } // (only legal if 'x: 'y)
|
||||
// }
|
||||
//
|
||||
// We start out with self_to_impl_substs, that maps the generic
|
||||
// parameters of Type to that of the Drop impl.
|
||||
//
|
||||
// self_to_impl_substs = {'c => 'z, 'b => 'y, 'a => 'x}
|
||||
//
|
||||
// Applying this to the predicates (i.e., assumptions) provided by the item
|
||||
// definition yields the instantiated assumptions:
|
||||
//
|
||||
// ['y : 'z]
|
||||
//
|
||||
// We then check all of the predicates of the Drop impl:
|
||||
//
|
||||
// ['y:'z, 'x:'y]
|
||||
//
|
||||
// and ensure each is in the list of instantiated
|
||||
// assumptions. Here, `'y:'z` is present, but `'x:'y` is
|
||||
// absent. So we report an error that the Drop impl injected a
|
||||
// predicate that is not present on the struct definition.
|
||||
// We don't need to normalize this param-env or anything, since we're only
|
||||
// substituting it with free params, so no additional param-env normalization
|
||||
// can occur on top of what has been done in the param_env query itself.
|
||||
let param_env = ty::EarlyBinder(tcx.param_env(adt_def_id))
|
||||
.subst(tcx, adt_to_impl_substs)
|
||||
.with_constness(tcx.constness(drop_impl_def_id));
|
||||
|
||||
// We can assume the predicates attached to struct/enum definition
|
||||
// hold.
|
||||
let generic_assumptions = tcx.predicates_of(self_type_did);
|
||||
for (pred, span) in tcx.predicates_of(drop_impl_def_id).instantiate_identity(tcx) {
|
||||
let normalize_cause = traits::ObligationCause::misc(span, adt_def_id);
|
||||
let pred = ocx.normalize(&normalize_cause, param_env, pred);
|
||||
let cause = traits::ObligationCause::new(span, adt_def_id, traits::DropImpl);
|
||||
ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, pred));
|
||||
}
|
||||
|
||||
let assumptions_in_impl_context = generic_assumptions.instantiate(tcx, &self_to_impl_substs);
|
||||
let assumptions_in_impl_context = assumptions_in_impl_context.predicates;
|
||||
// All of the custom error reporting logic is to preserve parity with the old
|
||||
// error messages.
|
||||
//
|
||||
// They can probably get removed with better treatment of the new `DropImpl`
|
||||
// obligation cause code, and perhaps some custom logic in `report_region_errors`.
|
||||
|
||||
debug!(?assumptions_in_impl_context, ?dtor_predicates.predicates);
|
||||
|
||||
let self_param_env = tcx.param_env(self_type_did);
|
||||
|
||||
// An earlier version of this code attempted to do this checking
|
||||
// via the traits::fulfill machinery. However, it ran into trouble
|
||||
// since the fulfill machinery merely turns outlives-predicates
|
||||
// 'a:'b and T:'b into region inference constraints. It is simpler
|
||||
// just to look for all the predicates directly.
|
||||
|
||||
assert_eq!(dtor_predicates.parent, None);
|
||||
for &(predicate, predicate_sp) in dtor_predicates.predicates {
|
||||
// (We do not need to worry about deep analysis of type
|
||||
// expressions etc because the Drop impls are already forced
|
||||
// to take on a structure that is roughly an alpha-renaming of
|
||||
// the generic parameters of the item definition.)
|
||||
|
||||
// This path now just checks *all* predicates via an instantiation of
|
||||
// the `SimpleEqRelation`, which simply forwards to the `relate` machinery
|
||||
// after taking care of anonymizing late bound regions.
|
||||
//
|
||||
// However, it may be more efficient in the future to batch
|
||||
// the analysis together via the fulfill (see comment above regarding
|
||||
// the usage of the fulfill machinery), rather than the
|
||||
// repeated `.iter().any(..)` calls.
|
||||
|
||||
// This closure is a more robust way to check `Predicate` equality
|
||||
// than simple `==` checks (which were the previous implementation).
|
||||
// It relies on `ty::relate` for `TraitPredicate`, `ProjectionPredicate`,
|
||||
// `ConstEvaluatable` and `TypeOutlives` (which implement the Relate trait),
|
||||
// while delegating on simple equality for the other `Predicate`.
|
||||
// This implementation solves (Issue #59497) and (Issue #58311).
|
||||
// It is unclear to me at the moment whether the approach based on `relate`
|
||||
// could be extended easily also to the other `Predicate`.
|
||||
let predicate_matches_closure = |p: Predicate<'tcx>| {
|
||||
let mut relator: SimpleEqRelation<'tcx> = SimpleEqRelation::new(tcx, self_param_env);
|
||||
let predicate = predicate.kind();
|
||||
let p = p.kind();
|
||||
match (predicate.skip_binder(), p.skip_binder()) {
|
||||
(
|
||||
ty::PredicateKind::Clause(ty::Clause::Trait(a)),
|
||||
ty::PredicateKind::Clause(ty::Clause::Trait(b)),
|
||||
) => relator.relate(predicate.rebind(a), p.rebind(b)).is_ok(),
|
||||
(
|
||||
ty::PredicateKind::Clause(ty::Clause::Projection(a)),
|
||||
ty::PredicateKind::Clause(ty::Clause::Projection(b)),
|
||||
) => relator.relate(predicate.rebind(a), p.rebind(b)).is_ok(),
|
||||
(
|
||||
ty::PredicateKind::ConstEvaluatable(a),
|
||||
ty::PredicateKind::ConstEvaluatable(b),
|
||||
) => relator.relate(predicate.rebind(a), predicate.rebind(b)).is_ok(),
|
||||
(
|
||||
ty::PredicateKind::Clause(ty::Clause::TypeOutlives(ty::OutlivesPredicate(
|
||||
ty_a,
|
||||
lt_a,
|
||||
))),
|
||||
ty::PredicateKind::Clause(ty::Clause::TypeOutlives(ty::OutlivesPredicate(
|
||||
ty_b,
|
||||
lt_b,
|
||||
))),
|
||||
) => {
|
||||
relator.relate(predicate.rebind(ty_a), p.rebind(ty_b)).is_ok()
|
||||
&& relator.relate(predicate.rebind(lt_a), p.rebind(lt_b)).is_ok()
|
||||
}
|
||||
(ty::PredicateKind::WellFormed(arg_a), ty::PredicateKind::WellFormed(arg_b)) => {
|
||||
relator.relate(predicate.rebind(arg_a), p.rebind(arg_b)).is_ok()
|
||||
}
|
||||
_ => predicate == p,
|
||||
let errors = ocx.select_all_or_error();
|
||||
if !errors.is_empty() {
|
||||
let mut guar = None;
|
||||
let mut root_predicates = FxHashSet::default();
|
||||
for error in errors {
|
||||
let root_predicate = error.root_obligation.predicate;
|
||||
if root_predicates.insert(root_predicate) {
|
||||
let item_span = tcx.def_span(adt_def_id);
|
||||
let self_descr = tcx.def_descr(adt_def_id.to_def_id());
|
||||
guar = Some(
|
||||
struct_span_err!(
|
||||
tcx.sess,
|
||||
error.root_obligation.cause.span,
|
||||
E0367,
|
||||
"`Drop` impl requires `{root_predicate}` \
|
||||
but the {self_descr} it is implemented for does not",
|
||||
)
|
||||
.span_note(item_span, "the implementor must specify the same requirement")
|
||||
.emit(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
if !assumptions_in_impl_context.iter().copied().any(predicate_matches_closure) {
|
||||
let item_span = tcx.def_span(self_type_did);
|
||||
let self_descr = tcx.def_descr(self_type_did.to_def_id());
|
||||
let reported = struct_span_err!(
|
||||
tcx.sess,
|
||||
predicate_sp,
|
||||
E0367,
|
||||
"`Drop` impl requires `{predicate}` but the {self_descr} it is implemented for does not",
|
||||
)
|
||||
.span_note(item_span, "the implementor must specify the same requirement")
|
||||
.emit();
|
||||
result = Err(reported);
|
||||
}
|
||||
return Err(guar.unwrap());
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/// This is an implementation of the [`TypeRelation`] trait with the
|
||||
/// aim of simply comparing for equality (without side-effects).
|
||||
///
|
||||
/// It is not intended to be used anywhere else other than here.
|
||||
pub(crate) struct SimpleEqRelation<'tcx> {
|
||||
tcx: TyCtxt<'tcx>,
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
}
|
||||
|
||||
impl<'tcx> SimpleEqRelation<'tcx> {
|
||||
fn new(tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> SimpleEqRelation<'tcx> {
|
||||
SimpleEqRelation { tcx, param_env }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> TypeRelation<'tcx> for SimpleEqRelation<'tcx> {
|
||||
fn tcx(&self) -> TyCtxt<'tcx> {
|
||||
self.tcx
|
||||
}
|
||||
|
||||
fn param_env(&self) -> ty::ParamEnv<'tcx> {
|
||||
self.param_env
|
||||
}
|
||||
|
||||
fn tag(&self) -> &'static str {
|
||||
"dropck::SimpleEqRelation"
|
||||
}
|
||||
|
||||
fn a_is_expected(&self) -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn relate_with_variance<T: Relate<'tcx>>(
|
||||
&mut self,
|
||||
_: ty::Variance,
|
||||
_info: ty::VarianceDiagInfo<'tcx>,
|
||||
a: T,
|
||||
b: T,
|
||||
) -> RelateResult<'tcx, T> {
|
||||
// Here we ignore variance because we require drop impl's types
|
||||
// to be *exactly* the same as to the ones in the struct definition.
|
||||
self.relate(a, b)
|
||||
}
|
||||
|
||||
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
|
||||
debug!("SimpleEqRelation::tys(a={:?}, b={:?})", a, b);
|
||||
ty::relate::super_relate_tys(self, a, b)
|
||||
}
|
||||
|
||||
fn regions(
|
||||
&mut self,
|
||||
a: ty::Region<'tcx>,
|
||||
b: ty::Region<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::Region<'tcx>> {
|
||||
debug!("SimpleEqRelation::regions(a={:?}, b={:?})", a, b);
|
||||
|
||||
// We can just equate the regions because LBRs have been
|
||||
// already anonymized.
|
||||
if a == b {
|
||||
Ok(a)
|
||||
} else {
|
||||
// I'm not sure is this `TypeError` is the right one, but
|
||||
// it should not matter as it won't be checked (the dropck
|
||||
// will emit its own, more informative and higher-level errors
|
||||
// in case anything goes wrong).
|
||||
Err(TypeError::RegionsPlaceholderMismatch)
|
||||
let errors = ocx.infcx.resolve_regions(&OutlivesEnvironment::new(param_env));
|
||||
if !errors.is_empty() {
|
||||
let mut guar = None;
|
||||
for error in errors {
|
||||
let item_span = tcx.def_span(adt_def_id);
|
||||
let self_descr = tcx.def_descr(adt_def_id.to_def_id());
|
||||
let outlives = match error {
|
||||
RegionResolutionError::ConcreteFailure(_, a, b) => format!("{b}: {a}"),
|
||||
RegionResolutionError::GenericBoundFailure(_, generic, r) => {
|
||||
format!("{generic}: {r}")
|
||||
}
|
||||
RegionResolutionError::SubSupConflict(_, _, _, a, _, b, _) => format!("{b}: {a}"),
|
||||
RegionResolutionError::UpperBoundUniverseConflict(a, _, _, _, b) => {
|
||||
format!("{b}: {a}", a = tcx.mk_re_var(a))
|
||||
}
|
||||
};
|
||||
guar = Some(
|
||||
struct_span_err!(
|
||||
tcx.sess,
|
||||
error.origin().span(),
|
||||
E0367,
|
||||
"`Drop` impl requires `{outlives}` \
|
||||
but the {self_descr} it is implemented for does not",
|
||||
)
|
||||
.span_note(item_span, "the implementor must specify the same requirement")
|
||||
.emit(),
|
||||
);
|
||||
}
|
||||
return Err(guar.unwrap());
|
||||
}
|
||||
|
||||
fn consts(
|
||||
&mut self,
|
||||
a: ty::Const<'tcx>,
|
||||
b: ty::Const<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::Const<'tcx>> {
|
||||
debug!("SimpleEqRelation::consts(a={:?}, b={:?})", a, b);
|
||||
ty::relate::super_relate_consts(self, a, b)
|
||||
}
|
||||
|
||||
fn binders<T>(
|
||||
&mut self,
|
||||
a: ty::Binder<'tcx, T>,
|
||||
b: ty::Binder<'tcx, T>,
|
||||
) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
|
||||
where
|
||||
T: Relate<'tcx>,
|
||||
{
|
||||
debug!("SimpleEqRelation::binders({:?}: {:?}", a, b);
|
||||
|
||||
// Anonymizing the LBRs is necessary to solve (Issue #59497).
|
||||
// After we do so, it should be totally fine to skip the binders.
|
||||
let anon_a = self.tcx.anonymize_bound_vars(a);
|
||||
let anon_b = self.tcx.anonymize_bound_vars(b);
|
||||
self.relate(anon_a.skip_binder(), anon_b.skip_binder())?;
|
||||
|
||||
Ok(a)
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue