1
Fork 0

make relate's const ty assertion use semantic equality

This commit is contained in:
Boxy 2023-02-11 23:05:11 +00:00
parent 8dabf5da9e
commit a85b0101e6
7 changed files with 237 additions and 22 deletions

View file

@ -31,6 +31,7 @@ use super::{InferCtxt, MiscVariable, TypeTrace};
use crate::traits::{Obligation, PredicateObligations};
use rustc_data_structures::sso::SsoHashMap;
use rustc_hir::def_id::DefId;
use rustc_middle::infer::canonical::OriginalQueryValues;
use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue};
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
use rustc_middle::traits::ObligationCause;
@ -152,6 +153,33 @@ impl<'tcx> InferCtxt<'tcx> {
let a = self.shallow_resolve(a);
let b = self.shallow_resolve(b);
// We should never have to relate the `ty` field on `Const` as it is checked elsewhere that consts have the
// correct type for the generic param they are an argument for. However there have been a number of cases
// historically where asserting that the types are equal has found bugs in the compiler so this is valuable
// to check even if it is a bit nasty impl wise :(
//
// This probe is probably not strictly necessary but it seems better to be safe and not accidentally find
// ourselves with a check to find bugs being required for code to compile because it made inference progress.
self.probe(|_| {
if a.ty() == b.ty() {
return;
}
// We don't have access to trait solving machinery in `rustc_infer` so the logic for determining if the
// two const param's types are able to be equal has to go through a canonical query with the actual logic
// in `rustc_trait_selection`.
let canonical = self.canonicalize_query(
(relation.param_env(), a.ty(), b.ty()),
&mut OriginalQueryValues::default(),
);
if let Err(()) = self.tcx.check_const_param_definitely_unequal(canonical) {
self.tcx.sess.delay_span_bug(
DUMMY_SP,
&format!("cannot relate consts of different types (a={:?}, b={:?})", a, b,),
);
}
});
match (a.kind(), b.kind()) {
(
ty::ConstKind::Infer(InferConst::Var(a_vid)),

View file

@ -2168,4 +2168,11 @@ rustc_queries! {
desc { "traits in scope for documentation links for a module" }
separate_provide_extern
}
/// Used in `super_combine_consts` to ICE if the type of the two consts are definitely not going to end up being
/// equal to eachother. This might return `Ok` even if the types are unequal, but will never return `Err` if
/// the types might be equal.
query check_const_param_definitely_unequal(arg: Canonical<'tcx, (ty::ParamEnv<'tcx>, Ty<'tcx>, Ty<'tcx>)>) -> Result<(), ()> {
desc { "check whether two const param are definitely not equal to eachother"}
}
}

View file

@ -9,7 +9,6 @@ use crate::ty::{self, Expr, ImplSubject, Term, TermKind, Ty, TyCtxt, TypeFoldabl
use crate::ty::{GenericArg, GenericArgKind, SubstsRef};
use rustc_hir as ast;
use rustc_hir::def_id::DefId;
use rustc_span::DUMMY_SP;
use rustc_target::spec::abi;
use std::iter;
@ -594,25 +593,6 @@ pub fn super_relate_consts<'tcx, R: TypeRelation<'tcx>>(
debug!("{}.super_relate_consts(a = {:?}, b = {:?})", relation.tag(), a, b);
let tcx = relation.tcx();
let a_ty;
let b_ty;
if relation.tcx().features().adt_const_params {
a_ty = tcx.normalize_erasing_regions(relation.param_env(), a.ty());
b_ty = tcx.normalize_erasing_regions(relation.param_env(), b.ty());
} else {
a_ty = tcx.erase_regions(a.ty());
b_ty = tcx.erase_regions(b.ty());
}
if a_ty != b_ty {
relation.tcx().sess.delay_span_bug(
DUMMY_SP,
&format!(
"cannot relate constants ({:?}, {:?}) of different types: {} != {}",
a, b, a_ty, b_ty
),
);
}
// HACK(const_generics): We still need to eagerly evaluate consts when
// relating them because during `normalize_param_env_or_error`,
// we may relate an evaluated constant in a obligation against

View file

@ -1,12 +1,14 @@
//! Miscellaneous type-system utilities that are too small to deserve their own modules.
use crate::traits::{self, ObligationCause};
use crate::traits::{self, ObligationCause, ObligationCtxt};
use rustc_data_structures::fx::FxIndexSet;
use rustc_hir as hir;
use rustc_infer::infer::canonical::Canonical;
use rustc_infer::infer::{RegionResolutionError, TyCtxtInferExt};
use rustc_infer::{infer::outlives::env::OutlivesEnvironment, traits::FulfillmentError};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitable};
use rustc_middle::ty::{self, ParamEnv, Ty, TyCtxt, TypeVisitable};
use rustc_span::DUMMY_SP;
use super::outlives_bounds::InferCtxtExt;
@ -131,3 +133,19 @@ pub fn type_allowed_to_implement_copy<'tcx>(
Ok(())
}
pub fn check_const_param_definitely_unequal<'tcx>(
tcx: TyCtxt<'tcx>,
canonical: Canonical<'tcx, (ParamEnv<'tcx>, Ty<'tcx>, Ty<'tcx>)>,
) -> Result<(), ()> {
let (infcx, (param_env, ty_a, ty_b), _) =
tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &canonical);
let ocx = ObligationCtxt::new(&infcx);
let result = ocx.eq(&ObligationCause::dummy(), param_env, ty_a, ty_b);
// use `select_where_possible` instead of `select_all_or_error` so that
// we don't get errors from obligations being ambiguous.
let errors = ocx.select_where_possible();
if errors.len() > 0 || result.is_err() { Err(()) } else { Ok(()) }
}

View file

@ -554,6 +554,7 @@ pub fn provide(providers: &mut ty::query::Providers) {
specialization_graph_of: specialize::specialization_graph_provider,
specializes: specialize::specializes,
subst_and_check_impossible_predicates,
check_const_param_definitely_unequal: misc::check_const_param_definitely_unequal,
is_impossible_method,
..*providers
};

View file

@ -0,0 +1,30 @@
// check-pass
#![feature(generic_const_exprs)]
#![allow(incomplete_features)]
// issue #107899
// We end up relating `Const(ty: size_of<?0>, kind: Value(Branch([])))` with
// `Const(ty: size_of<T>, kind: Value(Branch([])))` which if you were to `==`
// the `ty` fields would return `false` and ICE. This test checks that we use
// actual semantic equality that takes into account aliases and infer vars.
use std::mem::size_of;
trait X<T> {
fn f(self);
fn g(self);
}
struct Y;
impl<T> X<T> for Y
where
[(); size_of::<T>()]: Sized,
{
fn f(self) {
self.g();
}
fn g(self) {}
}
fn main() {}

View file

@ -0,0 +1,151 @@
// check-pass
#![feature(inline_const, generic_const_exprs)]
#![allow(incomplete_features)]
use std::marker::PhantomData;
pub struct Equal<const T: usize, const R: usize>();
pub trait True {}
impl<const T: usize> True for Equal<T, T> {}
// replacement for generativity
pub struct Id<'id>(PhantomData<fn(&'id ()) -> &'id ()>);
pub struct Guard<'id>(Id<'id>);
fn make_guard<'id>(i: &'id Id<'id>) -> Guard<'id> {
Guard(Id(PhantomData))
}
impl<'id> Into<Id<'id>> for Guard<'id> {
fn into(self) -> Id<'id> {
self.0
}
}
pub struct Arena<'life> {
bytes: *mut [u8],
//bitmap: RefCell<RoaringBitmap>,
_token: PhantomData<Id<'life>>,
}
#[repr(transparent)]
pub struct Item<'life, T> {
data: T,
_phantom: PhantomData<Id<'life>>,
}
#[repr(transparent)]
pub struct Token<'life, 'borrow, 'compact, 'reborrow, T>
where
'life: 'reborrow,
T: Tokenize<'life, 'borrow, 'compact, 'reborrow>,
{
//ptr: *mut <T as Tokenize>::Tokenized,
ptr: core::ptr::NonNull<T::Tokenized>,
_phantom: PhantomData<Id<'life>>,
_compact: PhantomData<&'borrow Guard<'compact>>,
_result: PhantomData<&'reborrow T::Untokenized>,
}
impl<'life> Arena<'life> {
pub fn tokenize<'before, 'compact, 'borrow, 'reborrow, T, U>(
&self,
guard: &'borrow Guard<'compact>,
item: Item<'life, &'before mut T>,
) -> Token<'life, 'borrow, 'compact, 'reborrow, U>
where
T: Tokenize<'life, 'borrow, 'compact, 'reborrow, Untokenized = U>,
T::Untokenized: Tokenize<'life, 'borrow, 'compact, 'reborrow>,
Equal<{ core::mem::size_of::<T>() }, { core::mem::size_of::<U>() }>: True,
'compact: 'borrow,
'life: 'reborrow,
'life: 'compact,
'life: 'borrow,
// 'borrow: 'before ??
{
let dst = item.data as *mut T as *mut T::Tokenized;
Token {
ptr: core::ptr::NonNull::new(dst as *mut _).unwrap(),
_phantom: PhantomData,
_compact: PhantomData,
_result: PhantomData,
}
}
}
pub trait Tokenize<'life, 'borrow, 'compact, 'reborrow>
where
'compact: 'borrow,
'life: 'reborrow,
'life: 'borrow,
'life: 'compact,
{
type Tokenized;
type Untokenized;
const TO: fn(&Arena<'life>, &'borrow Guard<'compact>, Self) -> Self::Tokenized;
const FROM: fn(&'reborrow Arena<'life>, Self::Tokenized) -> Self::Untokenized;
}
macro_rules! tokenize {
($to:expr, $from:expr) => {
const TO: fn(&Arena<'life>, &'borrow Guard<'compact>, Self) -> Self::Tokenized = $to;
const FROM: fn(&'reborrow Arena<'life>, Self::Tokenized) -> Self::Untokenized = $from;
};
}
struct Foo<'life, 'borrow>(Option<Item<'life, &'borrow mut Bar>>);
struct TokenFoo<'life, 'borrow, 'compact, 'reborrow>(
Option<Token<'life, 'borrow, 'compact, 'reborrow, Bar>>,
);
struct Bar(u8);
impl<'life, 'before, 'borrow, 'compact, 'reborrow> Tokenize<'life, 'borrow, 'compact, 'reborrow>
for Foo<'life, 'before>
where
'compact: 'borrow,
'life: 'reborrow,
'life: 'borrow,
'life: 'compact,
{
type Tokenized = TokenFoo<'life, 'borrow, 'compact, 'reborrow>;
type Untokenized = Foo<'life, 'reborrow>;
tokenize!(foo_to, foo_from);
}
impl<'life, 'borrow, 'compact, 'reborrow> Tokenize<'life, 'borrow, 'compact, 'reborrow> for Bar
where
'compact: 'borrow,
'life: 'reborrow,
'life: 'borrow,
'life: 'compact,
{
type Tokenized = Bar;
type Untokenized = Bar;
tokenize!(bar_to, bar_from);
}
fn bar_to<'life, 'borrow, 'compact>(
arena: &Arena<'life>,
guard: &'borrow Guard<'compact>,
s: Bar,
) -> Bar {
s
}
fn bar_from<'life, 'reborrow>(arena: &'reborrow Arena<'life>, s: Bar) -> Bar {
s
}
fn foo_to<'life, 'borrow, 'compact, 'reborrow, 'before>(
arena: &'before Arena<'life>,
guard: &'borrow Guard<'compact>,
s: Foo<'life, 'before>,
) -> TokenFoo<'life, 'borrow, 'compact, 'reborrow> {
let Foo(bar) = s;
TokenFoo(bar.map(|bar| arena.tokenize(guard, bar)))
}
fn foo_from<'life, 'borrow, 'compact, 'reborrow>(
arena: &'reborrow Arena<'life>,
s: TokenFoo<'life, 'borrow, 'compact, 'reborrow>,
) -> Foo<'life, 'reborrow> {
Foo(s.0.map(|bar| panic!()))
}
fn main() {}