mv compiler to compiler/
This commit is contained in:
parent
db534b3ac2
commit
9e5f7d5631
1686 changed files with 941 additions and 1051 deletions
577
compiler/rustc_trait_selection/src/traits/coherence.rs
Normal file
577
compiler/rustc_trait_selection/src/traits/coherence.rs
Normal file
|
@ -0,0 +1,577 @@
|
|||
//! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on
|
||||
//! how this works.
|
||||
//!
|
||||
//! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
|
||||
//! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html
|
||||
|
||||
use crate::infer::{CombinedSnapshot, InferOk, TyCtxtInferExt};
|
||||
use crate::traits::select::IntercrateAmbiguityCause;
|
||||
use crate::traits::SkipLeakCheck;
|
||||
use crate::traits::{self, Normalized, Obligation, ObligationCause, SelectionContext};
|
||||
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
|
||||
use rustc_middle::ty::fold::TypeFoldable;
|
||||
use rustc_middle::ty::subst::Subst;
|
||||
use rustc_middle::ty::{self, Ty, TyCtxt};
|
||||
use rustc_span::symbol::sym;
|
||||
use rustc_span::DUMMY_SP;
|
||||
use std::iter;
|
||||
|
||||
/// Whether we do the orphan check relative to this crate or
|
||||
/// to some remote crate.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
enum InCrate {
|
||||
Local,
|
||||
Remote,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub enum Conflict {
|
||||
Upstream,
|
||||
Downstream,
|
||||
}
|
||||
|
||||
pub struct OverlapResult<'tcx> {
|
||||
pub impl_header: ty::ImplHeader<'tcx>,
|
||||
pub intercrate_ambiguity_causes: Vec<IntercrateAmbiguityCause>,
|
||||
|
||||
/// `true` if the overlap might've been permitted before the shift
|
||||
/// to universes.
|
||||
pub involves_placeholder: bool,
|
||||
}
|
||||
|
||||
pub fn add_placeholder_note(err: &mut rustc_errors::DiagnosticBuilder<'_>) {
|
||||
err.note(
|
||||
"this behavior recently changed as a result of a bug fix; \
|
||||
see rust-lang/rust#56105 for details",
|
||||
);
|
||||
}
|
||||
|
||||
/// If there are types that satisfy both impls, invokes `on_overlap`
|
||||
/// with a suitably-freshened `ImplHeader` with those types
|
||||
/// substituted. Otherwise, invokes `no_overlap`.
|
||||
pub fn overlapping_impls<F1, F2, R>(
|
||||
tcx: TyCtxt<'_>,
|
||||
impl1_def_id: DefId,
|
||||
impl2_def_id: DefId,
|
||||
skip_leak_check: SkipLeakCheck,
|
||||
on_overlap: F1,
|
||||
no_overlap: F2,
|
||||
) -> R
|
||||
where
|
||||
F1: FnOnce(OverlapResult<'_>) -> R,
|
||||
F2: FnOnce() -> R,
|
||||
{
|
||||
debug!(
|
||||
"overlapping_impls(\
|
||||
impl1_def_id={:?}, \
|
||||
impl2_def_id={:?})",
|
||||
impl1_def_id, impl2_def_id,
|
||||
);
|
||||
|
||||
let overlaps = tcx.infer_ctxt().enter(|infcx| {
|
||||
let selcx = &mut SelectionContext::intercrate(&infcx);
|
||||
overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id).is_some()
|
||||
});
|
||||
|
||||
if !overlaps {
|
||||
return no_overlap();
|
||||
}
|
||||
|
||||
// In the case where we detect an error, run the check again, but
|
||||
// this time tracking intercrate ambuiguity causes for better
|
||||
// diagnostics. (These take time and can lead to false errors.)
|
||||
tcx.infer_ctxt().enter(|infcx| {
|
||||
let selcx = &mut SelectionContext::intercrate(&infcx);
|
||||
selcx.enable_tracking_intercrate_ambiguity_causes();
|
||||
on_overlap(overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id).unwrap())
|
||||
})
|
||||
}
|
||||
|
||||
fn with_fresh_ty_vars<'cx, 'tcx>(
|
||||
selcx: &mut SelectionContext<'cx, 'tcx>,
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
impl_def_id: DefId,
|
||||
) -> ty::ImplHeader<'tcx> {
|
||||
let tcx = selcx.tcx();
|
||||
let impl_substs = selcx.infcx().fresh_substs_for_item(DUMMY_SP, impl_def_id);
|
||||
|
||||
let header = ty::ImplHeader {
|
||||
impl_def_id,
|
||||
self_ty: tcx.type_of(impl_def_id).subst(tcx, impl_substs),
|
||||
trait_ref: tcx.impl_trait_ref(impl_def_id).subst(tcx, impl_substs),
|
||||
predicates: tcx.predicates_of(impl_def_id).instantiate(tcx, impl_substs).predicates,
|
||||
};
|
||||
|
||||
let Normalized { value: mut header, obligations } =
|
||||
traits::normalize(selcx, param_env, ObligationCause::dummy(), &header);
|
||||
|
||||
header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
|
||||
header
|
||||
}
|
||||
|
||||
/// Can both impl `a` and impl `b` be satisfied by a common type (including
|
||||
/// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls.
|
||||
fn overlap<'cx, 'tcx>(
|
||||
selcx: &mut SelectionContext<'cx, 'tcx>,
|
||||
skip_leak_check: SkipLeakCheck,
|
||||
a_def_id: DefId,
|
||||
b_def_id: DefId,
|
||||
) -> Option<OverlapResult<'tcx>> {
|
||||
debug!("overlap(a_def_id={:?}, b_def_id={:?})", a_def_id, b_def_id);
|
||||
|
||||
selcx.infcx().probe_maybe_skip_leak_check(skip_leak_check.is_yes(), |snapshot| {
|
||||
overlap_within_probe(selcx, skip_leak_check, a_def_id, b_def_id, snapshot)
|
||||
})
|
||||
}
|
||||
|
||||
fn overlap_within_probe(
|
||||
selcx: &mut SelectionContext<'cx, 'tcx>,
|
||||
skip_leak_check: SkipLeakCheck,
|
||||
a_def_id: DefId,
|
||||
b_def_id: DefId,
|
||||
snapshot: &CombinedSnapshot<'_, 'tcx>,
|
||||
) -> Option<OverlapResult<'tcx>> {
|
||||
// For the purposes of this check, we don't bring any placeholder
|
||||
// types into scope; instead, we replace the generic types with
|
||||
// fresh type variables, and hence we do our evaluations in an
|
||||
// empty environment.
|
||||
let param_env = ty::ParamEnv::empty();
|
||||
|
||||
let a_impl_header = with_fresh_ty_vars(selcx, param_env, a_def_id);
|
||||
let b_impl_header = with_fresh_ty_vars(selcx, param_env, b_def_id);
|
||||
|
||||
debug!("overlap: a_impl_header={:?}", a_impl_header);
|
||||
debug!("overlap: b_impl_header={:?}", b_impl_header);
|
||||
|
||||
// Do `a` and `b` unify? If not, no overlap.
|
||||
let obligations = match selcx
|
||||
.infcx()
|
||||
.at(&ObligationCause::dummy(), param_env)
|
||||
.eq_impl_headers(&a_impl_header, &b_impl_header)
|
||||
{
|
||||
Ok(InferOk { obligations, value: () }) => obligations,
|
||||
Err(_) => {
|
||||
return None;
|
||||
}
|
||||
};
|
||||
|
||||
debug!("overlap: unification check succeeded");
|
||||
|
||||
// Are any of the obligations unsatisfiable? If so, no overlap.
|
||||
let infcx = selcx.infcx();
|
||||
let opt_failing_obligation = a_impl_header
|
||||
.predicates
|
||||
.iter()
|
||||
.chain(&b_impl_header.predicates)
|
||||
.map(|p| infcx.resolve_vars_if_possible(p))
|
||||
.map(|p| Obligation {
|
||||
cause: ObligationCause::dummy(),
|
||||
param_env,
|
||||
recursion_depth: 0,
|
||||
predicate: p,
|
||||
})
|
||||
.chain(obligations)
|
||||
.find(|o| !selcx.predicate_may_hold_fatal(o));
|
||||
// FIXME: the call to `selcx.predicate_may_hold_fatal` above should be ported
|
||||
// to the canonical trait query form, `infcx.predicate_may_hold`, once
|
||||
// the new system supports intercrate mode (which coherence needs).
|
||||
|
||||
if let Some(failing_obligation) = opt_failing_obligation {
|
||||
debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
|
||||
return None;
|
||||
}
|
||||
|
||||
if !skip_leak_check.is_yes() {
|
||||
if let Err(_) = infcx.leak_check(true, snapshot) {
|
||||
debug!("overlap: leak check failed");
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
let impl_header = selcx.infcx().resolve_vars_if_possible(&a_impl_header);
|
||||
let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes();
|
||||
debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
|
||||
|
||||
let involves_placeholder = match selcx.infcx().region_constraints_added_in_snapshot(snapshot) {
|
||||
Some(true) => true,
|
||||
_ => false,
|
||||
};
|
||||
|
||||
Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder })
|
||||
}
|
||||
|
||||
pub fn trait_ref_is_knowable<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
trait_ref: ty::TraitRef<'tcx>,
|
||||
) -> Option<Conflict> {
|
||||
debug!("trait_ref_is_knowable(trait_ref={:?})", trait_ref);
|
||||
if orphan_check_trait_ref(tcx, trait_ref, InCrate::Remote).is_ok() {
|
||||
// A downstream or cousin crate is allowed to implement some
|
||||
// substitution of this trait-ref.
|
||||
return Some(Conflict::Downstream);
|
||||
}
|
||||
|
||||
if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
|
||||
// This is a local or fundamental trait, so future-compatibility
|
||||
// is no concern. We know that downstream/cousin crates are not
|
||||
// allowed to implement a substitution of this trait ref, which
|
||||
// means impls could only come from dependencies of this crate,
|
||||
// which we already know about.
|
||||
return None;
|
||||
}
|
||||
|
||||
// This is a remote non-fundamental trait, so if another crate
|
||||
// can be the "final owner" of a substitution of this trait-ref,
|
||||
// they are allowed to implement it future-compatibly.
|
||||
//
|
||||
// However, if we are a final owner, then nobody else can be,
|
||||
// and if we are an intermediate owner, then we don't care
|
||||
// about future-compatibility, which means that we're OK if
|
||||
// we are an owner.
|
||||
if orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok() {
|
||||
debug!("trait_ref_is_knowable: orphan check passed");
|
||||
None
|
||||
} else {
|
||||
debug!("trait_ref_is_knowable: nonlocal, nonfundamental, unowned");
|
||||
Some(Conflict::Upstream)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn trait_ref_is_local_or_fundamental<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
trait_ref: ty::TraitRef<'tcx>,
|
||||
) -> bool {
|
||||
trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental)
|
||||
}
|
||||
|
||||
pub enum OrphanCheckErr<'tcx> {
|
||||
NonLocalInputType(Vec<(Ty<'tcx>, bool /* Is this the first input type? */)>),
|
||||
UncoveredTy(Ty<'tcx>, Option<Ty<'tcx>>),
|
||||
}
|
||||
|
||||
/// Checks the coherence orphan rules. `impl_def_id` should be the
|
||||
/// `DefId` of a trait impl. To pass, either the trait must be local, or else
|
||||
/// two conditions must be satisfied:
|
||||
///
|
||||
/// 1. All type parameters in `Self` must be "covered" by some local type constructor.
|
||||
/// 2. Some local type must appear in `Self`.
|
||||
pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> {
|
||||
debug!("orphan_check({:?})", impl_def_id);
|
||||
|
||||
// We only except this routine to be invoked on implementations
|
||||
// of a trait, not inherent implementations.
|
||||
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
|
||||
debug!("orphan_check: trait_ref={:?}", trait_ref);
|
||||
|
||||
// If the *trait* is local to the crate, ok.
|
||||
if trait_ref.def_id.is_local() {
|
||||
debug!("trait {:?} is local to current crate", trait_ref.def_id);
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
orphan_check_trait_ref(tcx, trait_ref, InCrate::Local)
|
||||
}
|
||||
|
||||
/// Checks whether a trait-ref is potentially implementable by a crate.
|
||||
///
|
||||
/// The current rule is that a trait-ref orphan checks in a crate C:
|
||||
///
|
||||
/// 1. Order the parameters in the trait-ref in subst order - Self first,
|
||||
/// others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
|
||||
/// 2. Of these type parameters, there is at least one type parameter
|
||||
/// in which, walking the type as a tree, you can reach a type local
|
||||
/// to C where all types in-between are fundamental types. Call the
|
||||
/// first such parameter the "local key parameter".
|
||||
/// - e.g., `Box<LocalType>` is OK, because you can visit LocalType
|
||||
/// going through `Box`, which is fundamental.
|
||||
/// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
|
||||
/// the same reason.
|
||||
/// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
|
||||
/// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
|
||||
/// the local type and the type parameter.
|
||||
/// 3. Before this local type, no generic type parameter of the impl must
|
||||
/// be reachable through fundamental types.
|
||||
/// - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental.
|
||||
/// - while `impl<T> Trait<LocalType for Box<T>` results in an error, as `T` is
|
||||
/// reachable through the fundamental type `Box`.
|
||||
/// 4. Every type in the local key parameter not known in C, going
|
||||
/// through the parameter's type tree, must appear only as a subtree of
|
||||
/// a type local to C, with only fundamental types between the type
|
||||
/// local to C and the local key parameter.
|
||||
/// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
|
||||
/// is bad, because the only local type with `T` as a subtree is
|
||||
/// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
|
||||
/// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
|
||||
/// the second occurrence of `T` is not a subtree of *any* local type.
|
||||
/// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
|
||||
/// `LocalType<Vec<T>>`, which is local and has no types between it and
|
||||
/// the type parameter.
|
||||
///
|
||||
/// The orphan rules actually serve several different purposes:
|
||||
///
|
||||
/// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where
|
||||
/// every type local to one crate is unknown in the other) can't implement
|
||||
/// the same trait-ref. This follows because it can be seen that no such
|
||||
/// type can orphan-check in 2 such crates.
|
||||
///
|
||||
/// To check that a local impl follows the orphan rules, we check it in
|
||||
/// InCrate::Local mode, using type parameters for the "generic" types.
|
||||
///
|
||||
/// 2. They ground negative reasoning for coherence. If a user wants to
|
||||
/// write both a conditional blanket impl and a specific impl, we need to
|
||||
/// make sure they do not overlap. For example, if we write
|
||||
/// ```
|
||||
/// impl<T> IntoIterator for Vec<T>
|
||||
/// impl<T: Iterator> IntoIterator for T
|
||||
/// ```
|
||||
/// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
|
||||
/// We can observe that this holds in the current crate, but we need to make
|
||||
/// sure this will also hold in all unknown crates (both "independent" crates,
|
||||
/// which we need for link-safety, and also child crates, because we don't want
|
||||
/// child crates to get error for impl conflicts in a *dependency*).
|
||||
///
|
||||
/// For that, we only allow negative reasoning if, for every assignment to the
|
||||
/// inference variables, every unknown crate would get an orphan error if they
|
||||
/// try to implement this trait-ref. To check for this, we use InCrate::Remote
|
||||
/// mode. That is sound because we already know all the impls from known crates.
|
||||
///
|
||||
/// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can
|
||||
/// add "non-blanket" impls without breaking negative reasoning in dependent
|
||||
/// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
|
||||
///
|
||||
/// For that, we only a allow crate to perform negative reasoning on
|
||||
/// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2).
|
||||
///
|
||||
/// Because we never perform negative reasoning generically (coherence does
|
||||
/// not involve type parameters), this can be interpreted as doing the full
|
||||
/// orphan check (using InCrate::Local mode), substituting non-local known
|
||||
/// types for all inference variables.
|
||||
///
|
||||
/// This allows for crates to future-compatibly add impls as long as they
|
||||
/// can't apply to types with a key parameter in a child crate - applying
|
||||
/// the rules, this basically means that every type parameter in the impl
|
||||
/// must appear behind a non-fundamental type (because this is not a
|
||||
/// type-system requirement, crate owners might also go for "semantic
|
||||
/// future-compatibility" involving things such as sealed traits, but
|
||||
/// the above requirement is sufficient, and is necessary in "open world"
|
||||
/// cases).
|
||||
///
|
||||
/// Note that this function is never called for types that have both type
|
||||
/// parameters and inference variables.
|
||||
fn orphan_check_trait_ref<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
trait_ref: ty::TraitRef<'tcx>,
|
||||
in_crate: InCrate,
|
||||
) -> Result<(), OrphanCheckErr<'tcx>> {
|
||||
debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})", trait_ref, in_crate);
|
||||
|
||||
if trait_ref.needs_infer() && trait_ref.needs_subst() {
|
||||
bug!(
|
||||
"can't orphan check a trait ref with both params and inference variables {:?}",
|
||||
trait_ref
|
||||
);
|
||||
}
|
||||
|
||||
// Given impl<P1..=Pn> Trait<T1..=Tn> for T0, an impl is valid only
|
||||
// if at least one of the following is true:
|
||||
//
|
||||
// - Trait is a local trait
|
||||
// (already checked in orphan_check prior to calling this function)
|
||||
// - All of
|
||||
// - At least one of the types T0..=Tn must be a local type.
|
||||
// Let Ti be the first such type.
|
||||
// - No uncovered type parameters P1..=Pn may appear in T0..Ti (excluding Ti)
|
||||
//
|
||||
fn uncover_fundamental_ty<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
ty: Ty<'tcx>,
|
||||
in_crate: InCrate,
|
||||
) -> Vec<Ty<'tcx>> {
|
||||
// FIXME: this is currently somewhat overly complicated,
|
||||
// but fixing this requires a more complicated refactor.
|
||||
if !contained_non_local_types(tcx, ty, in_crate).is_empty() {
|
||||
if let Some(inner_tys) = fundamental_ty_inner_tys(tcx, ty) {
|
||||
return inner_tys
|
||||
.flat_map(|ty| uncover_fundamental_ty(tcx, ty, in_crate))
|
||||
.collect();
|
||||
}
|
||||
}
|
||||
|
||||
vec![ty]
|
||||
}
|
||||
|
||||
let mut non_local_spans = vec![];
|
||||
for (i, input_ty) in trait_ref
|
||||
.substs
|
||||
.types()
|
||||
.flat_map(|ty| uncover_fundamental_ty(tcx, ty, in_crate))
|
||||
.enumerate()
|
||||
{
|
||||
debug!("orphan_check_trait_ref: check ty `{:?}`", input_ty);
|
||||
let non_local_tys = contained_non_local_types(tcx, input_ty, in_crate);
|
||||
if non_local_tys.is_empty() {
|
||||
debug!("orphan_check_trait_ref: ty_is_local `{:?}`", input_ty);
|
||||
return Ok(());
|
||||
} else if let ty::Param(_) = input_ty.kind {
|
||||
debug!("orphan_check_trait_ref: uncovered ty: `{:?}`", input_ty);
|
||||
let local_type = trait_ref
|
||||
.substs
|
||||
.types()
|
||||
.flat_map(|ty| uncover_fundamental_ty(tcx, ty, in_crate))
|
||||
.find(|ty| ty_is_local_constructor(ty, in_crate));
|
||||
|
||||
debug!("orphan_check_trait_ref: uncovered ty local_type: `{:?}`", local_type);
|
||||
|
||||
return Err(OrphanCheckErr::UncoveredTy(input_ty, local_type));
|
||||
}
|
||||
|
||||
for input_ty in non_local_tys {
|
||||
non_local_spans.push((input_ty, i == 0));
|
||||
}
|
||||
}
|
||||
// If we exit above loop, never found a local type.
|
||||
debug!("orphan_check_trait_ref: no local type");
|
||||
Err(OrphanCheckErr::NonLocalInputType(non_local_spans))
|
||||
}
|
||||
|
||||
/// Returns a list of relevant non-local types for `ty`.
|
||||
///
|
||||
/// This is just `ty` itself unless `ty` is `#[fundamental]`,
|
||||
/// in which case we recursively look into this type.
|
||||
///
|
||||
/// If `ty` is local itself, this method returns an empty `Vec`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// - `u32` is not local, so this returns `[u32]`.
|
||||
/// - for `Foo<u32>`, where `Foo` is a local type, this returns `[]`.
|
||||
/// - `&mut u32` returns `[u32]`, as `&mut` is a fundamental type, similar to `Box`.
|
||||
/// - `Box<Foo<u32>>` returns `[]`, as `Box` is a fundamental type and `Foo` is local.
|
||||
fn contained_non_local_types(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, in_crate: InCrate) -> Vec<Ty<'tcx>> {
|
||||
if ty_is_local_constructor(ty, in_crate) {
|
||||
Vec::new()
|
||||
} else {
|
||||
match fundamental_ty_inner_tys(tcx, ty) {
|
||||
Some(inner_tys) => {
|
||||
inner_tys.flat_map(|ty| contained_non_local_types(tcx, ty, in_crate)).collect()
|
||||
}
|
||||
None => vec![ty],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// For `#[fundamental]` ADTs and `&T` / `&mut T`, returns `Some` with the
|
||||
/// type parameters of the ADT, or `T`, respectively. For non-fundamental
|
||||
/// types, returns `None`.
|
||||
fn fundamental_ty_inner_tys(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
ty: Ty<'tcx>,
|
||||
) -> Option<impl Iterator<Item = Ty<'tcx>>> {
|
||||
let (first_ty, rest_tys) = match ty.kind {
|
||||
ty::Ref(_, ty, _) => (ty, ty::subst::InternalSubsts::empty().types()),
|
||||
ty::Adt(def, substs) if def.is_fundamental() => {
|
||||
let mut types = substs.types();
|
||||
|
||||
// FIXME(eddyb) actually validate `#[fundamental]` up-front.
|
||||
match types.next() {
|
||||
None => {
|
||||
tcx.sess.span_err(
|
||||
tcx.def_span(def.did),
|
||||
"`#[fundamental]` requires at least one type parameter",
|
||||
);
|
||||
|
||||
return None;
|
||||
}
|
||||
|
||||
Some(first_ty) => (first_ty, types),
|
||||
}
|
||||
}
|
||||
_ => return None,
|
||||
};
|
||||
|
||||
Some(iter::once(first_ty).chain(rest_tys))
|
||||
}
|
||||
|
||||
fn def_id_is_local(def_id: DefId, in_crate: InCrate) -> bool {
|
||||
match in_crate {
|
||||
// The type is local to *this* crate - it will not be
|
||||
// local in any other crate.
|
||||
InCrate::Remote => false,
|
||||
InCrate::Local => def_id.is_local(),
|
||||
}
|
||||
}
|
||||
|
||||
fn ty_is_local_constructor(ty: Ty<'_>, in_crate: InCrate) -> bool {
|
||||
debug!("ty_is_local_constructor({:?})", ty);
|
||||
|
||||
match ty.kind {
|
||||
ty::Bool
|
||||
| ty::Char
|
||||
| ty::Int(..)
|
||||
| ty::Uint(..)
|
||||
| ty::Float(..)
|
||||
| ty::Str
|
||||
| ty::FnDef(..)
|
||||
| ty::FnPtr(_)
|
||||
| ty::Array(..)
|
||||
| ty::Slice(..)
|
||||
| ty::RawPtr(..)
|
||||
| ty::Ref(..)
|
||||
| ty::Never
|
||||
| ty::Tuple(..)
|
||||
| ty::Param(..)
|
||||
| ty::Projection(..) => false,
|
||||
|
||||
ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match in_crate {
|
||||
InCrate::Local => false,
|
||||
// The inference variable might be unified with a local
|
||||
// type in that remote crate.
|
||||
InCrate::Remote => true,
|
||||
},
|
||||
|
||||
ty::Adt(def, _) => def_id_is_local(def.did, in_crate),
|
||||
ty::Foreign(did) => def_id_is_local(did, in_crate),
|
||||
ty::Opaque(..) => {
|
||||
// This merits some explanation.
|
||||
// Normally, opaque types are not involed when performing
|
||||
// coherence checking, since it is illegal to directly
|
||||
// implement a trait on an opaque type. However, we might
|
||||
// end up looking at an opaque type during coherence checking
|
||||
// if an opaque type gets used within another type (e.g. as
|
||||
// a type parameter). This requires us to decide whether or
|
||||
// not an opaque type should be considered 'local' or not.
|
||||
//
|
||||
// We choose to treat all opaque types as non-local, even
|
||||
// those that appear within the same crate. This seems
|
||||
// somewhat surprising at first, but makes sense when
|
||||
// you consider that opaque types are supposed to hide
|
||||
// the underlying type *within the same crate*. When an
|
||||
// opaque type is used from outside the module
|
||||
// where it is declared, it should be impossible to observe
|
||||
// anything about it other than the traits that it implements.
|
||||
//
|
||||
// The alternative would be to look at the underlying type
|
||||
// to determine whether or not the opaque type itself should
|
||||
// be considered local. However, this could make it a breaking change
|
||||
// to switch the underlying ('defining') type from a local type
|
||||
// to a remote type. This would violate the rule that opaque
|
||||
// types should be completely opaque apart from the traits
|
||||
// that they implement, so we don't use this behavior.
|
||||
false
|
||||
}
|
||||
|
||||
ty::Dynamic(ref tt, ..) => {
|
||||
if let Some(principal) = tt.principal() {
|
||||
def_id_is_local(principal.def_id(), in_crate)
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
ty::Error(_) => true,
|
||||
|
||||
ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) => {
|
||||
bug!("ty_is_local invoked on unexpected type: {:?}", ty)
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue