1
Fork 0

shared_from_iter/Arc: Use specialization to elide allocation.

This commit is contained in:
Mazdak Farrokhzad 2019-06-19 10:23:28 +02:00
parent 59ecff915c
commit b1dbf15bb5

View file

@ -12,6 +12,7 @@ use core::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst};
use core::borrow;
use core::fmt;
use core::cmp::{self, Ordering};
use core::iter;
use core::intrinsics::abort;
use core::mem::{self, align_of, align_of_val, size_of_val};
use core::ops::{Deref, Receiver, CoerceUnsized, DispatchFromDyn};
@ -21,7 +22,7 @@ use core::marker::{Unpin, Unsize, PhantomData};
use core::hash::{Hash, Hasher};
use core::{isize, usize};
use core::convert::From;
use core::slice::from_raw_parts_mut;
use core::slice::{self, from_raw_parts_mut};
use crate::alloc::{Global, Alloc, Layout, box_free, handle_alloc_error};
use crate::boxed::Box;
@ -587,21 +588,28 @@ impl<T: ?Sized> Arc<T> {
}
impl<T: ?Sized> Arc<T> {
// Allocates an `ArcInner<T>` with sufficient space for an unsized value
unsafe fn allocate_for_ptr(ptr: *const T) -> *mut ArcInner<T> {
// Calculate layout using the given value.
// Allocates an `ArcInner<T>` with sufficient space for
// an unsized value where the value has the layout provided.
//
// The function `mem_to_arcinner` is called with the data pointer
// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
unsafe fn allocate_for_unsized(
value_layout: Layout,
mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>
) -> *mut ArcInner<T> {
// Calculate layout using the given value layout.
// Previously, layout was calculated on the expression
// `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
// reference (see #54908).
let layout = Layout::new::<ArcInner<()>>()
.extend(Layout::for_value(&*ptr)).unwrap().0
.extend(value_layout).unwrap().0
.pad_to_align().unwrap();
let mem = Global.alloc(layout)
.unwrap_or_else(|_| handle_alloc_error(layout));
// Initialize the ArcInner
let inner = set_data_ptr(ptr as *mut T, mem.as_ptr() as *mut u8) as *mut ArcInner<T>;
let inner = mem_to_arcinner(mem.as_ptr());
debug_assert_eq!(Layout::for_value(&*inner), layout);
ptr::write(&mut (*inner).strong, atomic::AtomicUsize::new(1));
@ -610,6 +618,15 @@ impl<T: ?Sized> Arc<T> {
inner
}
// Allocates an `ArcInner<T>` with sufficient space for an unsized value
unsafe fn allocate_for_ptr(ptr: *const T) -> *mut ArcInner<T> {
// Allocate for the `ArcInner<T>` using the given value.
Self::allocate_for_unsized(
Layout::for_value(&*ptr),
|mem| set_data_ptr(ptr as *mut T, mem) as *mut ArcInner<T>,
)
}
fn from_box(v: Box<T>) -> Arc<T> {
unsafe {
let box_unique = Box::into_unique(v);
@ -632,6 +649,32 @@ impl<T: ?Sized> Arc<T> {
}
}
impl<T> Arc<[T]> {
// Allocates an `ArcInner<[T]>` with the given length.
unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
// FIXME(#60667): Deduplicate.
fn slice_from_raw_parts_mut<T>(data: *mut T, len: usize) -> *mut [T] {
#[repr(C)]
union Repr<T> {
rust_mut: *mut [T],
raw: FatPtr<T>,
}
#[repr(C)]
struct FatPtr<T> {
data: *const T,
len: usize,
}
unsafe { Repr { raw: FatPtr { data, len } }.rust_mut }
}
Self::allocate_for_unsized(
Layout::array::<T>(len).unwrap(),
|mem| slice_from_raw_parts_mut(mem as *mut T, len) as *mut ArcInner<[T]>,
)
}
}
// Sets the data pointer of a `?Sized` raw pointer.
//
// For a slice/trait object, this sets the `data` field and leaves the rest
@ -646,8 +689,7 @@ impl<T> Arc<[T]> {
//
// Unsafe because the caller must either take ownership or bind `T: Copy`
unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
let v_ptr = v as *const [T];
let ptr = Self::allocate_for_ptr(v_ptr);
let ptr = Self::allocate_for_slice(v.len());
ptr::copy_nonoverlapping(
v.as_ptr(),
@ -656,16 +698,11 @@ impl<T> Arc<[T]> {
Self::from_ptr(ptr)
}
}
// Specialization trait used for From<&[T]>
trait ArcFromSlice<T> {
fn from_slice(slice: &[T]) -> Self;
}
impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
#[inline]
default fn from_slice(v: &[T]) -> Self {
/// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
///
/// Behavior is undefined should the size be wrong.
unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Arc<[T]> {
// Panic guard while cloning T elements.
// In the event of a panic, elements that have been written
// into the new ArcInner will be dropped, then the memory freed.
@ -687,32 +724,43 @@ impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
}
}
let ptr = Self::allocate_for_slice(len);
let mem = ptr as *mut _ as *mut u8;
let layout = Layout::for_value(&*ptr);
// Pointer to first element
let elems = &mut (*ptr).data as *mut [T] as *mut T;
let mut guard = Guard {
mem: NonNull::new_unchecked(mem),
elems,
layout,
n_elems: 0,
};
for (i, item) in iter.enumerate() {
ptr::write(elems.add(i), item);
guard.n_elems += 1;
}
// All clear. Forget the guard so it doesn't free the new ArcInner.
mem::forget(guard);
Self::from_ptr(ptr)
}
}
// Specialization trait used for From<&[T]>
trait ArcFromSlice<T> {
fn from_slice(slice: &[T]) -> Self;
}
impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
#[inline]
default fn from_slice(v: &[T]) -> Self {
unsafe {
let v_ptr = v as *const [T];
let ptr = Self::allocate_for_ptr(v_ptr);
let mem = ptr as *mut _ as *mut u8;
let layout = Layout::for_value(&*ptr);
// Pointer to first element
let elems = &mut (*ptr).data as *mut [T] as *mut T;
let mut guard = Guard{
mem: NonNull::new_unchecked(mem),
elems: elems,
layout: layout,
n_elems: 0,
};
for (i, item) in v.iter().enumerate() {
ptr::write(elems.add(i), item.clone());
guard.n_elems += 1;
}
// All clear. Forget the guard so it doesn't free the new ArcInner.
mem::forget(guard);
Self::from_ptr(ptr)
Self::from_iter_exact(v.iter().cloned(), v.len())
}
}
}
@ -1792,9 +1840,88 @@ impl<T> From<Vec<T>> for Arc<[T]> {
}
#[stable(feature = "shared_from_iter", since = "1.37.0")]
impl<T> core::iter::FromIterator<T> for Arc<[T]> {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
iter.into_iter().collect::<Vec<T>>().into()
impl<T> iter::FromIterator<T> for Arc<[T]> {
/// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
///
/// # Performance characteristics
///
/// ## The general case
///
/// In the general case, collecting into `Arc<[T]>` is done by first
/// collecting into a `Vec<T>`. That is, when writing the following:
///
/// ```rust
/// # use std::sync::Arc;
/// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
/// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
/// ```
///
/// this behaves as if we wrote:
///
/// ```rust
/// # use std::sync::Arc;
/// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
/// .collect::<Vec<_>>() // The first set of allocations happens here.
/// .into(); // A second allocation for `Arc<[T]>` happens here.
/// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
/// ```
///
/// This will allocate as many times as needed for constructing the `Vec<T>`
/// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
///
/// ## Iterators of known length
///
/// When your `Iterator` implements `TrustedLen` and is of an exact size,
/// a single allocation will be made for the `Arc<[T]>`. For example:
///
/// ```rust
/// # use std::sync::Arc;
/// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
/// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
/// ```
fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self {
ArcFromIter::from_iter(iter.into_iter())
}
}
/// Specialization trait used for collecting into `Arc<[T]>`.
trait ArcFromIter<T, I> {
fn from_iter(iter: I) -> Self;
}
impl<T, I: Iterator<Item = T>> ArcFromIter<T, I> for Arc<[T]> {
default fn from_iter(iter: I) -> Self {
iter.collect::<Vec<T>>().into()
}
}
impl<T, I: iter::TrustedLen<Item = T>> ArcFromIter<T, I> for Arc<[T]> {
default fn from_iter(iter: I) -> Self {
// This is the case for a `TrustedLen` iterator.
let (low, high) = iter.size_hint();
if let Some(high) = high {
debug_assert_eq!(
low, high,
"TrustedLen iterator's size hint is not exact: {:?}",
(low, high)
);
unsafe {
// SAFETY: We need to ensure that the iterator has an exact length and we have.
Arc::from_iter_exact(iter, low)
}
} else {
// Fall back to normal implementation.
iter.collect::<Vec<T>>().into()
}
}
}
impl<'a, T: 'a + Clone> ArcFromIter<&'a T, slice::Iter<'a, T>> for Arc<[T]> {
fn from_iter(iter: slice::Iter<'a, T>) -> Self {
// Delegate to `impl<T: Clone> From<&[T]> for Arc<[T]>`
// which will use `ptr::copy_nonoverlapping`.
iter.as_slice().into()
}
}