mv compiler to compiler/
This commit is contained in:
parent
db534b3ac2
commit
9e5f7d5631
1686 changed files with 941 additions and 1051 deletions
745
compiler/rustc_expand/src/mbe/macro_parser.rs
Normal file
745
compiler/rustc_expand/src/mbe/macro_parser.rs
Normal file
|
@ -0,0 +1,745 @@
|
|||
//! This is an NFA-based parser, which calls out to the main rust parser for named non-terminals
|
||||
//! (which it commits to fully when it hits one in a grammar). There's a set of current NFA threads
|
||||
//! and a set of next ones. Instead of NTs, we have a special case for Kleene star. The big-O, in
|
||||
//! pathological cases, is worse than traditional use of NFA or Earley parsing, but it's an easier
|
||||
//! fit for Macro-by-Example-style rules.
|
||||
//!
|
||||
//! (In order to prevent the pathological case, we'd need to lazily construct the resulting
|
||||
//! `NamedMatch`es at the very end. It'd be a pain, and require more memory to keep around old
|
||||
//! items, but it would also save overhead)
|
||||
//!
|
||||
//! We don't say this parser uses the Earley algorithm, because it's unnecessarily inaccurate.
|
||||
//! The macro parser restricts itself to the features of finite state automata. Earley parsers
|
||||
//! can be described as an extension of NFAs with completion rules, prediction rules, and recursion.
|
||||
//!
|
||||
//! Quick intro to how the parser works:
|
||||
//!
|
||||
//! A 'position' is a dot in the middle of a matcher, usually represented as a
|
||||
//! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`.
|
||||
//!
|
||||
//! The parser walks through the input a character at a time, maintaining a list
|
||||
//! of threads consistent with the current position in the input string: `cur_items`.
|
||||
//!
|
||||
//! As it processes them, it fills up `eof_items` with threads that would be valid if
|
||||
//! the macro invocation is now over, `bb_items` with threads that are waiting on
|
||||
//! a Rust non-terminal like `$e:expr`, and `next_items` with threads that are waiting
|
||||
//! on a particular token. Most of the logic concerns moving the · through the
|
||||
//! repetitions indicated by Kleene stars. The rules for moving the · without
|
||||
//! consuming any input are called epsilon transitions. It only advances or calls
|
||||
//! out to the real Rust parser when no `cur_items` threads remain.
|
||||
//!
|
||||
//! Example:
|
||||
//!
|
||||
//! ```text, ignore
|
||||
//! Start parsing a a a a b against [· a $( a )* a b].
|
||||
//!
|
||||
//! Remaining input: a a a a b
|
||||
//! next: [· a $( a )* a b]
|
||||
//!
|
||||
//! - - - Advance over an a. - - -
|
||||
//!
|
||||
//! Remaining input: a a a b
|
||||
//! cur: [a · $( a )* a b]
|
||||
//! Descend/Skip (first item).
|
||||
//! next: [a $( · a )* a b] [a $( a )* · a b].
|
||||
//!
|
||||
//! - - - Advance over an a. - - -
|
||||
//!
|
||||
//! Remaining input: a a b
|
||||
//! cur: [a $( a · )* a b] [a $( a )* a · b]
|
||||
//! Follow epsilon transition: Finish/Repeat (first item)
|
||||
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
|
||||
//!
|
||||
//! - - - Advance over an a. - - - (this looks exactly like the last step)
|
||||
//!
|
||||
//! Remaining input: a b
|
||||
//! cur: [a $( a · )* a b] [a $( a )* a · b]
|
||||
//! Follow epsilon transition: Finish/Repeat (first item)
|
||||
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
|
||||
//!
|
||||
//! - - - Advance over an a. - - - (this looks exactly like the last step)
|
||||
//!
|
||||
//! Remaining input: b
|
||||
//! cur: [a $( a · )* a b] [a $( a )* a · b]
|
||||
//! Follow epsilon transition: Finish/Repeat (first item)
|
||||
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
|
||||
//!
|
||||
//! - - - Advance over a b. - - -
|
||||
//!
|
||||
//! Remaining input: ''
|
||||
//! eof: [a $( a )* a b ·]
|
||||
//! ```
|
||||
|
||||
crate use NamedMatch::*;
|
||||
crate use ParseResult::*;
|
||||
use TokenTreeOrTokenTreeSlice::*;
|
||||
|
||||
use crate::mbe::{self, TokenTree};
|
||||
|
||||
use rustc_ast::token::{self, DocComment, Nonterminal, Token};
|
||||
use rustc_parse::parser::Parser;
|
||||
use rustc_session::parse::ParseSess;
|
||||
use rustc_span::symbol::MacroRulesNormalizedIdent;
|
||||
|
||||
use smallvec::{smallvec, SmallVec};
|
||||
|
||||
use rustc_data_structures::fx::FxHashMap;
|
||||
use rustc_data_structures::sync::Lrc;
|
||||
use std::borrow::Cow;
|
||||
use std::collections::hash_map::Entry::{Occupied, Vacant};
|
||||
use std::mem;
|
||||
use std::ops::{Deref, DerefMut};
|
||||
|
||||
// To avoid costly uniqueness checks, we require that `MatchSeq` always has a nonempty body.
|
||||
|
||||
/// Either a sequence of token trees or a single one. This is used as the representation of the
|
||||
/// sequence of tokens that make up a matcher.
|
||||
#[derive(Clone)]
|
||||
enum TokenTreeOrTokenTreeSlice<'tt> {
|
||||
Tt(TokenTree),
|
||||
TtSeq(&'tt [TokenTree]),
|
||||
}
|
||||
|
||||
impl<'tt> TokenTreeOrTokenTreeSlice<'tt> {
|
||||
/// Returns the number of constituent top-level token trees of `self` (top-level in that it
|
||||
/// will not recursively descend into subtrees).
|
||||
fn len(&self) -> usize {
|
||||
match *self {
|
||||
TtSeq(ref v) => v.len(),
|
||||
Tt(ref tt) => tt.len(),
|
||||
}
|
||||
}
|
||||
|
||||
/// The `index`-th token tree of `self`.
|
||||
fn get_tt(&self, index: usize) -> TokenTree {
|
||||
match *self {
|
||||
TtSeq(ref v) => v[index].clone(),
|
||||
Tt(ref tt) => tt.get_tt(index),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An unzipping of `TokenTree`s... see the `stack` field of `MatcherPos`.
|
||||
///
|
||||
/// This is used by `inner_parse_loop` to keep track of delimited submatchers that we have
|
||||
/// descended into.
|
||||
#[derive(Clone)]
|
||||
struct MatcherTtFrame<'tt> {
|
||||
/// The "parent" matcher that we are descending into.
|
||||
elts: TokenTreeOrTokenTreeSlice<'tt>,
|
||||
/// The position of the "dot" in `elts` at the time we descended.
|
||||
idx: usize,
|
||||
}
|
||||
|
||||
type NamedMatchVec = SmallVec<[NamedMatch; 4]>;
|
||||
|
||||
/// Represents a single "position" (aka "matcher position", aka "item"), as
|
||||
/// described in the module documentation.
|
||||
///
|
||||
/// Here:
|
||||
///
|
||||
/// - `'root` represents the lifetime of the stack slot that holds the root
|
||||
/// `MatcherPos`. As described in `MatcherPosHandle`, the root `MatcherPos`
|
||||
/// structure is stored on the stack, but subsequent instances are put into
|
||||
/// the heap.
|
||||
/// - `'tt` represents the lifetime of the token trees that this matcher
|
||||
/// position refers to.
|
||||
///
|
||||
/// It is important to distinguish these two lifetimes because we have a
|
||||
/// `SmallVec<TokenTreeOrTokenTreeSlice<'tt>>` below, and the destructor of
|
||||
/// that is considered to possibly access the data from its elements (it lacks
|
||||
/// a `#[may_dangle]` attribute). As a result, the compiler needs to know that
|
||||
/// all the elements in that `SmallVec` strictly outlive the root stack slot
|
||||
/// lifetime. By separating `'tt` from `'root`, we can show that.
|
||||
#[derive(Clone)]
|
||||
struct MatcherPos<'root, 'tt> {
|
||||
/// The token or sequence of tokens that make up the matcher
|
||||
top_elts: TokenTreeOrTokenTreeSlice<'tt>,
|
||||
|
||||
/// The position of the "dot" in this matcher
|
||||
idx: usize,
|
||||
|
||||
/// For each named metavar in the matcher, we keep track of token trees matched against the
|
||||
/// metavar by the black box parser. In particular, there may be more than one match per
|
||||
/// metavar if we are in a repetition (each repetition matches each of the variables).
|
||||
/// Moreover, matchers and repetitions can be nested; the `matches` field is shared (hence the
|
||||
/// `Rc`) among all "nested" matchers. `match_lo`, `match_cur`, and `match_hi` keep track of
|
||||
/// the current position of the `self` matcher position in the shared `matches` list.
|
||||
///
|
||||
/// Also, note that while we are descending into a sequence, matchers are given their own
|
||||
/// `matches` vector. Only once we reach the end of a full repetition of the sequence do we add
|
||||
/// all bound matches from the submatcher into the shared top-level `matches` vector. If `sep`
|
||||
/// and `up` are `Some`, then `matches` is _not_ the shared top-level list. Instead, if one
|
||||
/// wants the shared `matches`, one should use `up.matches`.
|
||||
matches: Box<[Lrc<NamedMatchVec>]>,
|
||||
/// The position in `matches` corresponding to the first metavar in this matcher's sequence of
|
||||
/// token trees. In other words, the first metavar in the first token of `top_elts` corresponds
|
||||
/// to `matches[match_lo]`.
|
||||
match_lo: usize,
|
||||
/// The position in `matches` corresponding to the metavar we are currently trying to match
|
||||
/// against the source token stream. `match_lo <= match_cur <= match_hi`.
|
||||
match_cur: usize,
|
||||
/// Similar to `match_lo` except `match_hi` is the position in `matches` of the _last_ metavar
|
||||
/// in this matcher.
|
||||
match_hi: usize,
|
||||
|
||||
// The following fields are used if we are matching a repetition. If we aren't, they should be
|
||||
// `None`.
|
||||
/// The KleeneOp of this sequence if we are in a repetition.
|
||||
seq_op: Option<mbe::KleeneOp>,
|
||||
|
||||
/// The separator if we are in a repetition.
|
||||
sep: Option<Token>,
|
||||
|
||||
/// The "parent" matcher position if we are in a repetition. That is, the matcher position just
|
||||
/// before we enter the sequence.
|
||||
up: Option<MatcherPosHandle<'root, 'tt>>,
|
||||
|
||||
/// Specifically used to "unzip" token trees. By "unzip", we mean to unwrap the delimiters from
|
||||
/// a delimited token tree (e.g., something wrapped in `(` `)`) or to get the contents of a doc
|
||||
/// comment...
|
||||
///
|
||||
/// When matching against matchers with nested delimited submatchers (e.g., `pat ( pat ( .. )
|
||||
/// pat ) pat`), we need to keep track of the matchers we are descending into. This stack does
|
||||
/// that where the bottom of the stack is the outermost matcher.
|
||||
/// Also, throughout the comments, this "descent" is often referred to as "unzipping"...
|
||||
stack: SmallVec<[MatcherTtFrame<'tt>; 1]>,
|
||||
}
|
||||
|
||||
impl<'root, 'tt> MatcherPos<'root, 'tt> {
|
||||
/// Adds `m` as a named match for the `idx`-th metavar.
|
||||
fn push_match(&mut self, idx: usize, m: NamedMatch) {
|
||||
let matches = Lrc::make_mut(&mut self.matches[idx]);
|
||||
matches.push(m);
|
||||
}
|
||||
}
|
||||
|
||||
// Lots of MatcherPos instances are created at runtime. Allocating them on the
|
||||
// heap is slow. Furthermore, using SmallVec<MatcherPos> to allocate them all
|
||||
// on the stack is also slow, because MatcherPos is quite a large type and
|
||||
// instances get moved around a lot between vectors, which requires lots of
|
||||
// slow memcpy calls.
|
||||
//
|
||||
// Therefore, the initial MatcherPos is always allocated on the stack,
|
||||
// subsequent ones (of which there aren't that many) are allocated on the heap,
|
||||
// and this type is used to encapsulate both cases.
|
||||
enum MatcherPosHandle<'root, 'tt> {
|
||||
Ref(&'root mut MatcherPos<'root, 'tt>),
|
||||
Box(Box<MatcherPos<'root, 'tt>>),
|
||||
}
|
||||
|
||||
impl<'root, 'tt> Clone for MatcherPosHandle<'root, 'tt> {
|
||||
// This always produces a new Box.
|
||||
fn clone(&self) -> Self {
|
||||
MatcherPosHandle::Box(match *self {
|
||||
MatcherPosHandle::Ref(ref r) => Box::new((**r).clone()),
|
||||
MatcherPosHandle::Box(ref b) => b.clone(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<'root, 'tt> Deref for MatcherPosHandle<'root, 'tt> {
|
||||
type Target = MatcherPos<'root, 'tt>;
|
||||
fn deref(&self) -> &Self::Target {
|
||||
match *self {
|
||||
MatcherPosHandle::Ref(ref r) => r,
|
||||
MatcherPosHandle::Box(ref b) => b,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'root, 'tt> DerefMut for MatcherPosHandle<'root, 'tt> {
|
||||
fn deref_mut(&mut self) -> &mut MatcherPos<'root, 'tt> {
|
||||
match *self {
|
||||
MatcherPosHandle::Ref(ref mut r) => r,
|
||||
MatcherPosHandle::Box(ref mut b) => b,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents the possible results of an attempted parse.
|
||||
crate enum ParseResult<T> {
|
||||
/// Parsed successfully.
|
||||
Success(T),
|
||||
/// Arm failed to match. If the second parameter is `token::Eof`, it indicates an unexpected
|
||||
/// end of macro invocation. Otherwise, it indicates that no rules expected the given token.
|
||||
Failure(Token, &'static str),
|
||||
/// Fatal error (malformed macro?). Abort compilation.
|
||||
Error(rustc_span::Span, String),
|
||||
ErrorReported,
|
||||
}
|
||||
|
||||
/// A `ParseResult` where the `Success` variant contains a mapping of
|
||||
/// `MacroRulesNormalizedIdent`s to `NamedMatch`es. This represents the mapping
|
||||
/// of metavars to the token trees they bind to.
|
||||
crate type NamedParseResult = ParseResult<FxHashMap<MacroRulesNormalizedIdent, NamedMatch>>;
|
||||
|
||||
/// Count how many metavars are named in the given matcher `ms`.
|
||||
pub(super) fn count_names(ms: &[TokenTree]) -> usize {
|
||||
ms.iter().fold(0, |count, elt| {
|
||||
count
|
||||
+ match *elt {
|
||||
TokenTree::Sequence(_, ref seq) => seq.num_captures,
|
||||
TokenTree::Delimited(_, ref delim) => count_names(&delim.tts),
|
||||
TokenTree::MetaVar(..) => 0,
|
||||
TokenTree::MetaVarDecl(..) => 1,
|
||||
TokenTree::Token(..) => 0,
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// `len` `Vec`s (initially shared and empty) that will store matches of metavars.
|
||||
fn create_matches(len: usize) -> Box<[Lrc<NamedMatchVec>]> {
|
||||
if len == 0 {
|
||||
vec![]
|
||||
} else {
|
||||
let empty_matches = Lrc::new(SmallVec::new());
|
||||
vec![empty_matches; len]
|
||||
}
|
||||
.into_boxed_slice()
|
||||
}
|
||||
|
||||
/// Generates the top-level matcher position in which the "dot" is before the first token of the
|
||||
/// matcher `ms`.
|
||||
fn initial_matcher_pos<'root, 'tt>(ms: &'tt [TokenTree]) -> MatcherPos<'root, 'tt> {
|
||||
let match_idx_hi = count_names(ms);
|
||||
let matches = create_matches(match_idx_hi);
|
||||
MatcherPos {
|
||||
// Start with the top level matcher given to us
|
||||
top_elts: TtSeq(ms), // "elts" is an abbr. for "elements"
|
||||
// The "dot" is before the first token of the matcher
|
||||
idx: 0,
|
||||
|
||||
// Initialize `matches` to a bunch of empty `Vec`s -- one for each metavar in `top_elts`.
|
||||
// `match_lo` for `top_elts` is 0 and `match_hi` is `matches.len()`. `match_cur` is 0 since
|
||||
// we haven't actually matched anything yet.
|
||||
matches,
|
||||
match_lo: 0,
|
||||
match_cur: 0,
|
||||
match_hi: match_idx_hi,
|
||||
|
||||
// Haven't descended into any delimiters, so empty stack
|
||||
stack: smallvec![],
|
||||
|
||||
// Haven't descended into any sequences, so both of these are `None`.
|
||||
seq_op: None,
|
||||
sep: None,
|
||||
up: None,
|
||||
}
|
||||
}
|
||||
|
||||
/// `NamedMatch` is a pattern-match result for a single `token::MATCH_NONTERMINAL`:
|
||||
/// so it is associated with a single ident in a parse, and all
|
||||
/// `MatchedNonterminal`s in the `NamedMatch` have the same non-terminal type
|
||||
/// (expr, item, etc). Each leaf in a single `NamedMatch` corresponds to a
|
||||
/// single `token::MATCH_NONTERMINAL` in the `TokenTree` that produced it.
|
||||
///
|
||||
/// The in-memory structure of a particular `NamedMatch` represents the match
|
||||
/// that occurred when a particular subset of a matcher was applied to a
|
||||
/// particular token tree.
|
||||
///
|
||||
/// The width of each `MatchedSeq` in the `NamedMatch`, and the identity of
|
||||
/// the `MatchedNonterminal`s, will depend on the token tree it was applied
|
||||
/// to: each `MatchedSeq` corresponds to a single `TTSeq` in the originating
|
||||
/// token tree. The depth of the `NamedMatch` structure will therefore depend
|
||||
/// only on the nesting depth of `ast::TTSeq`s in the originating
|
||||
/// token tree it was derived from.
|
||||
#[derive(Debug, Clone)]
|
||||
crate enum NamedMatch {
|
||||
MatchedSeq(Lrc<NamedMatchVec>),
|
||||
MatchedNonterminal(Lrc<Nonterminal>),
|
||||
}
|
||||
|
||||
/// Takes a sequence of token trees `ms` representing a matcher which successfully matched input
|
||||
/// and an iterator of items that matched input and produces a `NamedParseResult`.
|
||||
fn nameize<I: Iterator<Item = NamedMatch>>(
|
||||
sess: &ParseSess,
|
||||
ms: &[TokenTree],
|
||||
mut res: I,
|
||||
) -> NamedParseResult {
|
||||
// Recursively descend into each type of matcher (e.g., sequences, delimited, metavars) and make
|
||||
// sure that each metavar has _exactly one_ binding. If a metavar does not have exactly one
|
||||
// binding, then there is an error. If it does, then we insert the binding into the
|
||||
// `NamedParseResult`.
|
||||
fn n_rec<I: Iterator<Item = NamedMatch>>(
|
||||
sess: &ParseSess,
|
||||
m: &TokenTree,
|
||||
res: &mut I,
|
||||
ret_val: &mut FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
|
||||
) -> Result<(), (rustc_span::Span, String)> {
|
||||
match *m {
|
||||
TokenTree::Sequence(_, ref seq) => {
|
||||
for next_m in &seq.tts {
|
||||
n_rec(sess, next_m, res.by_ref(), ret_val)?
|
||||
}
|
||||
}
|
||||
TokenTree::Delimited(_, ref delim) => {
|
||||
for next_m in &delim.tts {
|
||||
n_rec(sess, next_m, res.by_ref(), ret_val)?;
|
||||
}
|
||||
}
|
||||
TokenTree::MetaVarDecl(sp, bind_name, _) => match ret_val
|
||||
.entry(MacroRulesNormalizedIdent::new(bind_name))
|
||||
{
|
||||
Vacant(spot) => {
|
||||
spot.insert(res.next().unwrap());
|
||||
}
|
||||
Occupied(..) => return Err((sp, format!("duplicated bind name: {}", bind_name))),
|
||||
},
|
||||
TokenTree::MetaVar(..) | TokenTree::Token(..) => (),
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
let mut ret_val = FxHashMap::default();
|
||||
for m in ms {
|
||||
match n_rec(sess, m, res.by_ref(), &mut ret_val) {
|
||||
Ok(_) => {}
|
||||
Err((sp, msg)) => return Error(sp, msg),
|
||||
}
|
||||
}
|
||||
|
||||
Success(ret_val)
|
||||
}
|
||||
|
||||
/// Performs a token equality check, ignoring syntax context (that is, an unhygienic comparison)
|
||||
fn token_name_eq(t1: &Token, t2: &Token) -> bool {
|
||||
if let (Some((ident1, is_raw1)), Some((ident2, is_raw2))) = (t1.ident(), t2.ident()) {
|
||||
ident1.name == ident2.name && is_raw1 == is_raw2
|
||||
} else if let (Some(ident1), Some(ident2)) = (t1.lifetime(), t2.lifetime()) {
|
||||
ident1.name == ident2.name
|
||||
} else {
|
||||
t1.kind == t2.kind
|
||||
}
|
||||
}
|
||||
|
||||
/// Process the matcher positions of `cur_items` until it is empty. In the process, this will
|
||||
/// produce more items in `next_items`, `eof_items`, and `bb_items`.
|
||||
///
|
||||
/// For more info about the how this happens, see the module-level doc comments and the inline
|
||||
/// comments of this function.
|
||||
///
|
||||
/// # Parameters
|
||||
///
|
||||
/// - `sess`: the parsing session into which errors are emitted.
|
||||
/// - `cur_items`: the set of current items to be processed. This should be empty by the end of a
|
||||
/// successful execution of this function.
|
||||
/// - `next_items`: the set of newly generated items. These are used to replenish `cur_items` in
|
||||
/// the function `parse`.
|
||||
/// - `eof_items`: the set of items that would be valid if this was the EOF.
|
||||
/// - `bb_items`: the set of items that are waiting for the black-box parser.
|
||||
/// - `token`: the current token of the parser.
|
||||
/// - `span`: the `Span` in the source code corresponding to the token trees we are trying to match
|
||||
/// against the matcher positions in `cur_items`.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// A `ParseResult`. Note that matches are kept track of through the items generated.
|
||||
fn inner_parse_loop<'root, 'tt>(
|
||||
cur_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
|
||||
next_items: &mut Vec<MatcherPosHandle<'root, 'tt>>,
|
||||
eof_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
|
||||
bb_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
|
||||
token: &Token,
|
||||
) -> ParseResult<()> {
|
||||
// Pop items from `cur_items` until it is empty.
|
||||
while let Some(mut item) = cur_items.pop() {
|
||||
// When unzipped trees end, remove them. This corresponds to backtracking out of a
|
||||
// delimited submatcher into which we already descended. In backtracking out again, we need
|
||||
// to advance the "dot" past the delimiters in the outer matcher.
|
||||
while item.idx >= item.top_elts.len() {
|
||||
match item.stack.pop() {
|
||||
Some(MatcherTtFrame { elts, idx }) => {
|
||||
item.top_elts = elts;
|
||||
item.idx = idx + 1;
|
||||
}
|
||||
None => break,
|
||||
}
|
||||
}
|
||||
|
||||
// Get the current position of the "dot" (`idx`) in `item` and the number of token trees in
|
||||
// the matcher (`len`).
|
||||
let idx = item.idx;
|
||||
let len = item.top_elts.len();
|
||||
|
||||
// If `idx >= len`, then we are at or past the end of the matcher of `item`.
|
||||
if idx >= len {
|
||||
// We are repeating iff there is a parent. If the matcher is inside of a repetition,
|
||||
// then we could be at the end of a sequence or at the beginning of the next
|
||||
// repetition.
|
||||
if item.up.is_some() {
|
||||
// At this point, regardless of whether there is a separator, we should add all
|
||||
// matches from the complete repetition of the sequence to the shared, top-level
|
||||
// `matches` list (actually, `up.matches`, which could itself not be the top-level,
|
||||
// but anyway...). Moreover, we add another item to `cur_items` in which the "dot"
|
||||
// is at the end of the `up` matcher. This ensures that the "dot" in the `up`
|
||||
// matcher is also advanced sufficiently.
|
||||
//
|
||||
// NOTE: removing the condition `idx == len` allows trailing separators.
|
||||
if idx == len {
|
||||
// Get the `up` matcher
|
||||
let mut new_pos = item.up.clone().unwrap();
|
||||
|
||||
// Add matches from this repetition to the `matches` of `up`
|
||||
for idx in item.match_lo..item.match_hi {
|
||||
let sub = item.matches[idx].clone();
|
||||
new_pos.push_match(idx, MatchedSeq(sub));
|
||||
}
|
||||
|
||||
// Move the "dot" past the repetition in `up`
|
||||
new_pos.match_cur = item.match_hi;
|
||||
new_pos.idx += 1;
|
||||
cur_items.push(new_pos);
|
||||
}
|
||||
|
||||
// Check if we need a separator.
|
||||
if idx == len && item.sep.is_some() {
|
||||
// We have a separator, and it is the current token. We can advance past the
|
||||
// separator token.
|
||||
if item.sep.as_ref().map(|sep| token_name_eq(token, sep)).unwrap_or(false) {
|
||||
item.idx += 1;
|
||||
next_items.push(item);
|
||||
}
|
||||
}
|
||||
// We don't need a separator. Move the "dot" back to the beginning of the matcher
|
||||
// and try to match again UNLESS we are only allowed to have _one_ repetition.
|
||||
else if item.seq_op != Some(mbe::KleeneOp::ZeroOrOne) {
|
||||
item.match_cur = item.match_lo;
|
||||
item.idx = 0;
|
||||
cur_items.push(item);
|
||||
}
|
||||
}
|
||||
// If we are not in a repetition, then being at the end of a matcher means that we have
|
||||
// reached the potential end of the input.
|
||||
else {
|
||||
eof_items.push(item);
|
||||
}
|
||||
}
|
||||
// We are in the middle of a matcher.
|
||||
else {
|
||||
// Look at what token in the matcher we are trying to match the current token (`token`)
|
||||
// against. Depending on that, we may generate new items.
|
||||
match item.top_elts.get_tt(idx) {
|
||||
// Need to descend into a sequence
|
||||
TokenTree::Sequence(sp, seq) => {
|
||||
// Examine the case where there are 0 matches of this sequence. We are
|
||||
// implicitly disallowing OneOrMore from having 0 matches here. Thus, that will
|
||||
// result in a "no rules expected token" error by virtue of this matcher not
|
||||
// working.
|
||||
if seq.kleene.op == mbe::KleeneOp::ZeroOrMore
|
||||
|| seq.kleene.op == mbe::KleeneOp::ZeroOrOne
|
||||
{
|
||||
let mut new_item = item.clone();
|
||||
new_item.match_cur += seq.num_captures;
|
||||
new_item.idx += 1;
|
||||
for idx in item.match_cur..item.match_cur + seq.num_captures {
|
||||
new_item.push_match(idx, MatchedSeq(Lrc::new(smallvec![])));
|
||||
}
|
||||
cur_items.push(new_item);
|
||||
}
|
||||
|
||||
let matches = create_matches(item.matches.len());
|
||||
cur_items.push(MatcherPosHandle::Box(Box::new(MatcherPos {
|
||||
stack: smallvec![],
|
||||
sep: seq.separator.clone(),
|
||||
seq_op: Some(seq.kleene.op),
|
||||
idx: 0,
|
||||
matches,
|
||||
match_lo: item.match_cur,
|
||||
match_cur: item.match_cur,
|
||||
match_hi: item.match_cur + seq.num_captures,
|
||||
up: Some(item),
|
||||
top_elts: Tt(TokenTree::Sequence(sp, seq)),
|
||||
})));
|
||||
}
|
||||
|
||||
// We need to match a metavar with a valid ident... call out to the black-box
|
||||
// parser by adding an item to `bb_items`.
|
||||
TokenTree::MetaVarDecl(_, _, kind) => {
|
||||
// Built-in nonterminals never start with these tokens,
|
||||
// so we can eliminate them from consideration.
|
||||
if Parser::nonterminal_may_begin_with(kind, token) {
|
||||
bb_items.push(item);
|
||||
}
|
||||
}
|
||||
|
||||
// We need to descend into a delimited submatcher or a doc comment. To do this, we
|
||||
// push the current matcher onto a stack and push a new item containing the
|
||||
// submatcher onto `cur_items`.
|
||||
//
|
||||
// At the beginning of the loop, if we reach the end of the delimited submatcher,
|
||||
// we pop the stack to backtrack out of the descent.
|
||||
seq
|
||||
@
|
||||
(TokenTree::Delimited(..)
|
||||
| TokenTree::Token(Token { kind: DocComment(..), .. })) => {
|
||||
let lower_elts = mem::replace(&mut item.top_elts, Tt(seq));
|
||||
let idx = item.idx;
|
||||
item.stack.push(MatcherTtFrame { elts: lower_elts, idx });
|
||||
item.idx = 0;
|
||||
cur_items.push(item);
|
||||
}
|
||||
|
||||
// We just matched a normal token. We can just advance the parser.
|
||||
TokenTree::Token(t) if token_name_eq(&t, token) => {
|
||||
item.idx += 1;
|
||||
next_items.push(item);
|
||||
}
|
||||
|
||||
// There was another token that was not `token`... This means we can't add any
|
||||
// rules. NOTE that this is not necessarily an error unless _all_ items in
|
||||
// `cur_items` end up doing this. There may still be some other matchers that do
|
||||
// end up working out.
|
||||
TokenTree::Token(..) | TokenTree::MetaVar(..) => {}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Yay a successful parse (so far)!
|
||||
Success(())
|
||||
}
|
||||
|
||||
/// Use the given sequence of token trees (`ms`) as a matcher. Match the token
|
||||
/// stream from the given `parser` against it and return the match.
|
||||
pub(super) fn parse_tt(parser: &mut Cow<'_, Parser<'_>>, ms: &[TokenTree]) -> NamedParseResult {
|
||||
// A queue of possible matcher positions. We initialize it with the matcher position in which
|
||||
// the "dot" is before the first token of the first token tree in `ms`. `inner_parse_loop` then
|
||||
// processes all of these possible matcher positions and produces possible next positions into
|
||||
// `next_items`. After some post-processing, the contents of `next_items` replenish `cur_items`
|
||||
// and we start over again.
|
||||
//
|
||||
// This MatcherPos instance is allocated on the stack. All others -- and
|
||||
// there are frequently *no* others! -- are allocated on the heap.
|
||||
let mut initial = initial_matcher_pos(ms);
|
||||
let mut cur_items = smallvec![MatcherPosHandle::Ref(&mut initial)];
|
||||
let mut next_items = Vec::new();
|
||||
|
||||
loop {
|
||||
// Matcher positions black-box parsed by parser.rs (`parser`)
|
||||
let mut bb_items = SmallVec::new();
|
||||
|
||||
// Matcher positions that would be valid if the macro invocation was over now
|
||||
let mut eof_items = SmallVec::new();
|
||||
assert!(next_items.is_empty());
|
||||
|
||||
// Process `cur_items` until either we have finished the input or we need to get some
|
||||
// parsing from the black-box parser done. The result is that `next_items` will contain a
|
||||
// bunch of possible next matcher positions in `next_items`.
|
||||
match inner_parse_loop(
|
||||
&mut cur_items,
|
||||
&mut next_items,
|
||||
&mut eof_items,
|
||||
&mut bb_items,
|
||||
&parser.token,
|
||||
) {
|
||||
Success(_) => {}
|
||||
Failure(token, msg) => return Failure(token, msg),
|
||||
Error(sp, msg) => return Error(sp, msg),
|
||||
ErrorReported => return ErrorReported,
|
||||
}
|
||||
|
||||
// inner parse loop handled all cur_items, so it's empty
|
||||
assert!(cur_items.is_empty());
|
||||
|
||||
// We need to do some post processing after the `inner_parser_loop`.
|
||||
//
|
||||
// Error messages here could be improved with links to original rules.
|
||||
|
||||
// If we reached the EOF, check that there is EXACTLY ONE possible matcher. Otherwise,
|
||||
// either the parse is ambiguous (which should never happen) or there is a syntax error.
|
||||
if parser.token == token::Eof {
|
||||
if eof_items.len() == 1 {
|
||||
let matches =
|
||||
eof_items[0].matches.iter_mut().map(|dv| Lrc::make_mut(dv).pop().unwrap());
|
||||
return nameize(parser.sess, ms, matches);
|
||||
} else if eof_items.len() > 1 {
|
||||
return Error(
|
||||
parser.token.span,
|
||||
"ambiguity: multiple successful parses".to_string(),
|
||||
);
|
||||
} else {
|
||||
return Failure(
|
||||
Token::new(
|
||||
token::Eof,
|
||||
if parser.token.span.is_dummy() {
|
||||
parser.token.span
|
||||
} else {
|
||||
parser.token.span.shrink_to_hi()
|
||||
},
|
||||
),
|
||||
"missing tokens in macro arguments",
|
||||
);
|
||||
}
|
||||
}
|
||||
// Performance hack: eof_items may share matchers via Rc with other things that we want
|
||||
// to modify. Dropping eof_items now may drop these refcounts to 1, preventing an
|
||||
// unnecessary implicit clone later in Rc::make_mut.
|
||||
drop(eof_items);
|
||||
|
||||
// If there are no possible next positions AND we aren't waiting for the black-box parser,
|
||||
// then there is a syntax error.
|
||||
if bb_items.is_empty() && next_items.is_empty() {
|
||||
return Failure(parser.token.clone(), "no rules expected this token in macro call");
|
||||
}
|
||||
// Another possibility is that we need to call out to parse some rust nonterminal
|
||||
// (black-box) parser. However, if there is not EXACTLY ONE of these, something is wrong.
|
||||
else if (!bb_items.is_empty() && !next_items.is_empty()) || bb_items.len() > 1 {
|
||||
let nts = bb_items
|
||||
.iter()
|
||||
.map(|item| match item.top_elts.get_tt(item.idx) {
|
||||
TokenTree::MetaVarDecl(_, bind, kind) => format!("{} ('{}')", kind, bind),
|
||||
_ => panic!(),
|
||||
})
|
||||
.collect::<Vec<String>>()
|
||||
.join(" or ");
|
||||
|
||||
return Error(
|
||||
parser.token.span,
|
||||
format!(
|
||||
"local ambiguity: multiple parsing options: {}",
|
||||
match next_items.len() {
|
||||
0 => format!("built-in NTs {}.", nts),
|
||||
1 => format!("built-in NTs {} or 1 other option.", nts),
|
||||
n => format!("built-in NTs {} or {} other options.", nts, n),
|
||||
}
|
||||
),
|
||||
);
|
||||
}
|
||||
// Dump all possible `next_items` into `cur_items` for the next iteration.
|
||||
else if !next_items.is_empty() {
|
||||
// Now process the next token
|
||||
cur_items.extend(next_items.drain(..));
|
||||
parser.to_mut().bump();
|
||||
}
|
||||
// Finally, we have the case where we need to call the black-box parser to get some
|
||||
// nonterminal.
|
||||
else {
|
||||
assert_eq!(bb_items.len(), 1);
|
||||
|
||||
let mut item = bb_items.pop().unwrap();
|
||||
if let TokenTree::MetaVarDecl(span, _, kind) = item.top_elts.get_tt(item.idx) {
|
||||
let match_cur = item.match_cur;
|
||||
let nt = match parser.to_mut().parse_nonterminal(kind) {
|
||||
Err(mut err) => {
|
||||
err.span_label(
|
||||
span,
|
||||
format!("while parsing argument for this `{}` macro fragment", kind),
|
||||
)
|
||||
.emit();
|
||||
return ErrorReported;
|
||||
}
|
||||
Ok(nt) => nt,
|
||||
};
|
||||
item.push_match(match_cur, MatchedNonterminal(Lrc::new(nt)));
|
||||
item.idx += 1;
|
||||
item.match_cur += 1;
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
cur_items.push(item);
|
||||
}
|
||||
|
||||
assert!(!cur_items.is_empty());
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue