1
Fork 0

add autodiff batching backend

This commit is contained in:
Manuel Drehwald 2025-04-04 14:24:23 -04:00
parent e0c8ead880
commit b7c63a973f
6 changed files with 196 additions and 44 deletions

View file

@ -3,8 +3,10 @@ use std::ptr;
use rustc_ast::expand::autodiff_attrs::{AutoDiffAttrs, AutoDiffItem, DiffActivity, DiffMode};
use rustc_codegen_ssa::ModuleCodegen;
use rustc_codegen_ssa::back::write::ModuleConfig;
use rustc_codegen_ssa::traits::BaseTypeCodegenMethods as _;
use rustc_codegen_ssa::common::TypeKind;
use rustc_codegen_ssa::traits::BaseTypeCodegenMethods;
use rustc_errors::FatalError;
use rustc_middle::bug;
use tracing::{debug, trace};
use crate::back::write::llvm_err;
@ -18,21 +20,42 @@ use crate::value::Value;
use crate::{CodegenContext, LlvmCodegenBackend, ModuleLlvm, attributes, llvm};
fn get_params(fnc: &Value) -> Vec<&Value> {
let param_num = llvm::LLVMCountParams(fnc) as usize;
let mut fnc_args: Vec<&Value> = vec![];
fnc_args.reserve(param_num);
unsafe {
let param_num = llvm::LLVMCountParams(fnc) as usize;
let mut fnc_args: Vec<&Value> = vec![];
fnc_args.reserve(param_num);
llvm::LLVMGetParams(fnc, fnc_args.as_mut_ptr());
fnc_args.set_len(param_num);
fnc_args
}
fnc_args
}
fn has_sret(fnc: &Value) -> bool {
let num_args = llvm::LLVMCountParams(fnc) as usize;
if num_args == 0 {
false
} else {
unsafe { llvm::LLVMRustHasAttributeAtIndex(fnc, 0, llvm::AttributeKind::StructRet) }
}
}
// When we call the `__enzyme_autodiff` or `__enzyme_fwddiff` function, we need to pass all the
// original inputs, as well as metadata and the additional shadow arguments.
// This function matches the arguments from the outer function to the inner enzyme call.
//
// This function also considers that Rust level arguments not always match the llvm-ir level
// arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on
// llvm-ir level. The number of activities matches the number of Rust level arguments, so we
// need to match those.
// FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it
// using iterators and peek()?
fn match_args_from_caller_to_enzyme<'ll>(
cx: &SimpleCx<'ll>,
width: u32,
args: &mut Vec<&'ll llvm::Value>,
inputs: &[DiffActivity],
outer_args: &[&'ll llvm::Value],
has_sret: bool,
) {
debug!("matching autodiff arguments");
// We now handle the issue that Rust level arguments not always match the llvm-ir level
@ -44,6 +67,14 @@ fn match_args_from_caller_to_enzyme<'ll>(
let mut outer_pos: usize = 0;
let mut activity_pos = 0;
if has_sret {
// Then the first outer arg is the sret pointer. Enzyme doesn't know about sret, so the
// inner function will still return something. We increase our outer_pos by one,
// and once we're done with all other args we will take the return of the inner call and
// update the sret pointer with it
outer_pos = 1;
}
let enzyme_const = cx.create_metadata("enzyme_const".to_string()).unwrap();
let enzyme_out = cx.create_metadata("enzyme_out".to_string()).unwrap();
let enzyme_dup = cx.create_metadata("enzyme_dup".to_string()).unwrap();
@ -92,23 +123,20 @@ fn match_args_from_caller_to_enzyme<'ll>(
// (..., metadata! enzyme_dup, ptr, ptr, int1, ...).
// FIXME(ZuseZ4): We will upstream a safety check later which asserts that
// int2 >= int1, which means the shadow vector is large enough to store the gradient.
assert!(unsafe {
llvm::LLVMRustGetTypeKind(next_outer_ty) == llvm::TypeKind::Integer
});
let next_outer_arg2 = outer_args[outer_pos + 2];
let next_outer_ty2 = cx.val_ty(next_outer_arg2);
assert!(unsafe {
llvm::LLVMRustGetTypeKind(next_outer_ty2) == llvm::TypeKind::Pointer
});
let next_outer_arg3 = outer_args[outer_pos + 3];
let next_outer_ty3 = cx.val_ty(next_outer_arg3);
assert!(unsafe {
llvm::LLVMRustGetTypeKind(next_outer_ty3) == llvm::TypeKind::Integer
});
args.push(next_outer_arg2);
assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Integer);
for i in 0..(width as usize) {
let next_outer_arg2 = outer_args[outer_pos + 2 * (i + 1)];
let next_outer_ty2 = cx.val_ty(next_outer_arg2);
assert_eq!(cx.type_kind(next_outer_ty2), TypeKind::Pointer);
let next_outer_arg3 = outer_args[outer_pos + 2 * (i + 1) + 1];
let next_outer_ty3 = cx.val_ty(next_outer_arg3);
assert_eq!(cx.type_kind(next_outer_ty3), TypeKind::Integer);
args.push(next_outer_arg2);
}
args.push(cx.get_metadata_value(enzyme_const));
args.push(next_outer_arg);
outer_pos += 4;
outer_pos += 2 + 2 * width as usize;
activity_pos += 2;
} else {
// A duplicated pointer will have the following two outer_fn arguments:
@ -116,15 +144,19 @@ fn match_args_from_caller_to_enzyme<'ll>(
// (..., metadata! enzyme_dup, ptr, ptr, ...).
if matches!(diff_activity, DiffActivity::Duplicated | DiffActivity::DuplicatedOnly)
{
assert!(
unsafe { llvm::LLVMRustGetTypeKind(next_outer_ty) }
== llvm::TypeKind::Pointer
);
assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Pointer);
}
// In the case of Dual we don't have assumptions, e.g. f32 would be valid.
args.push(next_outer_arg);
outer_pos += 2;
activity_pos += 1;
// Now, if width > 1, we need to account for that
for _ in 1..width {
let next_outer_arg = outer_args[outer_pos];
args.push(next_outer_arg);
outer_pos += 1;
}
}
} else {
// We do not differentiate with resprect to this argument.
@ -135,6 +167,76 @@ fn match_args_from_caller_to_enzyme<'ll>(
}
}
// On LLVM-IR, we can luckily declare __enzyme_ functions without specifying the input
// arguments. We do however need to declare them with their correct return type.
// We already figured the correct return type out in our frontend, when generating the outer_fn,
// so we can now just go ahead and use that. This is not always trivial, e.g. because sret.
// Beyond sret, this article describes our challenges nicely:
// <https://yorickpeterse.com/articles/the-mess-that-is-handling-structure-arguments-and-returns-in-llvm/>
// I.e. (i32, f32) will get merged into i64, but we don't handle that yet.
fn compute_enzyme_fn_ty<'ll>(
cx: &SimpleCx<'ll>,
attrs: &AutoDiffAttrs,
fn_to_diff: &'ll Value,
outer_fn: &'ll Value,
) -> &'ll llvm::Type {
let fn_ty = cx.get_type_of_global(outer_fn);
let mut ret_ty = cx.get_return_type(fn_ty);
let has_sret = has_sret(outer_fn);
if has_sret {
// Now we don't just forward the return type, so we have to figure it out based on the
// primal return type, in combination with the autodiff settings.
let fn_ty = cx.get_type_of_global(fn_to_diff);
let inner_ret_ty = cx.get_return_type(fn_ty);
let void_ty = unsafe { llvm::LLVMVoidTypeInContext(cx.llcx) };
if inner_ret_ty == void_ty {
// This indicates that even the inner function has an sret.
// Right now I only look for an sret in the outer function.
// This *probably* needs some extra handling, but I never ran
// into such a case. So I'll wait for user reports to have a test case.
bug!("sret in inner function");
}
if attrs.width == 1 {
todo!("Handle sret for scalar ad");
} else {
// First we check if we also have to deal with the primal return.
match attrs.mode {
DiffMode::Forward => match attrs.ret_activity {
DiffActivity::Dual => {
let arr_ty =
unsafe { llvm::LLVMArrayType2(inner_ret_ty, attrs.width as u64 + 1) };
ret_ty = arr_ty;
}
DiffActivity::DualOnly => {
let arr_ty =
unsafe { llvm::LLVMArrayType2(inner_ret_ty, attrs.width as u64) };
ret_ty = arr_ty;
}
DiffActivity::Const => {
todo!("Not sure, do we need to do something here?");
}
_ => {
bug!("unreachable");
}
},
DiffMode::Reverse => {
todo!("Handle sret for reverse mode");
}
_ => {
bug!("unreachable");
}
}
}
}
// LLVM can figure out the input types on it's own, so we take a shortcut here.
unsafe { llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, True) }
}
/// When differentiating `fn_to_diff`, take a `outer_fn` and generate another
/// function with expected naming and calling conventions[^1] which will be
/// discovered by the enzyme LLVM pass and its body populated with the differentiated
@ -197,17 +299,9 @@ fn generate_enzyme_call<'ll>(
// }
// ```
unsafe {
// On LLVM-IR, we can luckily declare __enzyme_ functions without specifying the input
// arguments. We do however need to declare them with their correct return type.
// We already figured the correct return type out in our frontend, when generating the outer_fn,
// so we can now just go ahead and use that. FIXME(ZuseZ4): This doesn't handle sret yet.
let fn_ty = llvm::LLVMGlobalGetValueType(outer_fn);
let ret_ty = llvm::LLVMGetReturnType(fn_ty);
let enzyme_ty = compute_enzyme_fn_ty(cx, &attrs, fn_to_diff, outer_fn);
// LLVM can figure out the input types on it's own, so we take a shortcut here.
let enzyme_ty = llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, True);
//FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and
// FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and
// think a bit more about what should go here.
let cc = llvm::LLVMGetFunctionCallConv(outer_fn);
let ad_fn = declare_simple_fn(
@ -240,14 +334,27 @@ fn generate_enzyme_call<'ll>(
if matches!(attrs.ret_activity, DiffActivity::Dual | DiffActivity::Active) {
args.push(cx.get_metadata_value(enzyme_primal_ret));
}
if attrs.width > 1 {
let enzyme_width = cx.create_metadata("enzyme_width".to_string()).unwrap();
args.push(cx.get_metadata_value(enzyme_width));
args.push(cx.get_const_i64(attrs.width as u64));
}
let has_sret = has_sret(outer_fn);
let outer_args: Vec<&llvm::Value> = get_params(outer_fn);
match_args_from_caller_to_enzyme(&cx, &mut args, &attrs.input_activity, &outer_args);
match_args_from_caller_to_enzyme(
&cx,
attrs.width,
&mut args,
&attrs.input_activity,
&outer_args,
has_sret,
);
let call = builder.call(enzyme_ty, ad_fn, &args, None);
// This part is a bit iffy. LLVM requires that a call to an inlineable function has some
// metadata attachted to it, but we just created this code oota. Given that the
// metadata attached to it, but we just created this code oota. Given that the
// differentiated function already has partly confusing metadata, and given that this
// affects nothing but the auttodiff IR, we take a shortcut and just steal metadata from the
// dummy code which we inserted at a higher level.
@ -268,7 +375,22 @@ fn generate_enzyme_call<'ll>(
// Now that we copied the metadata, get rid of dummy code.
llvm::LLVMRustEraseInstUntilInclusive(entry, last_inst);
if cx.val_ty(call) == cx.type_void() {
if cx.val_ty(call) == cx.type_void() || has_sret {
if has_sret {
// This is what we already have in our outer_fn (shortened):
// define void @_foo(ptr <..> sret([32 x i8]) initializes((0, 32)) %0, <...>) {
// %7 = call [4 x double] (...) @__enzyme_fwddiff_foo(ptr @square, metadata !"enzyme_width", i64 4, <...>)
// <Here we are, we want to add the following two lines>
// store [4 x double] %7, ptr %0, align 8
// ret void
// }
// now store the result of the enzyme call into the sret pointer.
let sret_ptr = outer_args[0];
let call_ty = cx.val_ty(call);
assert_eq!(cx.type_kind(call_ty), TypeKind::Array);
llvm::LLVMBuildStore(&builder.llbuilder, call, sret_ptr);
}
builder.ret_void();
} else {
builder.ret(call);
@ -300,8 +422,7 @@ pub(crate) fn differentiate<'ll>(
if !diff_items.is_empty()
&& !cgcx.opts.unstable_opts.autodiff.contains(&rustc_session::config::AutoDiff::Enable)
{
let dcx = cgcx.create_dcx();
return Err(dcx.handle().emit_almost_fatal(AutoDiffWithoutEnable));
return Err(diag_handler.handle().emit_almost_fatal(AutoDiffWithoutEnable));
}
// Before dumping the module, we want all the TypeTrees to become part of the module.