1
Fork 0

Consolidate two almost duplicated fn info extraction routines

This commit is contained in:
Michael Goulet 2022-12-27 01:55:54 +00:00
parent 0b90256ada
commit b2df88bae1
7 changed files with 183 additions and 185 deletions

View file

@ -2912,6 +2912,7 @@ impl<'tcx> ty::TypeVisitor<'tcx> for HasNumericInferVisitor {
}
}
#[derive(Copy, Clone)]
pub enum DefIdOrName {
DefId(DefId),
Name(&'static str),

View file

@ -212,6 +212,13 @@ pub trait TypeErrCtxtExt<'tcx> {
trait_pred: ty::PolyTraitPredicate<'tcx>,
) -> bool;
fn extract_callable_info(
&self,
hir_id: HirId,
param_env: ty::ParamEnv<'tcx>,
found: Ty<'tcx>,
) -> Option<(DefIdOrName, Ty<'tcx>, Vec<Ty<'tcx>>)>;
fn suggest_add_reference_to_arg(
&self,
obligation: &PredicateObligation<'tcx>,
@ -885,92 +892,17 @@ impl<'tcx> TypeErrCtxtExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
return false;
}
// This is duplicated from `extract_callable_info` in typeck, which
// relies on autoderef, so we can't use it here.
let found = trait_pred.self_ty().skip_binder().peel_refs();
let Some((def_id_or_name, output, inputs)) = (match *found.kind()
{
ty::FnPtr(fn_sig) => {
Some((DefIdOrName::Name("function pointer"), fn_sig.output(), fn_sig.inputs()))
}
ty::FnDef(def_id, _) => {
let fn_sig = found.fn_sig(self.tcx);
Some((DefIdOrName::DefId(def_id), fn_sig.output(), fn_sig.inputs()))
}
ty::Closure(def_id, substs) => {
let fn_sig = substs.as_closure().sig();
Some((
DefIdOrName::DefId(def_id),
fn_sig.output(),
fn_sig.inputs().map_bound(|inputs| &inputs[1..]),
))
}
ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs, .. }) => {
self.tcx.bound_item_bounds(def_id).subst(self.tcx, substs).iter().find_map(|pred| {
if let ty::PredicateKind::Clause(ty::Clause::Projection(proj)) = pred.kind().skip_binder()
&& Some(proj.projection_ty.def_id) == self.tcx.lang_items().fn_once_output()
// args tuple will always be substs[1]
&& let ty::Tuple(args) = proj.projection_ty.substs.type_at(1).kind()
{
Some((
DefIdOrName::DefId(def_id),
pred.kind().rebind(proj.term.ty().unwrap()),
pred.kind().rebind(args.as_slice()),
))
} else {
None
}
})
}
ty::Dynamic(data, _, ty::Dyn) => {
data.iter().find_map(|pred| {
if let ty::ExistentialPredicate::Projection(proj) = pred.skip_binder()
&& Some(proj.def_id) == self.tcx.lang_items().fn_once_output()
// for existential projection, substs are shifted over by 1
&& let ty::Tuple(args) = proj.substs.type_at(0).kind()
{
Some((
DefIdOrName::Name("trait object"),
pred.rebind(proj.term.ty().unwrap()),
pred.rebind(args.as_slice()),
))
} else {
None
}
})
}
ty::Param(_) => {
obligation.param_env.caller_bounds().iter().find_map(|pred| {
if let ty::PredicateKind::Clause(ty::Clause::Projection(proj)) = pred.kind().skip_binder()
&& Some(proj.projection_ty.def_id) == self.tcx.lang_items().fn_once_output()
&& proj.projection_ty.self_ty() == found
// args tuple will always be substs[1]
&& let ty::Tuple(args) = proj.projection_ty.substs.type_at(1).kind()
{
Some((
DefIdOrName::Name("type parameter"),
pred.kind().rebind(proj.term.ty().unwrap()),
pred.kind().rebind(args.as_slice()),
))
} else {
None
}
})
}
_ => None,
}) else { return false; };
let output = self.replace_bound_vars_with_fresh_vars(
obligation.cause.span,
let self_ty = self.replace_bound_vars_with_fresh_vars(
DUMMY_SP,
LateBoundRegionConversionTime::FnCall,
output,
trait_pred.self_ty(),
);
let inputs = inputs.skip_binder().iter().map(|ty| {
self.replace_bound_vars_with_fresh_vars(
obligation.cause.span,
LateBoundRegionConversionTime::FnCall,
inputs.rebind(*ty),
)
});
let Some((def_id_or_name, output, inputs)) = self.extract_callable_info(
obligation.cause.body_id,
obligation.param_env,
self_ty,
) else { return false; };
// Remapping bound vars here
let trait_pred_and_self = trait_pred.map_bound(|trait_pred| (trait_pred, output));
@ -998,6 +930,7 @@ impl<'tcx> TypeErrCtxtExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
};
let args = inputs
.into_iter()
.map(|ty| {
if ty.is_suggestable(self.tcx, false) {
format!("/* {ty} */")
@ -1161,6 +1094,126 @@ impl<'tcx> TypeErrCtxtExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
false
}
/// Extracts information about a callable type for diagnostics. This is a
/// heuristic -- it doesn't necessarily mean that a type is always callable,
/// because the callable type must also be well-formed to be called.
fn extract_callable_info(
&self,
hir_id: HirId,
param_env: ty::ParamEnv<'tcx>,
found: Ty<'tcx>,
) -> Option<(DefIdOrName, Ty<'tcx>, Vec<Ty<'tcx>>)> {
// Autoderef is useful here because sometimes we box callables, etc.
let Some((def_id_or_name, output, inputs)) = Autoderef::new(
self,
param_env,
hir_id,
DUMMY_SP,
found,
).silence_errors().find_map(|(found, _)| {
match *found.kind() {
ty::FnPtr(fn_sig) =>
Some((DefIdOrName::Name("function pointer"), fn_sig.output(), fn_sig.inputs())),
ty::FnDef(def_id, _) => {
let fn_sig = found.fn_sig(self.tcx);
Some((DefIdOrName::DefId(def_id), fn_sig.output(), fn_sig.inputs()))
}
ty::Closure(def_id, substs) => {
let fn_sig = substs.as_closure().sig();
Some((DefIdOrName::DefId(def_id), fn_sig.output(), fn_sig.inputs().map_bound(|inputs| &inputs[1..])))
}
ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs, .. }) => {
self.tcx.bound_item_bounds(def_id).subst(self.tcx, substs).iter().find_map(|pred| {
if let ty::PredicateKind::Clause(ty::Clause::Projection(proj)) = pred.kind().skip_binder()
&& Some(proj.projection_ty.def_id) == self.tcx.lang_items().fn_once_output()
// args tuple will always be substs[1]
&& let ty::Tuple(args) = proj.projection_ty.substs.type_at(1).kind()
{
Some((
DefIdOrName::DefId(def_id),
pred.kind().rebind(proj.term.ty().unwrap()),
pred.kind().rebind(args.as_slice()),
))
} else {
None
}
})
}
ty::Dynamic(data, _, ty::Dyn) => {
data.iter().find_map(|pred| {
if let ty::ExistentialPredicate::Projection(proj) = pred.skip_binder()
&& Some(proj.def_id) == self.tcx.lang_items().fn_once_output()
// for existential projection, substs are shifted over by 1
&& let ty::Tuple(args) = proj.substs.type_at(0).kind()
{
Some((
DefIdOrName::Name("trait object"),
pred.rebind(proj.term.ty().unwrap()),
pred.rebind(args.as_slice()),
))
} else {
None
}
})
}
ty::Param(param) => {
let generics = self.tcx.generics_of(hir_id.owner.to_def_id());
let name = if generics.count() > param.index as usize
&& let def = generics.param_at(param.index as usize, self.tcx)
&& matches!(def.kind, ty::GenericParamDefKind::Type { .. })
&& def.name == param.name
{
DefIdOrName::DefId(def.def_id)
} else {
DefIdOrName::Name("type parameter")
};
param_env.caller_bounds().iter().find_map(|pred| {
if let ty::PredicateKind::Clause(ty::Clause::Projection(proj)) = pred.kind().skip_binder()
&& Some(proj.projection_ty.def_id) == self.tcx.lang_items().fn_once_output()
&& proj.projection_ty.self_ty() == found
// args tuple will always be substs[1]
&& let ty::Tuple(args) = proj.projection_ty.substs.type_at(1).kind()
{
Some((
name,
pred.kind().rebind(proj.term.ty().unwrap()),
pred.kind().rebind(args.as_slice()),
))
} else {
None
}
})
}
_ => None,
}
}) else { return None; };
let output = self.replace_bound_vars_with_fresh_vars(
DUMMY_SP,
LateBoundRegionConversionTime::FnCall,
output,
);
let inputs = inputs
.skip_binder()
.iter()
.map(|ty| {
self.replace_bound_vars_with_fresh_vars(
DUMMY_SP,
LateBoundRegionConversionTime::FnCall,
inputs.rebind(*ty),
)
})
.collect();
// We don't want to register any extra obligations, which should be
// implied by wf, but also because that would possibly result in
// erroneous errors later on.
let InferOk { value: output, obligations: _ } =
self.at(&ObligationCause::dummy(), param_env).normalize(output);
if output.is_ty_var() { None } else { Some((def_id_or_name, output, inputs)) }
}
fn suggest_add_reference_to_arg(
&self,
obligation: &PredicateObligation<'tcx>,