1
Fork 0

Auto merge of #99798 - JulianKnodt:ac1, r=BoxyUwU

Add `ConstKind::Expr`

Starting to implement `ty::ConstKind::Abstract`, most of the match cases are stubbed out, some I was unsure what to add, others I didn't want to add until a more complete implementation was ready.

r? `@lcnr`
This commit is contained in:
bors 2022-11-25 22:56:59 +00:00
commit aff003becd
40 changed files with 812 additions and 822 deletions

View file

@ -8,152 +8,18 @@
//! In this case we try to build an abstract representation of this constant using
//! `thir_abstract_const` which can then be checked for structural equality with other
//! generic constants mentioned in the `caller_bounds` of the current environment.
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
use rustc_infer::infer::InferCtxt;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::ty::abstract_const::{
walk_abstract_const, AbstractConst, FailureKind, Node, NotConstEvaluatable,
};
use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
use rustc_span::Span;
use std::iter;
use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::abstract_const::NotConstEvaluatable;
use rustc_middle::ty::{self, TyCtxt, TypeVisitable, TypeVisitor};
use rustc_span::Span;
use std::ops::ControlFlow;
pub struct ConstUnifyCtxt<'tcx> {
pub tcx: TyCtxt<'tcx>,
pub param_env: ty::ParamEnv<'tcx>,
}
impl<'tcx> ConstUnifyCtxt<'tcx> {
// Substitutes generics repeatedly to allow AbstractConsts to unify where a
// ConstKind::Unevaluated could be turned into an AbstractConst that would unify e.g.
// Param(N) should unify with Param(T), substs: [Unevaluated("T2", [Unevaluated("T3", [Param(N)])])]
#[inline]
#[instrument(skip(self), level = "debug")]
fn try_replace_substs_in_root(
&self,
mut abstr_const: AbstractConst<'tcx>,
) -> Option<AbstractConst<'tcx>> {
while let Node::Leaf(ct) = abstr_const.root(self.tcx) {
match AbstractConst::from_const(self.tcx, ct) {
Ok(Some(act)) => abstr_const = act,
Ok(None) => break,
Err(_) => return None,
}
}
Some(abstr_const)
}
/// Tries to unify two abstract constants using structural equality.
#[instrument(skip(self), level = "debug")]
pub fn try_unify(&self, a: AbstractConst<'tcx>, b: AbstractConst<'tcx>) -> bool {
let a = if let Some(a) = self.try_replace_substs_in_root(a) {
a
} else {
return true;
};
let b = if let Some(b) = self.try_replace_substs_in_root(b) {
b
} else {
return true;
};
let a_root = a.root(self.tcx);
let b_root = b.root(self.tcx);
debug!(?a_root, ?b_root);
match (a_root, b_root) {
(Node::Leaf(a_ct), Node::Leaf(b_ct)) => {
let a_ct = a_ct.eval(self.tcx, self.param_env);
debug!("a_ct evaluated: {:?}", a_ct);
let b_ct = b_ct.eval(self.tcx, self.param_env);
debug!("b_ct evaluated: {:?}", b_ct);
if a_ct.ty() != b_ct.ty() {
return false;
}
match (a_ct.kind(), b_ct.kind()) {
// We can just unify errors with everything to reduce the amount of
// emitted errors here.
(ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true,
(ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => {
a_param == b_param
}
(ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
// If we have `fn a<const N: usize>() -> [u8; N + 1]` and `fn b<const M: usize>() -> [u8; 1 + M]`
// we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This
// means that we only allow inference variables if they are equal.
(ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val,
// We expand generic anonymous constants at the start of this function, so this
// branch should only be taking when dealing with associated constants, at
// which point directly comparing them seems like the desired behavior.
//
// FIXME(generic_const_exprs): This isn't actually the case.
// We also take this branch for concrete anonymous constants and
// expand generic anonymous constants with concrete substs.
(ty::ConstKind::Unevaluated(a_uv), ty::ConstKind::Unevaluated(b_uv)) => {
a_uv == b_uv
}
// FIXME(generic_const_exprs): We may want to either actually try
// to evaluate `a_ct` and `b_ct` if they are fully concrete or something like
// this, for now we just return false here.
_ => false,
}
}
(Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => {
self.try_unify(a.subtree(al), b.subtree(bl))
&& self.try_unify(a.subtree(ar), b.subtree(br))
}
(Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => {
self.try_unify(a.subtree(av), b.subtree(bv))
}
(Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args))
if a_args.len() == b_args.len() =>
{
self.try_unify(a.subtree(a_f), b.subtree(b_f))
&& iter::zip(a_args, b_args)
.all(|(&an, &bn)| self.try_unify(a.subtree(an), b.subtree(bn)))
}
(Node::Cast(a_kind, a_operand, a_ty), Node::Cast(b_kind, b_operand, b_ty))
if (a_ty == b_ty) && (a_kind == b_kind) =>
{
self.try_unify(a.subtree(a_operand), b.subtree(b_operand))
}
// use this over `_ => false` to make adding variants to `Node` less error prone
(Node::Cast(..), _)
| (Node::FunctionCall(..), _)
| (Node::UnaryOp(..), _)
| (Node::Binop(..), _)
| (Node::Leaf(..), _) => false,
}
}
}
#[instrument(skip(tcx), level = "debug")]
pub fn try_unify_abstract_consts<'tcx>(
tcx: TyCtxt<'tcx>,
(a, b): (ty::UnevaluatedConst<'tcx>, ty::UnevaluatedConst<'tcx>),
param_env: ty::ParamEnv<'tcx>,
) -> bool {
(|| {
if let Some(a) = AbstractConst::new(tcx, a)? {
if let Some(b) = AbstractConst::new(tcx, b)? {
let const_unify_ctxt = ConstUnifyCtxt { tcx, param_env };
return Ok(const_unify_ctxt.try_unify(a, b));
}
}
Ok(false)
})()
.unwrap_or_else(|_: ErrorGuaranteed| true)
// FIXME(generic_const_exprs): We should instead have this
// method return the resulting `ty::Const` and return `ConstKind::Error`
// on `ErrorGuaranteed`.
}
use crate::traits::ObligationCtxt;
/// Check if a given constant can be evaluated.
#[instrument(skip(infcx), level = "debug")]
@ -166,6 +32,8 @@ pub fn is_const_evaluatable<'tcx>(
let tcx = infcx.tcx;
let uv = match ct.kind() {
ty::ConstKind::Unevaluated(uv) => uv,
// FIXME(generic_const_exprs): this seems wrong but I couldn't find a way to get this to trigger
ty::ConstKind::Expr(_) => bug!("unexpected expr in `is_const_evaluatable: {ct:?}"),
ty::ConstKind::Param(_)
| ty::ConstKind::Bound(_, _)
| ty::ConstKind::Placeholder(_)
@ -175,21 +43,25 @@ pub fn is_const_evaluatable<'tcx>(
};
if tcx.features().generic_const_exprs {
if let Some(ct) = AbstractConst::new(tcx, uv)? {
if satisfied_from_param_env(tcx, ct, param_env)? {
let ct = tcx.expand_abstract_consts(ct);
let is_anon_ct = if let ty::ConstKind::Unevaluated(uv) = ct.kind() {
tcx.def_kind(uv.def.did) == DefKind::AnonConst
} else {
false
};
if !is_anon_ct {
if satisfied_from_param_env(tcx, infcx, ct, param_env) {
return Ok(());
}
match ct.unify_failure_kind(tcx) {
FailureKind::MentionsInfer => {
return Err(NotConstEvaluatable::MentionsInfer);
}
FailureKind::MentionsParam => {
return Err(NotConstEvaluatable::MentionsParam);
}
// returned below
FailureKind::Concrete => {}
if ct.has_non_region_infer() {
return Err(NotConstEvaluatable::MentionsInfer);
} else if ct.has_non_region_param() {
return Err(NotConstEvaluatable::MentionsParam);
}
}
let concrete = infcx.const_eval_resolve(param_env, uv, Some(span));
match concrete {
Err(ErrorHandled::TooGeneric) => Err(NotConstEvaluatable::Error(
@ -211,28 +83,33 @@ pub fn is_const_evaluatable<'tcx>(
//
// See #74595 for more details about this.
let concrete = infcx.const_eval_resolve(param_env, uv, Some(span));
match concrete {
// If we're evaluating a foreign constant, under a nightly compiler without generic
// const exprs, AND it would've passed if that expression had been evaluated with
// generic const exprs, then suggest using generic const exprs.
Err(_) if tcx.sess.is_nightly_build()
&& let Ok(Some(ct)) = AbstractConst::new(tcx, uv)
&& satisfied_from_param_env(tcx, ct, param_env) == Ok(true) => {
tcx.sess
.struct_span_fatal(
// Slightly better span than just using `span` alone
if span == rustc_span::DUMMY_SP { tcx.def_span(uv.def.did) } else { span },
"failed to evaluate generic const expression",
)
.note("the crate this constant originates from uses `#![feature(generic_const_exprs)]`")
.span_suggestion_verbose(
rustc_span::DUMMY_SP,
"consider enabling this feature",
"#![feature(generic_const_exprs)]\n",
rustc_errors::Applicability::MaybeIncorrect,
)
.emit()
// If we're evaluating a generic foreign constant, under a nightly compiler while
// the current crate does not enable `feature(generic_const_exprs)`, abort
// compilation with a useful error.
Err(_)
if tcx.sess.is_nightly_build()
&& satisfied_from_param_env(
tcx,
infcx,
tcx.expand_abstract_consts(ct),
param_env,
) =>
{
tcx.sess
.struct_span_fatal(
// Slightly better span than just using `span` alone
if span == rustc_span::DUMMY_SP { tcx.def_span(uv.def.did) } else { span },
"failed to evaluate generic const expression",
)
.note("the crate this constant originates from uses `#![feature(generic_const_exprs)]`")
.span_suggestion_verbose(
rustc_span::DUMMY_SP,
"consider enabling this feature",
"#![feature(generic_const_exprs)]\n",
rustc_errors::Applicability::MaybeIncorrect,
)
.emit()
}
Err(ErrorHandled::TooGeneric) => {
@ -241,49 +118,82 @@ pub fn is_const_evaluatable<'tcx>(
} else if uv.has_non_region_param() {
NotConstEvaluatable::MentionsParam
} else {
let guar = infcx.tcx.sess.delay_span_bug(span, format!("Missing value for constant, but no error reported?"));
let guar = infcx.tcx.sess.delay_span_bug(
span,
format!("Missing value for constant, but no error reported?"),
);
NotConstEvaluatable::Error(guar)
};
Err(err)
},
}
Err(ErrorHandled::Reported(e)) => Err(NotConstEvaluatable::Error(e)),
Ok(_) => Ok(()),
}
}
}
#[instrument(skip(tcx), level = "debug")]
#[instrument(skip(infcx, tcx), level = "debug")]
fn satisfied_from_param_env<'tcx>(
tcx: TyCtxt<'tcx>,
ct: AbstractConst<'tcx>,
infcx: &InferCtxt<'tcx>,
ct: ty::Const<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Result<bool, NotConstEvaluatable> {
) -> bool {
// Try to unify with each subtree in the AbstractConst to allow for
// `N + 1` being const evaluatable even if theres only a `ConstEvaluatable`
// predicate for `(N + 1) * 2`
struct Visitor<'a, 'tcx> {
ct: ty::Const<'tcx>,
param_env: ty::ParamEnv<'tcx>,
infcx: &'a InferCtxt<'tcx>,
}
impl<'a, 'tcx> TypeVisitor<'tcx> for Visitor<'a, 'tcx> {
type BreakTy = ();
fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
if let Ok(()) = self.infcx.commit_if_ok(|_| {
let ocx = ObligationCtxt::new_in_snapshot(self.infcx);
if let Ok(()) = ocx.eq(&ObligationCause::dummy(), self.param_env, c.ty(), self.ct.ty())
&& let Ok(()) = ocx.eq(&ObligationCause::dummy(), self.param_env, c, self.ct)
&& ocx.select_all_or_error().is_empty()
{
Ok(())
} else {
Err(())
}
}) {
ControlFlow::BREAK
} else if let ty::ConstKind::Expr(e) = c.kind() {
e.visit_with(self)
} else {
// FIXME(generic_const_exprs): This doesn't recurse into `<T as Trait<U>>::ASSOC`'s substs.
// This is currently unobservable as `<T as Trait<{ U + 1 }>>::ASSOC` creates an anon const
// with its own `ConstEvaluatable` bound in the param env which we will visit separately.
//
// If we start allowing directly writing `ConstKind::Expr` without an intermediate anon const
// this will be incorrect. It might be worth investigating making `predicates_of` elaborate
// all of the `ConstEvaluatable` bounds rather than having a visitor here.
ControlFlow::CONTINUE
}
}
}
for pred in param_env.caller_bounds() {
match pred.kind().skip_binder() {
ty::PredicateKind::ConstEvaluatable(uv) => {
if let Some(b_ct) = AbstractConst::from_const(tcx, uv)? {
let const_unify_ctxt = ConstUnifyCtxt { tcx, param_env };
ty::PredicateKind::ConstEvaluatable(ce) => {
let b_ct = tcx.expand_abstract_consts(ce);
let mut v = Visitor { ct, infcx, param_env };
let result = b_ct.visit_with(&mut v);
// Try to unify with each subtree in the AbstractConst to allow for
// `N + 1` being const evaluatable even if theres only a `ConstEvaluatable`
// predicate for `(N + 1) * 2`
let result = walk_abstract_const(tcx, b_ct, |b_ct| {
match const_unify_ctxt.try_unify(ct, b_ct) {
true => ControlFlow::BREAK,
false => ControlFlow::CONTINUE,
}
});
if let ControlFlow::Break(()) = result {
debug!("is_const_evaluatable: abstract_const ~~> ok");
return Ok(true);
}
if let ControlFlow::Break(()) = result {
debug!("is_const_evaluatable: abstract_const ~~> ok");
return true;
}
}
_ => {} // don't care
}
}
Ok(false)
false
}

View file

@ -455,20 +455,47 @@ impl<'a, 'tcx> ObligationProcessor for FulfillProcessor<'a, 'tcx> {
}
ty::PredicateKind::ConstEquate(c1, c2) => {
let tcx = self.selcx.tcx();
assert!(
self.selcx.tcx().features().generic_const_exprs,
tcx.features().generic_const_exprs,
"`ConstEquate` without a feature gate: {c1:?} {c2:?}",
);
debug!(?c1, ?c2, "equating consts");
// FIXME: we probably should only try to unify abstract constants
// if the constants depend on generic parameters.
//
// Let's just see where this breaks :shrug:
if let (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b)) =
(c1.kind(), c2.kind())
{
if infcx.try_unify_abstract_consts(a, b, obligation.param_env) {
return ProcessResult::Changed(vec![]);
let c1 = tcx.expand_abstract_consts(c1);
let c2 = tcx.expand_abstract_consts(c2);
debug!("equating consts:\nc1= {:?}\nc2= {:?}", c1, c2);
use rustc_hir::def::DefKind;
use ty::ConstKind::Unevaluated;
match (c1.kind(), c2.kind()) {
(Unevaluated(a), Unevaluated(b))
if a.def.did == b.def.did
&& tcx.def_kind(a.def.did) == DefKind::AssocConst =>
{
if let Ok(new_obligations) = infcx
.at(&obligation.cause, obligation.param_env)
.trace(c1, c2)
.eq(a.substs, b.substs)
{
return ProcessResult::Changed(mk_pending(
new_obligations.into_obligations(),
));
}
}
(_, Unevaluated(_)) | (Unevaluated(_), _) => (),
(_, _) => {
if let Ok(new_obligations) =
infcx.at(&obligation.cause, obligation.param_env).eq(c1, c2)
{
return ProcessResult::Changed(mk_pending(
new_obligations.into_obligations(),
));
}
}
}
}
@ -508,7 +535,9 @@ impl<'a, 'tcx> ObligationProcessor for FulfillProcessor<'a, 'tcx> {
.at(&obligation.cause, obligation.param_env)
.eq(c1, c2)
{
Ok(_) => ProcessResult::Changed(vec![]),
Ok(inf_ok) => {
ProcessResult::Changed(mk_pending(inf_ok.into_obligations()))
}
Err(err) => ProcessResult::Error(
FulfillmentErrorCode::CodeConstEquateError(
ExpectedFound::new(true, c1, c2),

View file

@ -932,10 +932,6 @@ pub fn provide(providers: &mut ty::query::Providers) {
vtable_trait_upcasting_coercion_new_vptr_slot,
subst_and_check_impossible_predicates,
is_impossible_method,
try_unify_abstract_consts: |tcx, param_env_and| {
let (param_env, (a, b)) = param_env_and.into_parts();
const_evaluatable::try_unify_abstract_consts(tcx, (a, b), param_env)
},
..*providers
};
}

View file

@ -17,11 +17,10 @@ use hir::def::DefKind;
use rustc_errors::{DelayDm, FatalError, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_middle::ty::abstract_const::{walk_abstract_const, AbstractConst};
use rustc_middle::ty::subst::{GenericArg, InternalSubsts};
use rustc_middle::ty::{
self, EarlyBinder, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor,
};
use rustc_middle::ty::{GenericArg, InternalSubsts};
use rustc_middle::ty::{Predicate, ToPredicate};
use rustc_session::lint::builtin::WHERE_CLAUSES_OBJECT_SAFETY;
use rustc_span::symbol::Symbol;
@ -837,23 +836,9 @@ fn contains_illegal_self_type_reference<'tcx, T: TypeVisitable<'tcx>>(
}
fn visit_const(&mut self, ct: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
// Constants can only influence object safety if they reference `Self`.
// Constants can only influence object safety if they are generic and reference `Self`.
// This is only possible for unevaluated constants, so we walk these here.
//
// If `AbstractConst::from_const` returned an error we already failed compilation
// so we don't have to emit an additional error here.
use rustc_middle::ty::abstract_const::Node;
if let Ok(Some(ct)) = AbstractConst::from_const(self.tcx, ct) {
walk_abstract_const(self.tcx, ct, |node| match node.root(self.tcx) {
Node::Leaf(leaf) => self.visit_const(leaf),
Node::Cast(_, _, ty) => self.visit_ty(ty),
Node::Binop(..) | Node::UnaryOp(..) | Node::FunctionCall(_, _) => {
ControlFlow::CONTINUE
}
})
} else {
ct.super_visit_with(self)
}
self.tcx.expand_abstract_consts(ct).super_visit_with(self)
}
}

View file

@ -657,21 +657,62 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
}
ty::PredicateKind::ConstEquate(c1, c2) => {
let tcx = self.tcx();
assert!(
self.tcx().features().generic_const_exprs,
tcx.features().generic_const_exprs,
"`ConstEquate` without a feature gate: {c1:?} {c2:?}",
);
debug!(?c1, ?c2, "evaluate_predicate_recursively: equating consts");
// FIXME: we probably should only try to unify abstract constants
// if the constants depend on generic parameters.
//
// Let's just see where this breaks :shrug:
if let (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b)) =
(c1.kind(), c2.kind())
{
if self.infcx.try_unify_abstract_consts(a, b, obligation.param_env) {
return Ok(EvaluatedToOk);
let c1 = tcx.expand_abstract_consts(c1);
let c2 = tcx.expand_abstract_consts(c2);
debug!(
"evalaute_predicate_recursively: equating consts:\nc1= {:?}\nc2= {:?}",
c1, c2
);
use rustc_hir::def::DefKind;
use ty::ConstKind::Unevaluated;
match (c1.kind(), c2.kind()) {
(Unevaluated(a), Unevaluated(b))
if a.def.did == b.def.did
&& tcx.def_kind(a.def.did) == DefKind::AssocConst =>
{
if let Ok(new_obligations) = self
.infcx
.at(&obligation.cause, obligation.param_env)
.trace(c1, c2)
.eq(a.substs, b.substs)
{
let mut obligations = new_obligations.obligations;
self.add_depth(
obligations.iter_mut(),
obligation.recursion_depth,
);
return self.evaluate_predicates_recursively(
previous_stack,
obligations.into_iter(),
);
}
}
(_, Unevaluated(_)) | (Unevaluated(_), _) => (),
(_, _) => {
if let Ok(new_obligations) = self
.infcx
.at(&obligation.cause, obligation.param_env)
.eq(c1, c2)
{
let mut obligations = new_obligations.obligations;
self.add_depth(
obligations.iter_mut(),
obligation.recursion_depth,
);
return self.evaluate_predicates_recursively(
previous_stack,
obligations.into_iter(),
);
}
}
}
}
@ -698,7 +739,10 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
.at(&obligation.cause, obligation.param_env)
.eq(c1, c2)
{
Ok(_) => Ok(EvaluatedToOk),
Ok(inf_ok) => self.evaluate_predicates_recursively(
previous_stack,
inf_ok.into_obligations(),
),
Err(_) => Ok(EvaluatedToErr),
}
}

View file

@ -476,6 +476,11 @@ impl<'tcx> WfPredicates<'tcx> {
ty::Binder::dummy(ty::PredicateKind::WellFormed(ct.into())),
));
}
// FIXME(generic_const_exprs): This seems wrong but I could not find a way to get this to trigger
ty::ConstKind::Expr(_) => {
bug!("checking wfness of `ConstKind::Expr` is unsupported")
}
ty::ConstKind::Error(_)
| ty::ConstKind::Param(_)
| ty::ConstKind::Bound(..)