1
Fork 0

mv compiler to compiler/

This commit is contained in:
mark 2020-08-27 22:58:48 -05:00 committed by Vadim Petrochenkov
parent db534b3ac2
commit 9e5f7d5631
1686 changed files with 941 additions and 1051 deletions

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,366 @@
use super::*;
extern crate test;
use test::Bencher;
#[test]
fn test_new_filled() {
for i in 0..128 {
let idx_buf = BitSet::new_filled(i);
let elems: Vec<usize> = idx_buf.iter().collect();
let expected: Vec<usize> = (0..i).collect();
assert_eq!(elems, expected);
}
}
#[test]
fn bitset_iter_works() {
let mut bitset: BitSet<usize> = BitSet::new_empty(100);
bitset.insert(1);
bitset.insert(10);
bitset.insert(19);
bitset.insert(62);
bitset.insert(63);
bitset.insert(64);
bitset.insert(65);
bitset.insert(66);
bitset.insert(99);
assert_eq!(bitset.iter().collect::<Vec<_>>(), [1, 10, 19, 62, 63, 64, 65, 66, 99]);
}
#[test]
fn bitset_iter_works_2() {
let mut bitset: BitSet<usize> = BitSet::new_empty(320);
bitset.insert(0);
bitset.insert(127);
bitset.insert(191);
bitset.insert(255);
bitset.insert(319);
assert_eq!(bitset.iter().collect::<Vec<_>>(), [0, 127, 191, 255, 319]);
}
#[test]
fn union_two_sets() {
let mut set1: BitSet<usize> = BitSet::new_empty(65);
let mut set2: BitSet<usize> = BitSet::new_empty(65);
assert!(set1.insert(3));
assert!(!set1.insert(3));
assert!(set2.insert(5));
assert!(set2.insert(64));
assert!(set1.union(&set2));
assert!(!set1.union(&set2));
assert!(set1.contains(3));
assert!(!set1.contains(4));
assert!(set1.contains(5));
assert!(!set1.contains(63));
assert!(set1.contains(64));
}
#[test]
fn hybrid_bitset() {
let mut sparse038: HybridBitSet<usize> = HybridBitSet::new_empty(256);
assert!(sparse038.is_empty());
assert!(sparse038.insert(0));
assert!(sparse038.insert(1));
assert!(sparse038.insert(8));
assert!(sparse038.insert(3));
assert!(!sparse038.insert(3));
assert!(sparse038.remove(1));
assert!(!sparse038.is_empty());
assert_eq!(sparse038.iter().collect::<Vec<_>>(), [0, 3, 8]);
for i in 0..256 {
if i == 0 || i == 3 || i == 8 {
assert!(sparse038.contains(i));
} else {
assert!(!sparse038.contains(i));
}
}
let mut sparse01358 = sparse038.clone();
assert!(sparse01358.insert(1));
assert!(sparse01358.insert(5));
assert_eq!(sparse01358.iter().collect::<Vec<_>>(), [0, 1, 3, 5, 8]);
let mut dense10 = HybridBitSet::new_empty(256);
for i in 0..10 {
assert!(dense10.insert(i));
}
assert!(!dense10.is_empty());
assert_eq!(dense10.iter().collect::<Vec<_>>(), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
let mut dense256 = HybridBitSet::new_empty(256);
assert!(dense256.is_empty());
dense256.insert_all();
assert!(!dense256.is_empty());
for i in 0..256 {
assert!(dense256.contains(i));
}
assert!(sparse038.superset(&sparse038)); // sparse + sparse (self)
assert!(sparse01358.superset(&sparse038)); // sparse + sparse
assert!(dense10.superset(&sparse038)); // dense + sparse
assert!(dense10.superset(&dense10)); // dense + dense (self)
assert!(dense256.superset(&dense10)); // dense + dense
let mut hybrid = sparse038;
assert!(!sparse01358.union(&hybrid)); // no change
assert!(hybrid.union(&sparse01358));
assert!(hybrid.superset(&sparse01358) && sparse01358.superset(&hybrid));
assert!(!dense10.union(&sparse01358));
assert!(!dense256.union(&dense10));
let mut dense = dense10;
assert!(dense.union(&dense256));
assert!(dense.superset(&dense256) && dense256.superset(&dense));
assert!(hybrid.union(&dense256));
assert!(hybrid.superset(&dense256) && dense256.superset(&hybrid));
assert_eq!(dense256.iter().count(), 256);
let mut dense0 = dense256;
for i in 0..256 {
assert!(dense0.remove(i));
}
assert!(!dense0.remove(0));
assert!(dense0.is_empty());
}
#[test]
fn grow() {
let mut set: GrowableBitSet<usize> = GrowableBitSet::with_capacity(65);
for index in 0..65 {
assert!(set.insert(index));
assert!(!set.insert(index));
}
set.ensure(128);
// Check if the bits set before growing are still set
for index in 0..65 {
assert!(set.contains(index));
}
// Check if the new bits are all un-set
for index in 65..128 {
assert!(!set.contains(index));
}
// Check that we can set all new bits without running out of bounds
for index in 65..128 {
assert!(set.insert(index));
assert!(!set.insert(index));
}
}
#[test]
fn matrix_intersection() {
let mut matrix: BitMatrix<usize, usize> = BitMatrix::new(200, 200);
// (*) Elements reachable from both 2 and 65.
matrix.insert(2, 3);
matrix.insert(2, 6);
matrix.insert(2, 10); // (*)
matrix.insert(2, 64); // (*)
matrix.insert(2, 65);
matrix.insert(2, 130);
matrix.insert(2, 160); // (*)
matrix.insert(64, 133);
matrix.insert(65, 2);
matrix.insert(65, 8);
matrix.insert(65, 10); // (*)
matrix.insert(65, 64); // (*)
matrix.insert(65, 68);
matrix.insert(65, 133);
matrix.insert(65, 160); // (*)
let intersection = matrix.intersect_rows(2, 64);
assert!(intersection.is_empty());
let intersection = matrix.intersect_rows(2, 65);
assert_eq!(intersection, &[10, 64, 160]);
}
#[test]
fn matrix_iter() {
let mut matrix: BitMatrix<usize, usize> = BitMatrix::new(64, 100);
matrix.insert(3, 22);
matrix.insert(3, 75);
matrix.insert(2, 99);
matrix.insert(4, 0);
matrix.union_rows(3, 5);
matrix.insert_all_into_row(6);
let expected = [99];
let mut iter = expected.iter();
for i in matrix.iter(2) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [22, 75];
let mut iter = expected.iter();
assert_eq!(matrix.count(3), expected.len());
for i in matrix.iter(3) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [0];
let mut iter = expected.iter();
assert_eq!(matrix.count(4), expected.len());
for i in matrix.iter(4) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [22, 75];
let mut iter = expected.iter();
assert_eq!(matrix.count(5), expected.len());
for i in matrix.iter(5) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
assert_eq!(matrix.count(6), 100);
let mut count = 0;
for (idx, i) in matrix.iter(6).enumerate() {
assert_eq!(idx, i);
count += 1;
}
assert_eq!(count, 100);
if let Some(i) = matrix.iter(7).next() {
panic!("expected no elements in row, but contains element {:?}", i);
}
}
#[test]
fn sparse_matrix_iter() {
let mut matrix: SparseBitMatrix<usize, usize> = SparseBitMatrix::new(100);
matrix.insert(3, 22);
matrix.insert(3, 75);
matrix.insert(2, 99);
matrix.insert(4, 0);
matrix.union_rows(3, 5);
let expected = [99];
let mut iter = expected.iter();
for i in matrix.iter(2) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [22, 75];
let mut iter = expected.iter();
for i in matrix.iter(3) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [0];
let mut iter = expected.iter();
for i in matrix.iter(4) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [22, 75];
let mut iter = expected.iter();
for i in matrix.iter(5) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
}
/// Merge dense hybrid set into empty sparse hybrid set.
#[bench]
fn union_hybrid_sparse_empty_to_dense(b: &mut Bencher) {
let mut pre_dense: HybridBitSet<usize> = HybridBitSet::new_empty(256);
for i in 0..10 {
assert!(pre_dense.insert(i));
}
let pre_sparse: HybridBitSet<usize> = HybridBitSet::new_empty(256);
b.iter(|| {
let dense = pre_dense.clone();
let mut sparse = pre_sparse.clone();
sparse.union(&dense);
})
}
/// Merge dense hybrid set into full hybrid set with same indices.
#[bench]
fn union_hybrid_sparse_full_to_dense(b: &mut Bencher) {
let mut pre_dense: HybridBitSet<usize> = HybridBitSet::new_empty(256);
for i in 0..10 {
assert!(pre_dense.insert(i));
}
let mut pre_sparse: HybridBitSet<usize> = HybridBitSet::new_empty(256);
for i in 0..SPARSE_MAX {
assert!(pre_sparse.insert(i));
}
b.iter(|| {
let dense = pre_dense.clone();
let mut sparse = pre_sparse.clone();
sparse.union(&dense);
})
}
/// Merge dense hybrid set into full hybrid set with indices over the whole domain.
#[bench]
fn union_hybrid_sparse_domain_to_dense(b: &mut Bencher) {
let mut pre_dense: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX * 64);
for i in 0..10 {
assert!(pre_dense.insert(i));
}
let mut pre_sparse: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX * 64);
for i in 0..SPARSE_MAX {
assert!(pre_sparse.insert(i * 64));
}
b.iter(|| {
let dense = pre_dense.clone();
let mut sparse = pre_sparse.clone();
sparse.union(&dense);
})
}
/// Merge dense hybrid set into empty hybrid set where the domain is very small.
#[bench]
fn union_hybrid_sparse_empty_small_domain(b: &mut Bencher) {
let mut pre_dense: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX);
for i in 0..SPARSE_MAX {
assert!(pre_dense.insert(i));
}
let pre_sparse: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX);
b.iter(|| {
let dense = pre_dense.clone();
let mut sparse = pre_sparse.clone();
sparse.union(&dense);
})
}
/// Merge dense hybrid set into full hybrid set where the domain is very small.
#[bench]
fn union_hybrid_sparse_full_small_domain(b: &mut Bencher) {
let mut pre_dense: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX);
for i in 0..SPARSE_MAX {
assert!(pre_dense.insert(i));
}
let mut pre_sparse: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX);
for i in 0..SPARSE_MAX {
assert!(pre_sparse.insert(i));
}
b.iter(|| {
let dense = pre_dense.clone();
let mut sparse = pre_sparse.clone();
sparse.union(&dense);
})
}

View file

@ -0,0 +1,11 @@
#![feature(allow_internal_unstable)]
#![feature(bool_to_option)]
#![feature(const_fn)]
#![feature(const_panic)]
#![feature(extend_one)]
#![feature(unboxed_closures)]
#![feature(test)]
#![feature(fn_traits)]
pub mod bit_set;
pub mod vec;

View file

@ -0,0 +1,846 @@
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use std::fmt;
use std::fmt::Debug;
use std::hash::Hash;
use std::iter::{self, FromIterator};
use std::marker::PhantomData;
use std::ops::{Index, IndexMut, Range, RangeBounds};
use std::slice;
use std::vec;
/// Represents some newtyped `usize` wrapper.
///
/// Purpose: avoid mixing indexes for different bitvector domains.
pub trait Idx: Copy + 'static + Ord + Debug + Hash {
fn new(idx: usize) -> Self;
fn index(self) -> usize;
fn increment_by(&mut self, amount: usize) {
*self = self.plus(amount);
}
fn plus(self, amount: usize) -> Self {
Self::new(self.index() + amount)
}
}
impl Idx for usize {
#[inline]
fn new(idx: usize) -> Self {
idx
}
#[inline]
fn index(self) -> usize {
self
}
}
impl Idx for u32 {
#[inline]
fn new(idx: usize) -> Self {
assert!(idx <= u32::MAX as usize);
idx as u32
}
#[inline]
fn index(self) -> usize {
self as usize
}
}
/// Creates a struct type `S` that can be used as an index with
/// `IndexVec` and so on.
///
/// There are two ways of interacting with these indices:
///
/// - The `From` impls are the preferred way. So you can do
/// `S::from(v)` with a `usize` or `u32`. And you can convert back
/// to an integer with `u32::from(s)`.
///
/// - Alternatively, you can use the methods `S::new(v)` and `s.index()`
/// to create/return a value.
///
/// Internally, the index uses a u32, so the index must not exceed
/// `u32::MAX`. You can also customize things like the `Debug` impl,
/// what traits are derived, and so forth via the macro.
#[macro_export]
#[allow_internal_unstable(step_trait, step_trait_ext, rustc_attrs)]
macro_rules! newtype_index {
// ---- public rules ----
// Use default constants
($(#[$attrs:meta])* $v:vis struct $name:ident { .. }) => (
$crate::newtype_index!(
// Leave out derives marker so we can use its absence to ensure it comes first
@attrs [$(#[$attrs])*]
@type [$name]
// shave off 256 indices at the end to allow space for packing these indices into enums
@max [0xFFFF_FF00]
@vis [$v]
@debug_format ["{}"]);
);
// Define any constants
($(#[$attrs:meta])* $v:vis struct $name:ident { $($tokens:tt)+ }) => (
$crate::newtype_index!(
// Leave out derives marker so we can use its absence to ensure it comes first
@attrs [$(#[$attrs])*]
@type [$name]
// shave off 256 indices at the end to allow space for packing these indices into enums
@max [0xFFFF_FF00]
@vis [$v]
@debug_format ["{}"]
$($tokens)+);
);
// ---- private rules ----
// Base case, user-defined constants (if any) have already been defined
(@derives [$($derives:ident,)*]
@attrs [$(#[$attrs:meta])*]
@type [$type:ident]
@max [$max:expr]
@vis [$v:vis]
@debug_format [$debug_format:tt]) => (
$(#[$attrs])*
#[derive(Copy, PartialEq, Eq, Hash, PartialOrd, Ord, $($derives),*)]
#[rustc_layout_scalar_valid_range_end($max)]
$v struct $type {
private: u32
}
impl Clone for $type {
fn clone(&self) -> Self {
*self
}
}
impl $type {
$v const MAX_AS_U32: u32 = $max;
$v const MAX: Self = Self::from_u32($max);
#[inline]
$v const fn from_usize(value: usize) -> Self {
assert!(value <= ($max as usize));
unsafe {
Self::from_u32_unchecked(value as u32)
}
}
#[inline]
$v const fn from_u32(value: u32) -> Self {
assert!(value <= $max);
unsafe {
Self::from_u32_unchecked(value)
}
}
#[inline]
$v const unsafe fn from_u32_unchecked(value: u32) -> Self {
Self { private: value }
}
/// Extracts the value of this index as an integer.
#[inline]
$v const fn index(self) -> usize {
self.as_usize()
}
/// Extracts the value of this index as a `u32`.
#[inline]
$v const fn as_u32(self) -> u32 {
self.private
}
/// Extracts the value of this index as a `usize`.
#[inline]
$v const fn as_usize(self) -> usize {
self.as_u32() as usize
}
}
impl std::ops::Add<usize> for $type {
type Output = Self;
fn add(self, other: usize) -> Self {
Self::from_usize(self.index() + other)
}
}
impl $crate::vec::Idx for $type {
#[inline]
fn new(value: usize) -> Self {
Self::from_usize(value)
}
#[inline]
fn index(self) -> usize {
self.as_usize()
}
}
unsafe impl ::std::iter::Step for $type {
#[inline]
fn steps_between(start: &Self, end: &Self) -> Option<usize> {
<usize as ::std::iter::Step>::steps_between(
&Self::index(*start),
&Self::index(*end),
)
}
#[inline]
fn forward_checked(start: Self, u: usize) -> Option<Self> {
Self::index(start).checked_add(u).map(Self::from_usize)
}
#[inline]
fn backward_checked(start: Self, u: usize) -> Option<Self> {
Self::index(start).checked_sub(u).map(Self::from_usize)
}
}
impl From<$type> for u32 {
#[inline]
fn from(v: $type) -> u32 {
v.as_u32()
}
}
impl From<$type> for usize {
#[inline]
fn from(v: $type) -> usize {
v.as_usize()
}
}
impl From<usize> for $type {
#[inline]
fn from(value: usize) -> Self {
Self::from_usize(value)
}
}
impl From<u32> for $type {
#[inline]
fn from(value: u32) -> Self {
Self::from_u32(value)
}
}
$crate::newtype_index!(
@handle_debug
@derives [$($derives,)*]
@type [$type]
@debug_format [$debug_format]);
);
// base case for handle_debug where format is custom. No Debug implementation is emitted.
(@handle_debug
@derives [$($_derives:ident,)*]
@type [$type:ident]
@debug_format [custom]) => ();
// base case for handle_debug, no debug overrides found, so use default
(@handle_debug
@derives []
@type [$type:ident]
@debug_format [$debug_format:tt]) => (
impl ::std::fmt::Debug for $type {
fn fmt(&self, fmt: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(fmt, $debug_format, self.as_u32())
}
}
);
// Debug is requested for derive, don't generate any Debug implementation.
(@handle_debug
@derives [Debug, $($derives:ident,)*]
@type [$type:ident]
@debug_format [$debug_format:tt]) => ();
// It's not Debug, so just pop it off the front of the derives stack and check the rest.
(@handle_debug
@derives [$_derive:ident, $($derives:ident,)*]
@type [$type:ident]
@debug_format [$debug_format:tt]) => (
$crate::newtype_index!(
@handle_debug
@derives [$($derives,)*]
@type [$type]
@debug_format [$debug_format]);
);
// Append comma to end of derives list if it's missing
(@attrs [$(#[$attrs:meta])*]
@type [$type:ident]
@max [$max:expr]
@vis [$v:vis]
@debug_format [$debug_format:tt]
derive [$($derives:ident),*]
$($tokens:tt)*) => (
$crate::newtype_index!(
@attrs [$(#[$attrs])*]
@type [$type]
@max [$max]
@vis [$v]
@debug_format [$debug_format]
derive [$($derives,)*]
$($tokens)*);
);
// By not including the @derives marker in this list nor in the default args, we can force it
// to come first if it exists. When encodable is custom, just use the derives list as-is.
(@attrs [$(#[$attrs:meta])*]
@type [$type:ident]
@max [$max:expr]
@vis [$v:vis]
@debug_format [$debug_format:tt]
derive [$($derives:ident,)+]
ENCODABLE = custom
$($tokens:tt)*) => (
$crate::newtype_index!(
@attrs [$(#[$attrs])*]
@derives [$($derives,)+]
@type [$type]
@max [$max]
@vis [$v]
@debug_format [$debug_format]
$($tokens)*);
);
// By not including the @derives marker in this list nor in the default args, we can force it
// to come first if it exists. When encodable isn't custom, add serialization traits by default.
(@attrs [$(#[$attrs:meta])*]
@type [$type:ident]
@max [$max:expr]
@vis [$v:vis]
@debug_format [$debug_format:tt]
derive [$($derives:ident,)+]
$($tokens:tt)*) => (
$crate::newtype_index!(
@derives [$($derives,)+]
@attrs [$(#[$attrs])*]
@type [$type]
@max [$max]
@vis [$v]
@debug_format [$debug_format]
$($tokens)*);
$crate::newtype_index!(@serializable $type);
);
// The case where no derives are added, but encodable is overridden. Don't
// derive serialization traits
(@attrs [$(#[$attrs:meta])*]
@type [$type:ident]
@max [$max:expr]
@vis [$v:vis]
@debug_format [$debug_format:tt]
ENCODABLE = custom
$($tokens:tt)*) => (
$crate::newtype_index!(
@derives []
@attrs [$(#[$attrs])*]
@type [$type]
@max [$max]
@vis [$v]
@debug_format [$debug_format]
$($tokens)*);
);
// The case where no derives are added, add serialization derives by default
(@attrs [$(#[$attrs:meta])*]
@type [$type:ident]
@max [$max:expr]
@vis [$v:vis]
@debug_format [$debug_format:tt]
$($tokens:tt)*) => (
$crate::newtype_index!(
@derives []
@attrs [$(#[$attrs])*]
@type [$type]
@max [$max]
@vis [$v]
@debug_format [$debug_format]
$($tokens)*);
$crate::newtype_index!(@serializable $type);
);
(@serializable $type:ident) => (
impl<D: ::rustc_serialize::Decoder> ::rustc_serialize::Decodable<D> for $type {
fn decode(d: &mut D) -> Result<Self, D::Error> {
d.read_u32().map(Self::from_u32)
}
}
impl<E: ::rustc_serialize::Encoder> ::rustc_serialize::Encodable<E> for $type {
fn encode(&self, e: &mut E) -> Result<(), E::Error> {
e.emit_u32(self.private)
}
}
);
// Rewrite final without comma to one that includes comma
(@derives [$($derives:ident,)*]
@attrs [$(#[$attrs:meta])*]
@type [$type:ident]
@max [$max:expr]
@vis [$v:vis]
@debug_format [$debug_format:tt]
$name:ident = $constant:expr) => (
$crate::newtype_index!(
@derives [$($derives,)*]
@attrs [$(#[$attrs])*]
@type [$type]
@max [$max]
@vis [$v]
@debug_format [$debug_format]
$name = $constant,);
);
// Rewrite final const without comma to one that includes comma
(@derives [$($derives:ident,)*]
@attrs [$(#[$attrs:meta])*]
@type [$type:ident]
@max [$max:expr]
@vis [$v:vis]
@debug_format [$debug_format:tt]
$(#[doc = $doc:expr])*
const $name:ident = $constant:expr) => (
$crate::newtype_index!(
@derives [$($derives,)*]
@attrs [$(#[$attrs])*]
@type [$type]
@max [$max]
@vis [$v]
@debug_format [$debug_format]
$(#[doc = $doc])* const $name = $constant,);
);
// Replace existing default for max
(@derives [$($derives:ident,)*]
@attrs [$(#[$attrs:meta])*]
@type [$type:ident]
@max [$_max:expr]
@vis [$v:vis]
@debug_format [$debug_format:tt]
MAX = $max:expr,
$($tokens:tt)*) => (
$crate::newtype_index!(
@derives [$($derives,)*]
@attrs [$(#[$attrs])*]
@type [$type]
@max [$max]
@vis [$v]
@debug_format [$debug_format]
$($tokens)*);
);
// Replace existing default for debug_format
(@derives [$($derives:ident,)*]
@attrs [$(#[$attrs:meta])*]
@type [$type:ident]
@max [$max:expr]
@vis [$v:vis]
@debug_format [$_debug_format:tt]
DEBUG_FORMAT = $debug_format:tt,
$($tokens:tt)*) => (
$crate::newtype_index!(
@derives [$($derives,)*]
@attrs [$(#[$attrs])*]
@type [$type]
@max [$max]
@vis [$v]
@debug_format [$debug_format]
$($tokens)*);
);
// Assign a user-defined constant
(@derives [$($derives:ident,)*]
@attrs [$(#[$attrs:meta])*]
@type [$type:ident]
@max [$max:expr]
@vis [$v:vis]
@debug_format [$debug_format:tt]
$(#[doc = $doc:expr])*
const $name:ident = $constant:expr,
$($tokens:tt)*) => (
$(#[doc = $doc])*
$v const $name: $type = $type::from_u32($constant);
$crate::newtype_index!(
@derives [$($derives,)*]
@attrs [$(#[$attrs])*]
@type [$type]
@max [$max]
@vis [$v]
@debug_format [$debug_format]
$($tokens)*);
);
}
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct IndexVec<I: Idx, T> {
pub raw: Vec<T>,
_marker: PhantomData<fn(&I)>,
}
// Whether `IndexVec` is `Send` depends only on the data,
// not the phantom data.
unsafe impl<I: Idx, T> Send for IndexVec<I, T> where T: Send {}
impl<S: Encoder, I: Idx, T: Encodable<S>> Encodable<S> for IndexVec<I, T> {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
Encodable::encode(&self.raw, s)
}
}
impl<S: Encoder, I: Idx, T: Encodable<S>> Encodable<S> for &IndexVec<I, T> {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
Encodable::encode(&self.raw, s)
}
}
impl<D: Decoder, I: Idx, T: Decodable<D>> Decodable<D> for IndexVec<I, T> {
fn decode(d: &mut D) -> Result<Self, D::Error> {
Decodable::decode(d).map(|v| IndexVec { raw: v, _marker: PhantomData })
}
}
impl<I: Idx, T: fmt::Debug> fmt::Debug for IndexVec<I, T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self.raw, fmt)
}
}
pub type Enumerated<I, J> = iter::Map<iter::Enumerate<J>, IntoIdx<I>>;
impl<I: Idx, T> IndexVec<I, T> {
#[inline]
pub fn new() -> Self {
IndexVec { raw: Vec::new(), _marker: PhantomData }
}
#[inline]
pub fn from_raw(raw: Vec<T>) -> Self {
IndexVec { raw, _marker: PhantomData }
}
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
IndexVec { raw: Vec::with_capacity(capacity), _marker: PhantomData }
}
#[inline]
pub fn from_elem<S>(elem: T, universe: &IndexVec<I, S>) -> Self
where
T: Clone,
{
IndexVec { raw: vec![elem; universe.len()], _marker: PhantomData }
}
#[inline]
pub fn from_elem_n(elem: T, n: usize) -> Self
where
T: Clone,
{
IndexVec { raw: vec![elem; n], _marker: PhantomData }
}
/// Create an `IndexVec` with `n` elements, where the value of each
/// element is the result of `func(i)`. (The underlying vector will
/// be allocated only once, with a capacity of at least `n`.)
#[inline]
pub fn from_fn_n(func: impl FnMut(I) -> T, n: usize) -> Self {
let indices = (0..n).map(I::new);
Self::from_raw(indices.map(func).collect())
}
#[inline]
pub fn push(&mut self, d: T) -> I {
let idx = I::new(self.len());
self.raw.push(d);
idx
}
#[inline]
pub fn pop(&mut self) -> Option<T> {
self.raw.pop()
}
#[inline]
pub fn len(&self) -> usize {
self.raw.len()
}
/// Gives the next index that will be assigned when `push` is
/// called.
#[inline]
pub fn next_index(&self) -> I {
I::new(self.len())
}
#[inline]
pub fn is_empty(&self) -> bool {
self.raw.is_empty()
}
#[inline]
pub fn into_iter(self) -> vec::IntoIter<T> {
self.raw.into_iter()
}
#[inline]
pub fn into_iter_enumerated(self) -> Enumerated<I, vec::IntoIter<T>> {
self.raw.into_iter().enumerate().map(IntoIdx { _marker: PhantomData })
}
#[inline]
pub fn iter(&self) -> slice::Iter<'_, T> {
self.raw.iter()
}
#[inline]
pub fn iter_enumerated(&self) -> Enumerated<I, slice::Iter<'_, T>> {
self.raw.iter().enumerate().map(IntoIdx { _marker: PhantomData })
}
#[inline]
pub fn indices(&self) -> iter::Map<Range<usize>, IntoIdx<I>> {
(0..self.len()).map(IntoIdx { _marker: PhantomData })
}
#[inline]
pub fn iter_mut(&mut self) -> slice::IterMut<'_, T> {
self.raw.iter_mut()
}
#[inline]
pub fn iter_enumerated_mut(&mut self) -> Enumerated<I, slice::IterMut<'_, T>> {
self.raw.iter_mut().enumerate().map(IntoIdx { _marker: PhantomData })
}
#[inline]
pub fn drain<'a, R: RangeBounds<usize>>(
&'a mut self,
range: R,
) -> impl Iterator<Item = T> + 'a {
self.raw.drain(range)
}
#[inline]
pub fn drain_enumerated<'a, R: RangeBounds<usize>>(
&'a mut self,
range: R,
) -> impl Iterator<Item = (I, T)> + 'a {
self.raw.drain(range).enumerate().map(IntoIdx { _marker: PhantomData })
}
#[inline]
pub fn last(&self) -> Option<I> {
self.len().checked_sub(1).map(I::new)
}
#[inline]
pub fn shrink_to_fit(&mut self) {
self.raw.shrink_to_fit()
}
#[inline]
pub fn swap(&mut self, a: I, b: I) {
self.raw.swap(a.index(), b.index())
}
#[inline]
pub fn truncate(&mut self, a: usize) {
self.raw.truncate(a)
}
#[inline]
pub fn get(&self, index: I) -> Option<&T> {
self.raw.get(index.index())
}
#[inline]
pub fn get_mut(&mut self, index: I) -> Option<&mut T> {
self.raw.get_mut(index.index())
}
/// Returns mutable references to two distinct elements, a and b. Panics if a == b.
#[inline]
pub fn pick2_mut(&mut self, a: I, b: I) -> (&mut T, &mut T) {
let (ai, bi) = (a.index(), b.index());
assert!(ai != bi);
if ai < bi {
let (c1, c2) = self.raw.split_at_mut(bi);
(&mut c1[ai], &mut c2[0])
} else {
let (c2, c1) = self.pick2_mut(b, a);
(c1, c2)
}
}
/// Returns mutable references to three distinct elements or panics otherwise.
#[inline]
pub fn pick3_mut(&mut self, a: I, b: I, c: I) -> (&mut T, &mut T, &mut T) {
let (ai, bi, ci) = (a.index(), b.index(), c.index());
assert!(ai != bi && bi != ci && ci != ai);
let len = self.raw.len();
assert!(ai < len && bi < len && ci < len);
let ptr = self.raw.as_mut_ptr();
unsafe { (&mut *ptr.add(ai), &mut *ptr.add(bi), &mut *ptr.add(ci)) }
}
pub fn convert_index_type<Ix: Idx>(self) -> IndexVec<Ix, T> {
IndexVec { raw: self.raw, _marker: PhantomData }
}
}
impl<I: Idx, T: Clone> IndexVec<I, T> {
/// Grows the index vector so that it contains an entry for
/// `elem`; if that is already true, then has no
/// effect. Otherwise, inserts new values as needed by invoking
/// `fill_value`.
#[inline]
pub fn ensure_contains_elem(&mut self, elem: I, fill_value: impl FnMut() -> T) {
let min_new_len = elem.index() + 1;
if self.len() < min_new_len {
self.raw.resize_with(min_new_len, fill_value);
}
}
#[inline]
pub fn resize(&mut self, new_len: usize, value: T) {
self.raw.resize(new_len, value)
}
#[inline]
pub fn resize_to_elem(&mut self, elem: I, fill_value: impl FnMut() -> T) {
let min_new_len = elem.index() + 1;
self.raw.resize_with(min_new_len, fill_value);
}
}
impl<I: Idx, T: Ord> IndexVec<I, T> {
#[inline]
pub fn binary_search(&self, value: &T) -> Result<I, I> {
match self.raw.binary_search(value) {
Ok(i) => Ok(Idx::new(i)),
Err(i) => Err(Idx::new(i)),
}
}
}
impl<I: Idx, T> Index<I> for IndexVec<I, T> {
type Output = T;
#[inline]
fn index(&self, index: I) -> &T {
&self.raw[index.index()]
}
}
impl<I: Idx, T> IndexMut<I> for IndexVec<I, T> {
#[inline]
fn index_mut(&mut self, index: I) -> &mut T {
&mut self.raw[index.index()]
}
}
impl<I: Idx, T> Default for IndexVec<I, T> {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<I: Idx, T> Extend<T> for IndexVec<I, T> {
#[inline]
fn extend<J: IntoIterator<Item = T>>(&mut self, iter: J) {
self.raw.extend(iter);
}
#[inline]
fn extend_one(&mut self, item: T) {
self.raw.push(item);
}
#[inline]
fn extend_reserve(&mut self, additional: usize) {
self.raw.reserve(additional);
}
}
impl<I: Idx, T> FromIterator<T> for IndexVec<I, T> {
#[inline]
fn from_iter<J>(iter: J) -> Self
where
J: IntoIterator<Item = T>,
{
IndexVec { raw: FromIterator::from_iter(iter), _marker: PhantomData }
}
}
impl<I: Idx, T> IntoIterator for IndexVec<I, T> {
type Item = T;
type IntoIter = vec::IntoIter<T>;
#[inline]
fn into_iter(self) -> vec::IntoIter<T> {
self.raw.into_iter()
}
}
impl<'a, I: Idx, T> IntoIterator for &'a IndexVec<I, T> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
#[inline]
fn into_iter(self) -> slice::Iter<'a, T> {
self.raw.iter()
}
}
impl<'a, I: Idx, T> IntoIterator for &'a mut IndexVec<I, T> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
#[inline]
fn into_iter(self) -> slice::IterMut<'a, T> {
self.raw.iter_mut()
}
}
pub struct IntoIdx<I: Idx> {
_marker: PhantomData<fn(&I)>,
}
impl<I: Idx, T> FnOnce<((usize, T),)> for IntoIdx<I> {
type Output = (I, T);
extern "rust-call" fn call_once(self, ((n, t),): ((usize, T),)) -> Self::Output {
(I::new(n), t)
}
}
impl<I: Idx, T> FnMut<((usize, T),)> for IntoIdx<I> {
extern "rust-call" fn call_mut(&mut self, ((n, t),): ((usize, T),)) -> Self::Output {
(I::new(n), t)
}
}
impl<I: Idx> FnOnce<(usize,)> for IntoIdx<I> {
type Output = I;
extern "rust-call" fn call_once(self, (n,): (usize,)) -> Self::Output {
I::new(n)
}
}
impl<I: Idx> FnMut<(usize,)> for IntoIdx<I> {
extern "rust-call" fn call_mut(&mut self, (n,): (usize,)) -> Self::Output {
I::new(n)
}
}
#[cfg(test)]
mod tests;

View file

@ -0,0 +1,51 @@
#![allow(dead_code)]
newtype_index!(struct MyIdx { MAX = 0xFFFF_FFFA });
#[test]
fn index_size_is_optimized() {
use std::mem::size_of;
assert_eq!(size_of::<MyIdx>(), 4);
// Uses 0xFFFF_FFFB
assert_eq!(size_of::<Option<MyIdx>>(), 4);
// Uses 0xFFFF_FFFC
assert_eq!(size_of::<Option<Option<MyIdx>>>(), 4);
// Uses 0xFFFF_FFFD
assert_eq!(size_of::<Option<Option<Option<MyIdx>>>>(), 4);
// Uses 0xFFFF_FFFE
assert_eq!(size_of::<Option<Option<Option<Option<MyIdx>>>>>(), 4);
// Uses 0xFFFF_FFFF
assert_eq!(size_of::<Option<Option<Option<Option<Option<MyIdx>>>>>>(), 4);
// Uses a tag
assert_eq!(size_of::<Option<Option<Option<Option<Option<Option<MyIdx>>>>>>>(), 8);
}
#[test]
fn range_iterator_iterates_forwards() {
let range = MyIdx::from_u32(1)..MyIdx::from_u32(4);
assert_eq!(
range.collect::<Vec<_>>(),
[MyIdx::from_u32(1), MyIdx::from_u32(2), MyIdx::from_u32(3)]
);
}
#[test]
fn range_iterator_iterates_backwards() {
let range = MyIdx::from_u32(1)..MyIdx::from_u32(4);
assert_eq!(
range.rev().collect::<Vec<_>>(),
[MyIdx::from_u32(3), MyIdx::from_u32(2), MyIdx::from_u32(1)]
);
}
#[test]
fn range_count_is_correct() {
let range = MyIdx::from_u32(1)..MyIdx::from_u32(4);
assert_eq!(range.count(), 3);
}
#[test]
fn range_size_hint_is_correct() {
let range = MyIdx::from_u32(1)..MyIdx::from_u32(4);
assert_eq!(range.size_hint(), (3, Some(3)));
}