Extend SCC construction to enable extra functionality

This patch has been extracted from #123720. It specifically enhances
`Sccs` to allow tracking arbitrary commutative properties of SCCs, including
- reachable values (max/min)
- SCC-internal values (max/min)

This helps with among other things universe computation: we can now identify
SCC universes as a straightforward "find max/min" operation during SCC construction.

It's also more or less zero-cost; don't use the new features, don't pay for them.

This commit also vastly extends the documentation of the SCCs module, which I had a very hard time following.
This commit is contained in:
Amanda Stjerna 2024-05-13 13:47:45 +02:00
parent bbe9a9c20b
commit b1ace388c0
6 changed files with 630 additions and 342 deletions

View file

@ -4,54 +4,111 @@
//! node in the graph. This uses [Tarjan's algorithm](
//! https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm)
//! that completes in *O*(*n*) time.
//! Optionally, also annotate the SCC nodes with some commutative data.
//! Typical examples would include: minimum element in SCC, maximum element
//! reachable from it, etc.
use crate::fx::FxHashSet;
use crate::graph::vec_graph::VecGraph;
use crate::graph::{DirectedGraph, NumEdges, Successors};
use rustc_index::{Idx, IndexSlice, IndexVec};
use std::fmt::Debug;
use std::ops::Range;
use tracing::{debug, instrument};
#[cfg(test)]
mod tests;
/// An annotation for an SCC. This can be a representative,
/// or the max/min element of the SCC, or all of the above.
pub trait Annotation: Debug + Copy {
/// Merge two existing annotations into one during
/// path compression.
fn merge_scc(self, other: Self) -> Self;
/// Merge a successor into this annotation.
fn merge_reached(self, other: Self) -> Self;
fn update_scc(&mut self, other: Self) {
*self = self.merge_scc(other)
}
fn update_reachable(&mut self, other: Self) {
*self = self.merge_reached(other)
}
}
/// The empty annotation, which does nothing.
impl Annotation for () {
fn merge_reached(self, _other: Self) -> Self {
()
}
fn merge_scc(self, _other: Self) -> Self {
()
}
}
/// Strongly connected components (SCC) of a graph. The type `N` is
/// the index type for the graph nodes and `S` is the index type for
/// the SCCs. We can map from each node to the SCC that it
/// participates in, and we also have the successors of each SCC.
pub struct Sccs<N: Idx, S: Idx> {
pub struct Sccs<N: Idx, S: Idx, A: Annotation> {
/// For each node, what is the SCC index of the SCC to which it
/// belongs.
scc_indices: IndexVec<N, S>,
/// Data about each SCC.
scc_data: SccData<S>,
/// Data about all the SCCs.
scc_data: SccData<S, A>,
}
pub struct SccData<S: Idx> {
/// For each SCC, the range of `all_successors` where its
/// Information about an invidividual SCC node.
struct SccDetails<A: Annotation> {
/// For this SCC, the range of `all_successors` where its
/// successors can be found.
ranges: IndexVec<S, Range<usize>>,
range: Range<usize>,
/// User-specified metadata about the SCC.
annotation: A,
}
// The name of this struct should discourage you from making it public and leaking
// its representation. This message was left here by one who came before you,
// who learnt the hard way that making even small changes in representation is difficult when it's publicly inspectable. Obey the law of Demeter!
struct SccData<S: Idx, A: Annotation> {
/// Maps SCC indices to their metadata, including
/// offsets into `all_successors`.
scc_details: IndexVec<S, SccDetails<A>>,
/// Contains the successors for all the Sccs, concatenated. The
/// range of indices corresponding to a given SCC is found in its
/// SccData.
/// `scc_details.range`.
all_successors: Vec<S>,
}
impl<N: Idx, S: Idx + Ord> Sccs<N, S> {
impl<N: Idx, S: Idx + Ord> Sccs<N, S, ()> {
/// Compute SCCs without annotations.
pub fn new(graph: &impl Successors<Node = N>) -> Self {
SccsConstruction::construct(graph)
Self::new_with_annotation(graph, |_| ())
}
}
impl<N: Idx, S: Idx + Ord, A: Annotation> Sccs<N, S, A> {
/// Compute SCCs and annotate them with a user-supplied annotation
pub fn new_with_annotation<F: Fn(N) -> A>(
graph: &impl Successors<Node = N>,
to_annotation: F,
) -> Self {
SccsConstruction::construct(graph, to_annotation)
}
pub fn annotation(&self, scc: S) -> A {
self.scc_data.annotation(scc)
}
pub fn scc_indices(&self) -> &IndexSlice<N, S> {
&self.scc_indices
}
pub fn scc_data(&self) -> &SccData<S> {
&self.scc_data
}
/// Returns the number of SCCs in the graph.
pub fn num_sccs(&self) -> usize {
self.scc_data.len()
@ -90,7 +147,7 @@ impl<N: Idx, S: Idx + Ord> Sccs<N, S> {
}
}
impl<N: Idx, S: Idx + Ord> DirectedGraph for Sccs<N, S> {
impl<N: Idx, S: Idx + Ord, A: Annotation> DirectedGraph for Sccs<N, S, A> {
type Node = S;
fn num_nodes(&self) -> usize {
@ -98,43 +155,33 @@ impl<N: Idx, S: Idx + Ord> DirectedGraph for Sccs<N, S> {
}
}
impl<N: Idx, S: Idx + Ord> NumEdges for Sccs<N, S> {
impl<N: Idx, S: Idx + Ord, A: Annotation> NumEdges for Sccs<N, S, A> {
fn num_edges(&self) -> usize {
self.scc_data.all_successors.len()
}
}
impl<N: Idx, S: Idx + Ord> Successors for Sccs<N, S> {
impl<N: Idx, S: Idx + Ord, A: Annotation> Successors for Sccs<N, S, A> {
fn successors(&self, node: S) -> impl Iterator<Item = Self::Node> {
self.successors(node).iter().cloned()
}
}
impl<S: Idx> SccData<S> {
impl<S: Idx, A: Annotation> SccData<S, A> {
/// Number of SCCs,
fn len(&self) -> usize {
self.ranges.len()
}
pub fn ranges(&self) -> &IndexSlice<S, Range<usize>> {
&self.ranges
}
pub fn all_successors(&self) -> &Vec<S> {
&self.all_successors
self.scc_details.len()
}
/// Returns the successors of the given SCC.
fn successors(&self, scc: S) -> &[S] {
// Annoyingly, `range` does not implement `Copy`, so we have
// to do `range.start..range.end`:
let range = &self.ranges[scc];
&self.all_successors[range.start..range.end]
&self.all_successors[self.scc_details[scc].range.clone()]
}
/// Creates a new SCC with `successors` as its successors and
/// the maximum weight of its internal nodes `scc_max_weight` and
/// returns the resulting index.
fn create_scc(&mut self, successors: impl IntoIterator<Item = S>) -> S {
fn create_scc(&mut self, successors: impl IntoIterator<Item = S>, annotation: A) -> S {
// Store the successors on `scc_successors_vec`, remembering
// the range of indices.
let all_successors_start = self.all_successors.len();
@ -142,22 +189,35 @@ impl<S: Idx> SccData<S> {
let all_successors_end = self.all_successors.len();
debug!(
"create_scc({:?}) successors={:?}",
self.ranges.len(),
"create_scc({:?}) successors={:?}, annotation={:?}",
self.len(),
&self.all_successors[all_successors_start..all_successors_end],
annotation
);
self.ranges.push(all_successors_start..all_successors_end)
let range = all_successors_start..all_successors_end;
let metadata = SccDetails { range, annotation };
self.scc_details.push(metadata)
}
fn annotation(&self, scc: S) -> A {
self.scc_details[scc].annotation
}
}
struct SccsConstruction<'c, G: DirectedGraph + Successors, S: Idx> {
struct SccsConstruction<'c, G, S, A, F>
where
G: DirectedGraph + Successors,
S: Idx,
A: Annotation,
F: Fn(G::Node) -> A,
{
graph: &'c G,
/// The state of each node; used during walk to record the stack
/// and after walk to record what cycle each node ended up being
/// in.
node_states: IndexVec<G::Node, NodeState<G::Node, S>>,
node_states: IndexVec<G::Node, NodeState<G::Node, S, A>>,
/// The stack of nodes that we are visiting as part of the DFS.
node_stack: Vec<G::Node>,
@ -174,26 +234,34 @@ struct SccsConstruction<'c, G: DirectedGraph + Successors, S: Idx> {
/// around between successors to amortize memory allocation costs.
duplicate_set: FxHashSet<S>,
scc_data: SccData<S>,
scc_data: SccData<S, A>,
/// A function that constructs an initial SCC annotation
/// out of a single node.
to_annotation: F,
}
#[derive(Copy, Clone, Debug)]
enum NodeState<N, S> {
enum NodeState<N, S, A> {
/// This node has not yet been visited as part of the DFS.
///
/// After SCC construction is complete, this state ought to be
/// impossible.
NotVisited,
/// This node is currently being walk as part of our DFS. It is on
/// the stack at the depth `depth`.
/// This node is currently being walked as part of our DFS. It is on
/// the stack at the depth `depth` and the heaviest node on the way
/// there is `max_weigth_on_path`.
///
/// After SCC construction is complete, this state ought to be
/// impossible.
BeingVisited { depth: usize },
BeingVisited { depth: usize, annotation: A },
/// Indicates that this node is a member of the given cycle.
InCycle { scc_index: S },
/// Indicates that this node is a member of the given cycle where
/// the weight of the heaviest node is `cycle_max_weight`.
/// Note that an SCC can have several cycles, so the max
/// weight of an SCC is the max weight of all its cycles.
InCycle { scc_index: S, annotation: A },
/// Indicates that this node is a member of whatever cycle
/// `parent` is a member of. This state is transient: whenever we
@ -203,16 +271,27 @@ enum NodeState<N, S> {
InCycleWith { parent: N },
}
/// The state of walking a given node.
#[derive(Copy, Clone, Debug)]
enum WalkReturn<S> {
Cycle { min_depth: usize },
Complete { scc_index: S },
enum WalkReturn<S, A> {
/// The walk found a cycle, but the entire component is not known to have
/// been fully walked yet. We only know the minimum depth of this
/// component in a minimum spanning tree of the graph. This component
/// is tentatively represented by the state of the first node of this
/// cycle we met, which is at `min_depth`.
Cycle { min_depth: usize, annotation: A },
/// The SCC and everything reachable from it have been fully walked.
/// At this point we know what is inside the SCC as we have visited every
/// node reachable from it. The SCC can now be fully represented by its ID.
Complete { scc_index: S, annotation: A },
}
impl<'c, G, S> SccsConstruction<'c, G, S>
impl<'c, G, S, A, F> SccsConstruction<'c, G, S, A, F>
where
G: DirectedGraph + Successors,
S: Idx,
F: Fn(G::Node) -> A,
A: Annotation,
{
/// Identifies SCCs in the graph `G` and computes the resulting
/// DAG. This uses a variant of [Tarjan's
@ -225,8 +304,12 @@ where
/// D' (i.e., D' < D), we know that N, N', and all nodes in
/// between them on the stack are part of an SCC.
///
/// Additionally, we keep track of a representative of the SCC with the highest
/// reachable weight for all SCCs, for some arbitrary ordering function that assigns
/// a weight to nodes.
///
/// [wikipedia]: https://bit.ly/2EZIx84
fn construct(graph: &'c G) -> Sccs<G::Node, S> {
fn construct(graph: &'c G, to_annotation: F) -> Sccs<G::Node, S, A> {
let num_nodes = graph.num_nodes();
let mut this = Self {
@ -234,15 +317,16 @@ where
node_states: IndexVec::from_elem_n(NodeState::NotVisited, num_nodes),
node_stack: Vec::with_capacity(num_nodes),
successors_stack: Vec::new(),
scc_data: SccData { ranges: IndexVec::new(), all_successors: Vec::new() },
scc_data: SccData { scc_details: IndexVec::new(), all_successors: Vec::new() },
duplicate_set: FxHashSet::default(),
to_annotation,
};
let scc_indices = (0..num_nodes)
.map(G::Node::new)
.map(|node| match this.start_walk_from(node) {
WalkReturn::Complete { scc_index } => scc_index,
WalkReturn::Cycle { min_depth } => {
WalkReturn::Complete { scc_index, .. } => scc_index,
WalkReturn::Cycle { min_depth, .. } => {
panic!("`start_walk_node({node:?})` returned cycle with depth {min_depth:?}")
}
})
@ -251,12 +335,8 @@ where
Sccs { scc_indices, scc_data: this.scc_data }
}
fn start_walk_from(&mut self, node: G::Node) -> WalkReturn<S> {
if let Some(result) = self.inspect_node(node) {
result
} else {
self.walk_unvisited_node(node)
}
fn start_walk_from(&mut self, node: G::Node) -> WalkReturn<S, A> {
self.inspect_node(node).unwrap_or_else(|| self.walk_unvisited_node(node))
}
/// Inspect a node during the DFS. We first examine its current
@ -271,11 +351,15 @@ where
/// Otherwise, we are looking at a node that has already been
/// completely visited. We therefore return `WalkReturn::Complete`
/// with its associated SCC index.
fn inspect_node(&mut self, node: G::Node) -> Option<WalkReturn<S>> {
fn inspect_node(&mut self, node: G::Node) -> Option<WalkReturn<S, A>> {
Some(match self.find_state(node) {
NodeState::InCycle { scc_index } => WalkReturn::Complete { scc_index },
NodeState::InCycle { scc_index, annotation } => {
WalkReturn::Complete { scc_index, annotation }
}
NodeState::BeingVisited { depth: min_depth } => WalkReturn::Cycle { min_depth },
NodeState::BeingVisited { depth: min_depth, annotation } => {
WalkReturn::Cycle { min_depth, annotation }
}
NodeState::NotVisited => return None,
@ -290,7 +374,7 @@ where
/// of `r2` (and updates `r` to reflect current result). This is
/// basically the "find" part of a standard union-find algorithm
/// (with path compression).
fn find_state(&mut self, mut node: G::Node) -> NodeState<G::Node, S> {
fn find_state(&mut self, mut node: G::Node) -> NodeState<G::Node, S, A> {
// To avoid recursion we temporarily reuse the `parent` of each
// InCycleWith link to encode a downwards link while compressing
// the path. After we have found the root or deepest node being
@ -306,24 +390,42 @@ where
// found the initial self-loop.
let mut previous_node = node;
// Ultimately assigned by the parent when following
// Ultimately propagated to all the transitive parents when following
// `InCycleWith` upwards.
let node_state = loop {
debug!("find_state(r = {:?} in state {:?})", node, self.node_states[node]);
match self.node_states[node] {
NodeState::InCycle { scc_index } => break NodeState::InCycle { scc_index },
NodeState::BeingVisited { depth } => break NodeState::BeingVisited { depth },
NodeState::NotVisited => break NodeState::NotVisited,
NodeState::InCycleWith { parent } => {
// We test this, to be extremely sure that we never
// ever break our termination condition for the
// reverse iteration loop.
assert!(node != parent, "Node can not be in cycle with itself");
// Store the previous node as an inverted list link
self.node_states[node] = NodeState::InCycleWith { parent: previous_node };
// Update to parent node.
previous_node = node;
node = parent;
// This loop performs the downward link encoding mentioned above. Details below!
let node_state = {
let mut annotation = (self.to_annotation)(node);
loop {
debug!("find_state(r = {node:?} in state {:?})", self.node_states[node]);
match self.node_states[node] {
NodeState::NotVisited => break NodeState::NotVisited,
NodeState::BeingVisited { depth, annotation: previous_annotation } => {
break NodeState::BeingVisited {
depth,
annotation: previous_annotation.merge_scc(annotation),
};
}
NodeState::InCycleWith { parent } => {
// We test this, to be extremely sure that we never
// ever break our termination condition for the
// reverse iteration loop.
assert!(node != parent, "Node can not be in cycle with itself");
annotation = annotation.merge_scc((self.to_annotation)(node));
// Store the previous node as an inverted list link
self.node_states[node] = NodeState::InCycleWith { parent: previous_node };
// Update to parent node.
previous_node = node;
node = parent;
}
NodeState::InCycle { scc_index, annotation: previous_annotation } => {
break NodeState::InCycle {
scc_index,
annotation: previous_annotation.merge_scc(annotation),
};
}
}
}
};
@ -369,6 +471,8 @@ where
if previous_node == node {
return node_state;
}
debug!("Compressing {node:?} down to {previous_node:?} with state {node_state:?}");
// Update to previous node in the link.
match self.node_states[previous_node] {
NodeState::InCycleWith { parent: previous } => {
@ -381,29 +485,20 @@ where
debug!("find_state: parent_state = {:?}", node_state);
// Update the node state from the parent state. The assigned
// state is actually a loop invariant but it will only be
// evaluated if there is at least one backlink to follow.
// Fully trusting llvm here to find this loop optimization.
match node_state {
// Path compression, make current node point to the same root.
NodeState::InCycle { .. } => {
self.node_states[node] = node_state;
}
// Still visiting nodes, compress to cycle to the node
let new_state = match node_state {
// Still visiting nodes, compress the cycle to the root node
// at that depth.
NodeState::BeingVisited { depth } => {
self.node_states[node] =
NodeState::InCycleWith { parent: self.node_stack[depth] };
NodeState::BeingVisited { depth, .. } => {
let parent = self.node_stack[depth];
NodeState::InCycleWith { parent }
}
// These are never allowed as parent nodes. InCycleWith
// should have been followed to a real parent and
// NotVisited can not be part of a cycle since it should
// have instead gotten explored.
NodeState::NotVisited | NodeState::InCycleWith { .. } => {
panic!("invalid parent state: {node_state:?}")
}
}
// Already fully visited; we just transfer the state of the parent.
s @ NodeState::InCycle { .. } => s,
// These cannot be the root nodes of a path being compressed
NodeState::NotVisited | NodeState::InCycleWith { .. } => unreachable!(),
};
self.node_states[node] = new_state;
}
}
@ -413,30 +508,37 @@ where
/// caller decide avoids mutual recursion between the two methods and allows
/// us to maintain an allocated stack for nodes on the path between calls.
#[instrument(skip(self, initial), level = "debug")]
fn walk_unvisited_node(&mut self, initial: G::Node) -> WalkReturn<S> {
struct VisitingNodeFrame<G: DirectedGraph, Successors> {
fn walk_unvisited_node(&mut self, initial: G::Node) -> WalkReturn<S, A> {
debug!("Walk unvisited node: {initial:?}");
struct VisitingNodeFrame<G: DirectedGraph, Successors, A> {
node: G::Node,
iter: Option<Successors>,
successors: Option<Successors>,
depth: usize,
min_depth: usize,
successors_len: usize,
min_cycle_root: G::Node,
successor_node: G::Node,
/// The annotation for the SCC starting in `node`. It may or may
/// not contain other nodes.
current_component_annotation: A,
}
// Move the stack to a local variable. We want to utilize the existing allocation and
// mutably borrow it without borrowing self at the same time.
let mut successors_stack = core::mem::take(&mut self.successors_stack);
debug_assert_eq!(successors_stack.len(), 0);
let mut stack: Vec<VisitingNodeFrame<G, _>> = vec![VisitingNodeFrame {
let mut stack: Vec<VisitingNodeFrame<G, _, _>> = vec![VisitingNodeFrame {
node: initial,
depth: 0,
min_depth: 0,
iter: None,
successors: None,
successors_len: 0,
min_cycle_root: initial,
successor_node: initial,
// Strictly speaking not necessary, but assumed to be idempotent:
current_component_annotation: (self.to_annotation)(initial),
}];
let mut return_value = None;
@ -445,18 +547,24 @@ where
let VisitingNodeFrame {
node,
depth,
iter,
successors,
successors_len,
min_depth,
min_cycle_root,
successor_node,
current_component_annotation,
} = frame;
let node = *node;
let depth = *depth;
let successors = match iter {
Some(iter) => iter,
// node is definitely in the current component, add it to the annotation.
current_component_annotation.update_scc((self.to_annotation)(node));
debug!(
"Visiting {node:?} at depth {depth:?}, annotation: {current_component_annotation:?}"
);
let successors = match successors {
Some(successors) => successors,
None => {
// This None marks that we still have the initialize this node's frame.
debug!(?depth, ?node);
@ -464,7 +572,8 @@ where
debug_assert!(matches!(self.node_states[node], NodeState::NotVisited));
// Push `node` onto the stack.
self.node_states[node] = NodeState::BeingVisited { depth };
self.node_states[node] =
NodeState::BeingVisited { depth, annotation: (self.to_annotation)(node) };
self.node_stack.push(node);
// Walk each successor of the node, looking to see if any of
@ -472,11 +581,11 @@ where
// so, that means they can also reach us.
*successors_len = successors_stack.len();
// Set and return a reference, this is currently empty.
iter.get_or_insert(self.graph.successors(node))
successors.get_or_insert(self.graph.successors(node))
}
};
// Now that iter is initialized, this is a constant for this frame.
// Now that the successors iterator is initialized, this is a constant for this frame.
let successors_len = *successors_len;
// Construct iterators for the nodes and walk results. There are two cases:
@ -489,10 +598,17 @@ where
debug!(?node, ?successor_node);
(successor_node, self.inspect_node(successor_node))
});
for (successor_node, walk) in returned_walk.chain(successor_walk) {
match walk {
Some(WalkReturn::Cycle { min_depth: successor_min_depth }) => {
// The starting node `node` leads to a cycle whose earliest node,
// `successor_node`, is at `min_depth`. There may be more cycles.
Some(WalkReturn::Cycle {
min_depth: successor_min_depth,
annotation: successor_annotation,
}) => {
debug!(
"Cycle found from {node:?}, minimum depth: {successor_min_depth:?}, annotation: {successor_annotation:?}"
);
// Track the minimum depth we can reach.
assert!(successor_min_depth <= depth);
if successor_min_depth < *min_depth {
@ -500,41 +616,56 @@ where
*min_depth = successor_min_depth;
*min_cycle_root = successor_node;
}
current_component_annotation.update_scc(successor_annotation);
}
Some(WalkReturn::Complete { scc_index: successor_scc_index }) => {
// The starting node `node` is succeeded by a fully identified SCC
// which is now added to the set under `scc_index`.
Some(WalkReturn::Complete {
scc_index: successor_scc_index,
annotation: successor_annotation,
}) => {
debug!(
"Complete; {node:?} is root of complete-visited SCC idx {successor_scc_index:?} with annotation {successor_annotation:?}"
);
// Push the completed SCC indices onto
// the `successors_stack` for later.
debug!(?node, ?successor_scc_index);
successors_stack.push(successor_scc_index);
current_component_annotation.update_reachable(successor_annotation);
}
// `node` has no more (direct) successors; search recursively.
None => {
let depth = depth + 1;
debug!("Recursing down into {successor_node:?} at depth {depth:?}");
debug!(?depth, ?successor_node);
// Remember which node the return value will come from.
frame.successor_node = successor_node;
// Start a new stack frame the step into it.
// Start a new stack frame, then step into it.
stack.push(VisitingNodeFrame {
node: successor_node,
depth,
iter: None,
successors: None,
successors_len: 0,
min_depth: depth,
min_cycle_root: successor_node,
successor_node,
current_component_annotation: (self.to_annotation)(successor_node),
});
continue 'recurse;
}
}
}
debug!("Finished walk from {node:?} with annotation: {current_component_annotation:?}");
// Completed walk, remove `node` from the stack.
let r = self.node_stack.pop();
debug_assert_eq!(r, Some(node));
// Remove the frame, it's done.
let frame = stack.pop().unwrap();
let current_component_annotation = frame.current_component_annotation;
debug_assert_eq!(frame.node, node);
// If `min_depth == depth`, then we are the root of the
// cycle: we can't reach anyone further down the stack.
@ -543,6 +674,8 @@ where
// We return one frame at a time so there can't be another return value.
debug_assert!(return_value.is_none());
return_value = Some(if frame.min_depth == depth {
// We are at the head of the component.
// Note that successor stack may have duplicates, so we
// want to remove those:
let deduplicated_successors = {
@ -552,15 +685,25 @@ where
.drain(successors_len..)
.filter(move |&i| duplicate_set.insert(i))
};
let scc_index = self.scc_data.create_scc(deduplicated_successors);
self.node_states[node] = NodeState::InCycle { scc_index };
WalkReturn::Complete { scc_index }
debug!("Creating SCC rooted in {node:?} with successor {:?}", frame.successor_node);
let scc_index =
self.scc_data.create_scc(deduplicated_successors, current_component_annotation);
self.node_states[node] =
NodeState::InCycle { scc_index, annotation: current_component_annotation };
WalkReturn::Complete { scc_index, annotation: current_component_annotation }
} else {
// We are not the head of the cycle. Return back to our
// caller. They will take ownership of the
// `self.successors` data that we pushed.
self.node_states[node] = NodeState::InCycleWith { parent: frame.min_cycle_root };
WalkReturn::Cycle { min_depth: frame.min_depth }
WalkReturn::Cycle {
min_depth: frame.min_depth,
annotation: current_component_annotation,
}
});
}

View file

@ -3,10 +3,53 @@ extern crate test;
use super::*;
use crate::graph::tests::TestGraph;
#[derive(Copy, Clone, Debug)]
struct MaxReached(usize);
type UsizeSccs = Sccs<usize, usize, ()>;
type MaxReachedSccs = Sccs<usize, usize, MaxReached>;
impl Annotation for MaxReached {
fn merge_scc(self, other: Self) -> Self {
Self(std::cmp::max(other.0, self.0))
}
fn merge_reached(self, other: Self) -> Self {
self.merge_scc(other)
}
}
impl PartialEq<usize> for MaxReached {
fn eq(&self, other: &usize) -> bool {
&self.0 == other
}
}
impl MaxReached {
fn from_usize(nr: usize) -> Self {
Self(nr)
}
}
#[derive(Copy, Clone, Debug)]
struct MinMaxIn {
min: usize,
max: usize,
}
impl Annotation for MinMaxIn {
fn merge_scc(self, other: Self) -> Self {
Self { min: std::cmp::min(self.min, other.min), max: std::cmp::max(self.max, other.max) }
}
fn merge_reached(self, _other: Self) -> Self {
self
}
}
#[test]
fn diamond() {
let graph = TestGraph::new(0, &[(0, 1), (0, 2), (1, 3), (2, 3)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 4);
assert_eq!(sccs.num_sccs(), 4);
}
@ -34,7 +77,7 @@ fn test_big_scc() {
+-- 2 <--+
*/
let graph = TestGraph::new(0, &[(0, 1), (1, 2), (1, 3), (2, 0), (3, 2)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 1);
}
@ -50,7 +93,7 @@ fn test_three_sccs() {
+-- 2 <--+
*/
let graph = TestGraph::new(0, &[(0, 1), (1, 2), (2, 1), (3, 2)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 3);
assert_eq!(sccs.scc(0), 1);
assert_eq!(sccs.scc(1), 0);
@ -106,7 +149,7 @@ fn test_find_state_2() {
// 2 InCycleWith { 1 }
// 3 InCycleWith { 0 }
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 1);
assert_eq!(sccs.scc(0), 0);
assert_eq!(sccs.scc(1), 0);
@ -130,7 +173,7 @@ fn test_find_state_3() {
*/
let graph =
TestGraph::new(0, &[(0, 1), (0, 4), (1, 2), (1, 3), (2, 1), (3, 0), (4, 2), (5, 2)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 2);
assert_eq!(sccs.scc(0), 0);
assert_eq!(sccs.scc(1), 0);
@ -165,7 +208,7 @@ fn test_deep_linear() {
nodes.push((i - 1, i));
}
let graph = TestGraph::new(0, nodes.as_slice());
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), NR_NODES);
assert_eq!(sccs.scc(0), NR_NODES - 1);
assert_eq!(sccs.scc(NR_NODES - 1), 0);
@ -210,7 +253,164 @@ fn bench_sccc(b: &mut test::Bencher) {
graph[21] = (7, 4);
let graph = TestGraph::new(0, &graph[..]);
b.iter(|| {
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 3);
});
}
#[test]
fn test_max_self_loop() {
let graph = TestGraph::new(0, &[(0, 0)]);
let sccs: MaxReachedSccs =
Sccs::new_with_annotation(&graph, |n| if n == 0 { MaxReached(17) } else { MaxReached(0) });
assert_eq!(sccs.annotation(0), 17);
}
#[test]
fn test_max_branch() {
let graph = TestGraph::new(0, &[(0, 1), (0, 2), (1, 3), (2, 4)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, MaxReached::from_usize);
assert_eq!(sccs.annotation(sccs.scc(0)), 4);
assert_eq!(sccs.annotation(sccs.scc(1)), 3);
assert_eq!(sccs.annotation(sccs.scc(2)), 4);
}
#[test]
fn test_single_cycle_max() {
let graph = TestGraph::new(0, &[(0, 2), (2, 3), (2, 4), (4, 1), (1, 2)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, MaxReached::from_usize);
assert_eq!(sccs.annotation(sccs.scc(2)), 4);
assert_eq!(sccs.annotation(sccs.scc(0)), 4);
}
#[test]
fn test_simple_cycle_max() {
let graph = TestGraph::new(0, &[(0, 1), (1, 2), (2, 0)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, MaxReached::from_usize);
assert_eq!(sccs.num_sccs(), 1);
}
#[test]
fn test_double_cycle_max() {
let graph =
TestGraph::new(0, &[(0, 1), (1, 2), (1, 4), (2, 3), (2, 4), (3, 5), (4, 1), (5, 4)]);
let sccs: MaxReachedSccs =
Sccs::new_with_annotation(&graph, |n| if n == 5 { MaxReached(2) } else { MaxReached(1) });
assert_eq!(sccs.annotation(sccs.scc(0)).0, 2);
}
#[test]
fn test_bug_minimised() {
let graph = TestGraph::new(0, &[(0, 3), (0, 1), (3, 2), (2, 3), (1, 4), (4, 5), (5, 4)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, |n| match n {
3 => MaxReached(1),
_ => MaxReached(0),
});
assert_eq!(sccs.annotation(sccs.scc(2)), 1);
assert_eq!(sccs.annotation(sccs.scc(1)), 0);
assert_eq!(sccs.annotation(sccs.scc(4)), 0);
}
#[test]
fn test_bug_max_leak_minimised() {
let graph = TestGraph::new(0, &[(0, 1), (0, 2), (1, 3), (3, 0), (3, 4), (4, 3)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, |w| match w {
4 => MaxReached(1),
_ => MaxReached(0),
});
assert_eq!(sccs.annotation(sccs.scc(2)), 0);
assert_eq!(sccs.annotation(sccs.scc(3)), 1);
assert_eq!(sccs.annotation(sccs.scc(0)), 1);
}
#[test]
fn test_bug_max_leak() {
let graph = TestGraph::new(
8,
&[
(0, 0),
(0, 18),
(0, 19),
(0, 1),
(0, 2),
(0, 7),
(0, 8),
(0, 23),
(18, 0),
(18, 12),
(19, 0),
(19, 25),
(12, 18),
(12, 3),
(12, 5),
(3, 12),
(3, 21),
(3, 22),
(5, 13),
(21, 3),
(22, 3),
(13, 5),
(13, 4),
(4, 13),
(4, 0),
(2, 11),
(7, 6),
(6, 20),
(20, 6),
(8, 17),
(17, 9),
(9, 16),
(16, 26),
(26, 15),
(15, 10),
(10, 14),
(14, 27),
(23, 24),
],
);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, |w| match w {
22 => MaxReached(1),
24 => MaxReached(2),
27 => MaxReached(2),
_ => MaxReached(0),
});
assert_eq!(sccs.annotation(sccs.scc(2)), 0);
assert_eq!(sccs.annotation(sccs.scc(7)), 0);
assert_eq!(sccs.annotation(sccs.scc(8)), 2);
assert_eq!(sccs.annotation(sccs.scc(23)), 2);
assert_eq!(sccs.annotation(sccs.scc(3)), 2);
assert_eq!(sccs.annotation(sccs.scc(0)), 2);
}
#[test]
fn test_bug_max_zero_stick_shape() {
let graph = TestGraph::new(0, &[(0, 1), (1, 2), (2, 3), (3, 2), (3, 4)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, |w| match w {
4 => MaxReached(1),
_ => MaxReached(0),
});
assert_eq!(sccs.annotation(sccs.scc(0)), 1);
assert_eq!(sccs.annotation(sccs.scc(1)), 1);
assert_eq!(sccs.annotation(sccs.scc(2)), 1);
assert_eq!(sccs.annotation(sccs.scc(3)), 1);
assert_eq!(sccs.annotation(sccs.scc(4)), 1);
}
#[test]
fn test_min_max_in() {
let graph = TestGraph::new(0, &[(0, 1), (0, 2), (1, 3), (3, 0), (3, 4), (4, 3), (3, 5)]);
let sccs: Sccs<usize, usize, MinMaxIn> =
Sccs::new_with_annotation(&graph, |w| MinMaxIn { min: w, max: w });
assert_eq!(sccs.annotation(sccs.scc(2)).min, 2);
assert_eq!(sccs.annotation(sccs.scc(2)).max, 2);
assert_eq!(sccs.annotation(sccs.scc(0)).min, 0);
assert_eq!(sccs.annotation(sccs.scc(0)).max, 4);
assert_eq!(sccs.annotation(sccs.scc(3)).min, 0);
assert_eq!(sccs.annotation(sccs.scc(3)).max, 4);
assert_eq!(sccs.annotation(sccs.scc(5)).min, 5);
}