1
Fork 0

finally this actually looks like a visitor

This commit is contained in:
Ralf Jung 2018-11-02 09:33:26 +01:00
parent 98295e9eb2
commit b096f0846e
2 changed files with 119 additions and 133 deletions

View file

@ -8,12 +8,12 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::fmt::{self, Write};
use std::fmt::Write;
use std::hash::Hash;
use syntax_pos::symbol::Symbol;
use rustc::ty::layout::{self, Size, Align, TyLayout, LayoutOf};
use rustc::ty::{self, TyCtxt};
use rustc::ty;
use rustc_data_structures::fx::FxHashSet;
use rustc::mir::interpret::{
Scalar, AllocType, EvalResult, EvalErrorKind
@ -122,24 +122,17 @@ fn path_format(path: &Vec<PathElem>) -> String {
out
}
struct ValidityVisitor<'rt, 'a, 'tcx: 'a+'rt, Tag: 'static> {
op: OpTy<'tcx, Tag>,
struct ValidityVisitor<'rt, 'a: 'rt, 'mir: 'rt, 'tcx: 'a+'rt+'mir, M: Machine<'a, 'mir, 'tcx>+'rt> {
/// The `path` may be pushed to, but the part that is present when a function
/// starts must not be changed! `visit_fields` and `visit_array` rely on
/// this stack discipline.
path: Vec<PathElem>,
ref_tracking: Option<&'rt mut RefTracking<'tcx, Tag>>,
ref_tracking: Option<&'rt mut RefTracking<'tcx, M::PointerTag>>,
const_mode: bool,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
ecx: &'rt mut EvalContext<'a, 'mir, 'tcx, M>,
}
impl<Tag: fmt::Debug> fmt::Debug for ValidityVisitor<'_, '_, '_, Tag> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}, {:?}", *self.op, self.op.layout.ty)
}
}
impl<'rt, 'a, 'tcx, Tag> ValidityVisitor<'rt, 'a, 'tcx, Tag> {
impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> ValidityVisitor<'rt, 'a, 'mir, 'tcx, M> {
fn push_aggregate_field_path_elem(
&mut self,
layout: TyLayout<'tcx>,
@ -148,7 +141,7 @@ impl<'rt, 'a, 'tcx, Tag> ValidityVisitor<'rt, 'a, 'tcx, Tag> {
let elem = match layout.ty.sty {
// generators and closures.
ty::Closure(def_id, _) | ty::Generator(def_id, _, _) => {
if let Some(upvar) = self.tcx.optimized_mir(def_id).upvar_decls.get(field) {
if let Some(upvar) = self.ecx.tcx.optimized_mir(def_id).upvar_decls.get(field) {
PathElem::ClosureVar(upvar.debug_name)
} else {
// Sometimes the index is beyond the number of freevars (seen
@ -190,41 +183,38 @@ impl<'rt, 'a, 'tcx, Tag> ValidityVisitor<'rt, 'a, 'tcx, Tag> {
}
impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
ValueVisitor<'a, 'mir, 'tcx, M> for ValidityVisitor<'rt, 'a, 'tcx, M::PointerTag>
ValueVisitor<'a, 'mir, 'tcx, M> for ValidityVisitor<'rt, 'a, 'mir, 'tcx, M>
{
type V = OpTy<'tcx, M::PointerTag>;
#[inline(always)]
fn value(&self) -> &OpTy<'tcx, M::PointerTag> {
&self.op
fn ecx(&mut self) -> &mut EvalContext<'a, 'mir, 'tcx, M> {
&mut self.ecx
}
#[inline]
fn visit_field(
&mut self,
ectx: &mut EvalContext<'a, 'mir, 'tcx, M>,
val: Self::V,
old_op: OpTy<'tcx, M::PointerTag>,
field: usize,
new_op: OpTy<'tcx, M::PointerTag>
) -> EvalResult<'tcx> {
// Remember the old state
let path_len = self.path.len();
let op = self.op;
// Perform operation
self.push_aggregate_field_path_elem(op.layout, field);
self.op = val;
self.visit_value(ectx)?;
self.push_aggregate_field_path_elem(old_op.layout, field);
self.visit_value(new_op)?;
// Undo changes
self.path.truncate(path_len);
self.op = op;
Ok(())
}
#[inline]
fn visit_value(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
fn visit_value(&mut self, op: OpTy<'tcx, M::PointerTag>) -> EvalResult<'tcx>
{
trace!("visit_value: {:?}, {:?}", *op, op.layout);
// Translate enum discriminant errors to something nicer.
match self.walk_value(ectx) {
match self.walk_value(op) {
Ok(()) => Ok(()),
Err(err) => match err.kind {
EvalErrorKind::InvalidDiscriminant(val) =>
@ -236,10 +226,10 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
}
}
fn visit_primitive(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
fn visit_primitive(&mut self, op: OpTy<'tcx, M::PointerTag>)
-> EvalResult<'tcx>
{
let value = try_validation!(ectx.read_immediate(self.op),
let value = try_validation!(self.ecx.read_immediate(op),
"uninitialized or unrepresentable data", self.path);
// Go over all the primitive types
let ty = value.layout.ty;
@ -283,21 +273,21 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
"undefined address in pointer", self.path);
let meta = try_validation!(value.to_meta(),
"uninitialized data in fat pointer metadata", self.path);
let layout = ectx.layout_of(value.layout.ty.builtin_deref(true).unwrap().ty)?;
let layout = self.ecx.layout_of(value.layout.ty.builtin_deref(true).unwrap().ty)?;
if layout.is_unsized() {
let tail = ectx.tcx.struct_tail(layout.ty);
let tail = self.ecx.tcx.struct_tail(layout.ty);
match tail.sty {
ty::Dynamic(..) => {
let vtable = try_validation!(meta.unwrap().to_ptr(),
"non-pointer vtable in fat pointer", self.path);
try_validation!(ectx.read_drop_type_from_vtable(vtable),
try_validation!(self.ecx.read_drop_type_from_vtable(vtable),
"invalid drop fn in vtable", self.path);
try_validation!(ectx.read_size_and_align_from_vtable(vtable),
try_validation!(self.ecx.read_size_and_align_from_vtable(vtable),
"invalid size or align in vtable", self.path);
// FIXME: More checks for the vtable.
}
ty::Slice(..) | ty::Str => {
try_validation!(meta.unwrap().to_usize(ectx),
try_validation!(meta.unwrap().to_usize(self.ecx),
"non-integer slice length in fat pointer", self.path);
}
ty::Foreign(..) => {
@ -308,12 +298,12 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
}
}
// Make sure this is non-NULL and aligned
let (size, align) = ectx.size_and_align_of(meta, layout)?
let (size, align) = self.ecx.size_and_align_of(meta, layout)?
// for the purpose of validity, consider foreign types to have
// alignment and size determined by the layout (size will be 0,
// alignment should take attributes into account).
.unwrap_or_else(|| layout.size_and_align());
match ectx.memory.check_align(ptr, align) {
match self.ecx.memory.check_align(ptr, align) {
Ok(_) => {},
Err(err) => {
error!("{:?} is not aligned to {:?}", ptr, align);
@ -334,7 +324,7 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
// Turn ptr into place.
// `ref_to_mplace` also calls the machine hook for (re)activating the tag,
// which in turn will (in full miri) check if the pointer is dereferencable.
let place = ectx.ref_to_mplace(value)?;
let place = self.ecx.ref_to_mplace(value)?;
// Recursive checking
if let Some(ref mut ref_tracking) = self.ref_tracking {
assert!(self.const_mode, "We should only do recursie checking in const mode");
@ -343,19 +333,19 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
let ptr = try_validation!(place.ptr.to_ptr(),
"integer pointer in non-ZST reference", self.path);
// Skip validation entirely for some external statics
let alloc_kind = ectx.tcx.alloc_map.lock().get(ptr.alloc_id);
let alloc_kind = self.ecx.tcx.alloc_map.lock().get(ptr.alloc_id);
if let Some(AllocType::Static(did)) = alloc_kind {
// `extern static` cannot be validated as they have no body.
// FIXME: Statics from other crates are also skipped.
// They might be checked at a different type, but for now we
// want to avoid recursing too deeply. This is not sound!
if !did.is_local() || ectx.tcx.is_foreign_item(did) {
if !did.is_local() || self.ecx.tcx.is_foreign_item(did) {
return Ok(());
}
}
// Maintain the invariant that the place we are checking is
// already verified to be in-bounds.
try_validation!(ectx.memory.check_bounds(ptr, size, false),
try_validation!(self.ecx.memory.check_bounds(ptr, size, false),
"dangling (not entirely in bounds) reference", self.path);
}
// Check if we have encountered this pointer+layout combination
@ -379,7 +369,7 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
let value = value.to_scalar_or_undef();
let ptr = try_validation!(value.to_ptr(),
value, self.path, "a pointer");
let _fn = try_validation!(ectx.memory.get_fn(ptr),
let _fn = try_validation!(self.ecx.memory.get_fn(ptr),
value, self.path, "a function pointer");
// FIXME: Check if the signature matches
}
@ -389,21 +379,23 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
Ok(())
}
fn visit_uninhabited(&mut self, _ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
fn visit_uninhabited(&mut self, _op: OpTy<'tcx, M::PointerTag>)
-> EvalResult<'tcx>
{
validation_failure!("a value of an uninhabited type", self.path)
}
fn visit_scalar(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>, layout: &layout::Scalar)
-> EvalResult<'tcx>
{
let value = try_validation!(ectx.read_scalar(self.op),
fn visit_scalar(
&mut self,
op: OpTy<'tcx, M::PointerTag>,
layout: &layout::Scalar,
) -> EvalResult<'tcx> {
let value = try_validation!(self.ecx.read_scalar(op),
"uninitialized or unrepresentable data", self.path);
// Determine the allowed range
let (lo, hi) = layout.valid_range.clone().into_inner();
// `max_hi` is as big as the size fits
let max_hi = u128::max_value() >> (128 - self.op.layout.size.bits());
let max_hi = u128::max_value() >> (128 - op.layout.size.bits());
assert!(hi <= max_hi);
// We could also write `(hi + 1) % (max_hi + 1) == lo` but `max_hi + 1` overflows for `u128`
if (lo == 0 && hi == max_hi) || (hi + 1 == lo) {
@ -421,10 +413,10 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
// We can call `check_align` to check non-NULL-ness, but have to also look
// for function pointers.
let non_null =
ectx.memory.check_align(
self.ecx.memory.check_align(
Scalar::Ptr(ptr), Align::from_bytes(1, 1).unwrap()
).is_ok() ||
ectx.memory.get_fn(ptr).is_ok();
self.ecx.memory.get_fn(ptr).is_ok();
if !non_null {
// could be NULL
return validation_failure!("a potentially NULL pointer", self.path);
@ -444,7 +436,7 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
}
}
Scalar::Bits { bits, size } => {
assert_eq!(size as u64, self.op.layout.size.bytes());
assert_eq!(size as u64, op.layout.size.bytes());
bits
}
};
@ -479,13 +471,12 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
}
}
fn visit_array(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
fn visit_array(&mut self, op: OpTy<'tcx, M::PointerTag>) -> EvalResult<'tcx>
{
match self.op.layout.ty.sty {
match op.layout.ty.sty {
ty::Str => {
let mplace = self.op.to_mem_place(); // strings are never immediate
try_validation!(ectx.read_str(mplace),
let mplace = op.to_mem_place(); // strings are never immediate
try_validation!(self.ecx.read_str(mplace),
"uninitialized or non-UTF-8 data in str", self.path);
}
ty::Array(tys, ..) | ty::Slice(tys) if {
@ -496,17 +487,17 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
_ => false,
}
} => {
let mplace = if self.op.layout.is_zst() {
let mplace = if op.layout.is_zst() {
// it's a ZST, the memory content cannot matter
MPlaceTy::dangling(self.op.layout, ectx)
MPlaceTy::dangling(op.layout, self.ecx)
} else {
// non-ZST array/slice/str cannot be immediate
self.op.to_mem_place()
op.to_mem_place()
};
// This is the length of the array/slice.
let len = mplace.len(ectx)?;
let len = mplace.len(self.ecx)?;
// This is the element type size.
let ty_size = ectx.layout_of(tys)?.size;
let ty_size = self.ecx.layout_of(tys)?.size;
// This is the size in bytes of the whole array.
let size = ty_size * len;
@ -519,7 +510,7 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
// to reject those pointers, we just do not have the machinery to
// talk about parts of a pointer.
// We also accept undef, for consistency with the type-based checks.
match ectx.memory.check_bytes(
match self.ecx.memory.check_bytes(
mplace.ptr,
size,
/*allow_ptr_and_undef*/!self.const_mode,
@ -548,7 +539,7 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
}
}
_ => {
self.walk_array(ectx)? // default handler
self.walk_array(op)? // default handler
}
}
Ok(())
@ -574,14 +565,13 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
// Construct a visitor
let mut visitor = ValidityVisitor {
op,
path,
ref_tracking,
const_mode,
tcx: *self.tcx,
ecx: self,
};
// Run it
visitor.visit_value(self)
visitor.visit_value(op)
}
}

View file

@ -1,8 +1,6 @@
//! Visitor for a run-time value with a given layout: Traverse enums, structs and other compound
//! types until we arrive at the leaves, with custom handling for primitive types.
use std::fmt;
use rustc::ty::layout::{self, TyLayout};
use rustc::ty;
use rustc::mir::interpret::{
@ -166,103 +164,103 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> Value<'a, 'mir, 'tcx, M>
}
// How to traverse a value and what to do when we are at the leaves.
pub trait ValueVisitor<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>: fmt::Debug + Sized {
pub trait ValueVisitor<'a, 'mir, 'tcx: 'mir+'a, M: Machine<'a, 'mir, 'tcx>>: Sized {
type V: Value<'a, 'mir, 'tcx, M>;
// There's a value in here.
fn value(&self) -> &Self::V;
// The value's layout (not meant to be overwritten).
#[inline(always)]
fn layout(&self) -> TyLayout<'tcx> {
self.value().layout()
}
// The visitor must have an `EvalContext` in it.
fn ecx(&mut self) -> &mut EvalContext<'a, 'mir, 'tcx, M>;
// Recursie actions, ready to be overloaded.
/// Visit the current value, dispatching as appropriate to more speicalized visitors.
#[inline]
fn visit_value(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
/// Visit the given value, dispatching as appropriate to more speicalized visitors.
#[inline(always)]
fn visit_value(&mut self, v: Self::V) -> EvalResult<'tcx>
{
self.walk_value(ectx)
self.walk_value(v)
}
/// Visit the current value as an array.
#[inline]
fn visit_array(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
/// Visit the given value as a union.
#[inline(always)]
fn visit_union(&mut self, _v: Self::V) -> EvalResult<'tcx>
{
self.walk_array(ectx)
Ok(())
}
/// Called each time we recurse down to a field of the value, to (a) let
/// the visitor change its internal state (recording the new current value),
/// and (b) let the visitor track the "stack" of fields that we descended below.
/// Visit the given value as an array.
#[inline(always)]
fn visit_array(&mut self, v: Self::V) -> EvalResult<'tcx>
{
self.walk_array(v)
}
/// Called each time we recurse down to a field, passing in old and new value.
/// This gives the visitor the chance to track the stack of nested fields that
/// we are descending through.
#[inline(always)]
fn visit_field(
&mut self,
ectx: &mut EvalContext<'a, 'mir, 'tcx, M>,
val: Self::V,
field: usize,
) -> EvalResult<'tcx>;
_old_val: Self::V,
_field: usize,
new_val: Self::V,
) -> EvalResult<'tcx> {
self.visit_value(new_val)
}
// Actions on the leaves, ready to be overloaded.
#[inline]
fn visit_uninhabited(&mut self, _ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
/// Called whenever we reach a value with uninhabited layout.
/// Recursing to fields will continue after this!
#[inline(always)]
fn visit_uninhabited(&mut self, _v: Self::V) -> EvalResult<'tcx>
{ Ok(()) }
#[inline]
fn visit_scalar(&mut self, _ectx: &mut EvalContext<'a, 'mir, 'tcx, M>, _layout: &layout::Scalar)
-> EvalResult<'tcx>
/// Called whenever we reach a value with scalar layout.
/// Recursing to fields will continue after this!
#[inline(always)]
fn visit_scalar(&mut self, _v: Self::V, _layout: &layout::Scalar) -> EvalResult<'tcx>
{ Ok(()) }
#[inline]
fn visit_primitive(&mut self, _ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
/// Called whenever we reach a value of primitive type. There can be no recursion
/// below such a value.
#[inline(always)]
fn visit_primitive(&mut self, _v: Self::V) -> EvalResult<'tcx>
{ Ok(()) }
// Default recursors. Not meant to be overloaded.
fn walk_array(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
fn walk_array(&mut self, v: Self::V) -> EvalResult<'tcx>
{
// Let's get an mplace first.
let mplace = if self.layout().is_zst() {
let mplace = if v.layout().is_zst() {
// it's a ZST, the memory content cannot matter
MPlaceTy::dangling(self.layout(), ectx)
MPlaceTy::dangling(v.layout(), self.ecx())
} else {
// non-ZST array/slice/str cannot be immediate
self.value().to_mem_place(ectx)?
v.to_mem_place(self.ecx())?
};
// Now iterate over it.
for (i, field) in ectx.mplace_array_fields(mplace)?.enumerate() {
self.visit_field(ectx, Value::from_mem_place(field?), i)?;
for (i, field) in self.ecx().mplace_array_fields(mplace)?.enumerate() {
self.visit_field(v, i, Value::from_mem_place(field?))?;
}
Ok(())
}
fn walk_value(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
fn walk_value(&mut self, v: Self::V) -> EvalResult<'tcx>
{
trace!("walk_value: {:?}", self);
// If this is a multi-variant layout, we have find the right one and proceed with that.
// (No benefit from making this recursion, but it is equivalent to that.)
match self.layout().variants {
match v.layout().variants {
layout::Variants::NicheFilling { .. } |
layout::Variants::Tagged { .. } => {
let (inner, idx) = self.value().project_downcast(ectx)?;
let (inner, idx) = v.project_downcast(self.ecx())?;
trace!("variant layout: {:#?}", inner.layout());
// recurse with the inner type
return self.visit_field(ectx, inner, idx);
return self.visit_field(v, idx, inner);
}
layout::Variants::Single { .. } => {}
}
// Even for single variants, we might be able to get a more refined type:
// If it is a trait object, switch to the actual type that was used to create it.
match self.layout().ty.sty {
match v.layout().ty.sty {
ty::Dynamic(..) => {
// immediate trait objects are not a thing
let dest = self.value().to_mem_place(ectx)?;
let inner = ectx.unpack_dyn_trait(dest)?.1;
let dest = v.to_mem_place(self.ecx())?;
let inner = self.ecx().unpack_dyn_trait(dest)?.1;
trace!("dyn object layout: {:#?}", inner.layout);
// recurse with the inner type
return self.visit_field(ectx, Value::from_mem_place(inner), 0);
return self.visit_field(v, 0, Value::from_mem_place(inner));
},
_ => {},
};
@ -274,12 +272,12 @@ pub trait ValueVisitor<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>: fmt::Debug +
// FIXME: We could avoid some redundant checks here. For newtypes wrapping
// scalars, we do the same check on every "level" (e.g. first we check
// MyNewtype and then the scalar in there).
match self.layout().abi {
match v.layout().abi {
layout::Abi::Uninhabited => {
self.visit_uninhabited(ectx)?;
self.visit_uninhabited(v)?;
}
layout::Abi::Scalar(ref layout) => {
self.visit_scalar(ectx, layout)?;
self.visit_scalar(v, layout)?;
}
// FIXME: Should we do something for ScalarPair? Vector?
_ => {}
@ -290,34 +288,32 @@ pub trait ValueVisitor<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>: fmt::Debug +
// so we check them separately and before aggregate handling.
// It is CRITICAL that we get this check right, or we might be
// validating the wrong thing!
let primitive = match self.layout().fields {
let primitive = match v.layout().fields {
// Primitives appear as Union with 0 fields -- except for Boxes and fat pointers.
layout::FieldPlacement::Union(0) => true,
_ => self.layout().ty.builtin_deref(true).is_some(),
_ => v.layout().ty.builtin_deref(true).is_some(),
};
if primitive {
return self.visit_primitive(ectx);
return self.visit_primitive(v);
}
// Proceed into the fields.
match self.layout().fields {
match v.layout().fields {
layout::FieldPlacement::Union(fields) => {
// Empty unions are not accepted by rustc. That's great, it means we can
// use that as an unambiguous signal for detecting primitives. Make sure
// we did not miss any primitive.
debug_assert!(fields > 0);
// We can't traverse unions, their bits are allowed to be anything.
// The fields don't need to correspond to any bit pattern of the union's fields.
// See https://github.com/rust-lang/rust/issues/32836#issuecomment-406875389
self.visit_union(v)?;
},
layout::FieldPlacement::Arbitrary { ref offsets, .. } => {
for i in 0..offsets.len() {
let val = self.value().project_field(ectx, i as u64)?;
self.visit_field(ectx, val, i)?;
let val = v.project_field(self.ecx(), i as u64)?;
self.visit_field(v, i, val)?;
}
},
layout::FieldPlacement::Array { .. } => {
self.visit_array(ectx)?;
self.visit_array(v)?;
}
}
Ok(())