Added some generic number functions to core::num
Also fixes previous commit not compiling due to not finding Option.
This commit is contained in:
parent
05d83017ec
commit
bb9c3ed876
1 changed files with 89 additions and 0 deletions
|
@ -59,4 +59,93 @@ pub trait ToStrRadix {
|
||||||
|
|
||||||
pub trait FromStrRadix {
|
pub trait FromStrRadix {
|
||||||
static pub pure fn from_str_radix(str: &str, radix: uint) -> Option<self>;
|
static pub pure fn from_str_radix(str: &str, radix: uint) -> Option<self>;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Generic math functions:
|
||||||
|
|
||||||
|
/// Dynamically calculates the value `inf` (`1/0`).
|
||||||
|
/// Can fail on integer types.
|
||||||
|
#[inline(always)]
|
||||||
|
pub pure fn infinity<T: Num One Zero>() -> T {
|
||||||
|
let _0: T = Zero::zero();
|
||||||
|
let _1: T = One::one();
|
||||||
|
_1 / _0
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Dynamically calculates the value `-inf` (`-1/0`).
|
||||||
|
/// Can fail on integer types.
|
||||||
|
#[inline(always)]
|
||||||
|
pub pure fn neg_infinity<T: Num One Zero>() -> T {
|
||||||
|
let _0: T = Zero::zero();
|
||||||
|
let _1: T = One::one();
|
||||||
|
- _1 / _0
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Dynamically calculates the value `NaN` (`0/0`).
|
||||||
|
/// Can fail on integer types.
|
||||||
|
#[inline(always)]
|
||||||
|
pub pure fn NaN<T: Num Zero>() -> T {
|
||||||
|
let _0: T = Zero::zero();
|
||||||
|
_0 / _0
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns `true` if `num` has the value `inf` (`1/0`).
|
||||||
|
/// Can fail on integer types.
|
||||||
|
#[inline(always)]
|
||||||
|
pub pure fn is_infinity<T: Num One Zero Eq>(num: &T) -> bool {
|
||||||
|
(*num) == (infinity::<T>())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns `true` if `num` has the value `-inf` (`-1/0`).
|
||||||
|
/// Can fail on integer types.
|
||||||
|
#[inline(always)]
|
||||||
|
pub pure fn is_neg_infinity<T: Num One Zero Eq>(num: &T) -> bool {
|
||||||
|
(*num) == (neg_infinity::<T>())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns `true` if `num` has the value `NaN` (is not equal to itself).
|
||||||
|
#[inline(always)]
|
||||||
|
pub pure fn is_NaN<T: Num Eq>(num: &T) -> bool {
|
||||||
|
(*num) != (*num)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns `true` if `num` has the value `-0` (`1/num == -1/0`).
|
||||||
|
/// Can fail on integer types.
|
||||||
|
#[inline(always)]
|
||||||
|
pub pure fn is_neg_zero<T: Num One Zero Eq>(num: &T) -> bool {
|
||||||
|
let _1: T = One::one();
|
||||||
|
let _0: T = Zero::zero();
|
||||||
|
*num == _0 && is_neg_infinity(&(_1 / *num))
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Calculates a power to a given radix, optimized for uint `pow` and `radix`.
|
||||||
|
*
|
||||||
|
* Returns `radix^pow` as `T`.
|
||||||
|
*
|
||||||
|
* Note:
|
||||||
|
* Also returns `1` for `0^0`, despite that technically being an
|
||||||
|
* undefined number. The Reason for this is twofold:
|
||||||
|
* - If code written to use this function cares about that special case, it's
|
||||||
|
* probably going to catch it before making the call.
|
||||||
|
* - If code written to use this function doesn't care about it, it's
|
||||||
|
* probably assuming that `x^0` always equals `1`.
|
||||||
|
*/
|
||||||
|
pub pure fn pow_with_uint<T: Num One Zero>(radix: uint, pow: uint) -> T {
|
||||||
|
let _0: T = Zero::zero();
|
||||||
|
let _1: T = One::one();
|
||||||
|
|
||||||
|
if pow == 0u { return _1; }
|
||||||
|
if radix == 0u { return _0; }
|
||||||
|
let mut my_pow = pow;
|
||||||
|
let mut total = _1;
|
||||||
|
let mut multiplier = Num::from_int(radix as int);
|
||||||
|
while (my_pow > 0u) {
|
||||||
|
if my_pow % 2u == 1u {
|
||||||
|
total *= multiplier;
|
||||||
|
}
|
||||||
|
my_pow /= 2u;
|
||||||
|
multiplier *= multiplier;
|
||||||
|
}
|
||||||
|
total
|
||||||
}
|
}
|
Loading…
Add table
Add a link
Reference in a new issue