1
Fork 0

mv compiler to compiler/

This commit is contained in:
mark 2020-08-27 22:58:48 -05:00 committed by Vadim Petrochenkov
parent db534b3ac2
commit 9e5f7d5631
1686 changed files with 941 additions and 1051 deletions

View file

@ -0,0 +1,56 @@
use rustc_session::Session;
use rustc_span::symbol::Symbol;
use std::io;
use std::path::{Path, PathBuf};
pub fn find_library(name: Symbol, search_paths: &[PathBuf], sess: &Session) -> PathBuf {
// On Windows, static libraries sometimes show up as libfoo.a and other
// times show up as foo.lib
let oslibname = format!(
"{}{}{}",
sess.target.target.options.staticlib_prefix,
name,
sess.target.target.options.staticlib_suffix
);
let unixlibname = format!("lib{}.a", name);
for path in search_paths {
debug!("looking for {} inside {:?}", name, path);
let test = path.join(&oslibname);
if test.exists() {
return test;
}
if oslibname != unixlibname {
let test = path.join(&unixlibname);
if test.exists() {
return test;
}
}
}
sess.fatal(&format!(
"could not find native static library `{}`, \
perhaps an -L flag is missing?",
name
));
}
pub trait ArchiveBuilder<'a> {
fn new(sess: &'a Session, output: &Path, input: Option<&Path>) -> Self;
fn add_file(&mut self, path: &Path);
fn remove_file(&mut self, name: &str);
fn src_files(&mut self) -> Vec<String>;
fn add_rlib(
&mut self,
path: &Path,
name: &str,
lto: bool,
skip_objects: bool,
) -> io::Result<()>;
fn add_native_library(&mut self, name: Symbol);
fn update_symbols(&mut self);
fn build(self);
}

View file

@ -0,0 +1,183 @@
//! A thin wrapper around `Command` in the standard library which allows us to
//! read the arguments that are built up.
use std::ffi::{OsStr, OsString};
use std::fmt;
use std::io;
use std::mem;
use std::process::{self, Output};
use rustc_span::symbol::Symbol;
use rustc_target::spec::LldFlavor;
#[derive(Clone)]
pub struct Command {
program: Program,
args: Vec<OsString>,
env: Vec<(OsString, OsString)>,
env_remove: Vec<OsString>,
}
#[derive(Clone)]
enum Program {
Normal(OsString),
CmdBatScript(OsString),
Lld(OsString, LldFlavor),
}
impl Command {
pub fn new<P: AsRef<OsStr>>(program: P) -> Command {
Command::_new(Program::Normal(program.as_ref().to_owned()))
}
pub fn bat_script<P: AsRef<OsStr>>(program: P) -> Command {
Command::_new(Program::CmdBatScript(program.as_ref().to_owned()))
}
pub fn lld<P: AsRef<OsStr>>(program: P, flavor: LldFlavor) -> Command {
Command::_new(Program::Lld(program.as_ref().to_owned(), flavor))
}
fn _new(program: Program) -> Command {
Command { program, args: Vec::new(), env: Vec::new(), env_remove: Vec::new() }
}
pub fn arg<P: AsRef<OsStr>>(&mut self, arg: P) -> &mut Command {
self._arg(arg.as_ref());
self
}
pub fn sym_arg(&mut self, arg: Symbol) -> &mut Command {
self.arg(&*arg.as_str());
self
}
pub fn args<I>(&mut self, args: I) -> &mut Command
where
I: IntoIterator<Item: AsRef<OsStr>>,
{
for arg in args {
self._arg(arg.as_ref());
}
self
}
fn _arg(&mut self, arg: &OsStr) {
self.args.push(arg.to_owned());
}
pub fn env<K, V>(&mut self, key: K, value: V) -> &mut Command
where
K: AsRef<OsStr>,
V: AsRef<OsStr>,
{
self._env(key.as_ref(), value.as_ref());
self
}
fn _env(&mut self, key: &OsStr, value: &OsStr) {
self.env.push((key.to_owned(), value.to_owned()));
}
pub fn env_remove<K>(&mut self, key: K) -> &mut Command
where
K: AsRef<OsStr>,
{
self._env_remove(key.as_ref());
self
}
fn _env_remove(&mut self, key: &OsStr) {
self.env_remove.push(key.to_owned());
}
pub fn output(&mut self) -> io::Result<Output> {
self.command().output()
}
pub fn command(&self) -> process::Command {
let mut ret = match self.program {
Program::Normal(ref p) => process::Command::new(p),
Program::CmdBatScript(ref p) => {
let mut c = process::Command::new("cmd");
c.arg("/c").arg(p);
c
}
Program::Lld(ref p, flavor) => {
let mut c = process::Command::new(p);
c.arg("-flavor").arg(match flavor {
LldFlavor::Wasm => "wasm",
LldFlavor::Ld => "gnu",
LldFlavor::Link => "link",
LldFlavor::Ld64 => "darwin",
});
c
}
};
ret.args(&self.args);
ret.envs(self.env.clone());
for k in &self.env_remove {
ret.env_remove(k);
}
ret
}
// extensions
pub fn get_args(&self) -> &[OsString] {
&self.args
}
pub fn take_args(&mut self) -> Vec<OsString> {
mem::take(&mut self.args)
}
/// Returns a `true` if we're pretty sure that this'll blow OS spawn limits,
/// or `false` if we should attempt to spawn and see what the OS says.
pub fn very_likely_to_exceed_some_spawn_limit(&self) -> bool {
// We mostly only care about Windows in this method, on Unix the limits
// can be gargantuan anyway so we're pretty unlikely to hit them
if cfg!(unix) {
return false;
}
// Right now LLD doesn't support the `@` syntax of passing an argument
// through files, so regardless of the platform we try to go to the OS
// on this one.
if let Program::Lld(..) = self.program {
return false;
}
// Ok so on Windows to spawn a process is 32,768 characters in its
// command line [1]. Unfortunately we don't actually have access to that
// as it's calculated just before spawning. Instead we perform a
// poor-man's guess as to how long our command line will be. We're
// assuming here that we don't have to escape every character...
//
// Turns out though that `cmd.exe` has even smaller limits, 8192
// characters [2]. Linkers can often be batch scripts (for example
// Emscripten, Gecko's current build system) which means that we're
// running through batch scripts. These linkers often just forward
// arguments elsewhere (and maybe tack on more), so if we blow 8192
// bytes we'll typically cause them to blow as well.
//
// Basically as a result just perform an inflated estimate of what our
// command line will look like and test if it's > 8192 (we actually
// test against 6k to artificially inflate our estimate). If all else
// fails we'll fall back to the normal unix logic of testing the OS
// error code if we fail to spawn and automatically re-spawning the
// linker with smaller arguments.
//
// [1]: https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa
// [2]: https://devblogs.microsoft.com/oldnewthing/?p=41553
let estimated_command_line_len = self.args.iter().map(|a| a.len()).sum::<usize>();
estimated_command_line_len > 1024 * 6
}
}
impl fmt::Debug for Command {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.command().fmt(f)
}
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,107 @@
use super::write::CodegenContext;
use crate::traits::*;
use crate::ModuleCodegen;
use rustc_errors::FatalError;
use std::ffi::CString;
use std::sync::Arc;
pub struct ThinModule<B: WriteBackendMethods> {
pub shared: Arc<ThinShared<B>>,
pub idx: usize,
}
impl<B: WriteBackendMethods> ThinModule<B> {
pub fn name(&self) -> &str {
self.shared.module_names[self.idx].to_str().unwrap()
}
pub fn cost(&self) -> u64 {
// Yes, that's correct, we're using the size of the bytecode as an
// indicator for how costly this codegen unit is.
self.data().len() as u64
}
pub fn data(&self) -> &[u8] {
let a = self.shared.thin_buffers.get(self.idx).map(|b| b.data());
a.unwrap_or_else(|| {
let len = self.shared.thin_buffers.len();
self.shared.serialized_modules[self.idx - len].data()
})
}
}
pub struct ThinShared<B: WriteBackendMethods> {
pub data: B::ThinData,
pub thin_buffers: Vec<B::ThinBuffer>,
pub serialized_modules: Vec<SerializedModule<B::ModuleBuffer>>,
pub module_names: Vec<CString>,
}
pub enum LtoModuleCodegen<B: WriteBackendMethods> {
Fat {
module: Option<ModuleCodegen<B::Module>>,
_serialized_bitcode: Vec<SerializedModule<B::ModuleBuffer>>,
},
Thin(ThinModule<B>),
}
impl<B: WriteBackendMethods> LtoModuleCodegen<B> {
pub fn name(&self) -> &str {
match *self {
LtoModuleCodegen::Fat { .. } => "everything",
LtoModuleCodegen::Thin(ref m) => m.name(),
}
}
/// Optimize this module within the given codegen context.
///
/// This function is unsafe as it'll return a `ModuleCodegen` still
/// points to LLVM data structures owned by this `LtoModuleCodegen`.
/// It's intended that the module returned is immediately code generated and
/// dropped, and then this LTO module is dropped.
pub unsafe fn optimize(
&mut self,
cgcx: &CodegenContext<B>,
) -> Result<ModuleCodegen<B::Module>, FatalError> {
match *self {
LtoModuleCodegen::Fat { ref mut module, .. } => {
let module = module.take().unwrap();
{
let config = cgcx.config(module.kind);
B::run_lto_pass_manager(cgcx, &module, config, false);
}
Ok(module)
}
LtoModuleCodegen::Thin(ref mut thin) => B::optimize_thin(cgcx, thin),
}
}
/// A "gauge" of how costly it is to optimize this module, used to sort
/// biggest modules first.
pub fn cost(&self) -> u64 {
match *self {
// Only one module with fat LTO, so the cost doesn't matter.
LtoModuleCodegen::Fat { .. } => 0,
LtoModuleCodegen::Thin(ref m) => m.cost(),
}
}
}
pub enum SerializedModule<M: ModuleBufferMethods> {
Local(M),
FromRlib(Vec<u8>),
FromUncompressedFile(memmap::Mmap),
}
impl<M: ModuleBufferMethods> SerializedModule<M> {
pub fn data(&self) -> &[u8] {
match *self {
SerializedModule::Local(ref m) => m.data(),
SerializedModule::FromRlib(ref m) => m,
SerializedModule::FromUncompressedFile(ref m) => m,
}
}
}

View file

@ -0,0 +1,8 @@
pub mod archive;
pub mod command;
pub mod link;
pub mod linker;
pub mod lto;
pub mod rpath;
pub mod symbol_export;
pub mod write;

View file

@ -0,0 +1,135 @@
use pathdiff::diff_paths;
use rustc_data_structures::fx::FxHashSet;
use std::env;
use std::fs;
use std::path::{Path, PathBuf};
use rustc_hir::def_id::CrateNum;
use rustc_middle::middle::cstore::LibSource;
pub struct RPathConfig<'a> {
pub used_crates: &'a [(CrateNum, LibSource)],
pub out_filename: PathBuf,
pub is_like_osx: bool,
pub has_rpath: bool,
pub linker_is_gnu: bool,
pub get_install_prefix_lib_path: &'a mut dyn FnMut() -> PathBuf,
}
pub fn get_rpath_flags(config: &mut RPathConfig<'_>) -> Vec<String> {
// No rpath on windows
if !config.has_rpath {
return Vec::new();
}
debug!("preparing the RPATH!");
let libs = config.used_crates.clone();
let libs = libs.iter().filter_map(|&(_, ref l)| l.option()).collect::<Vec<_>>();
let rpaths = get_rpaths(config, &libs);
let mut flags = rpaths_to_flags(&rpaths);
// Use DT_RUNPATH instead of DT_RPATH if available
if config.linker_is_gnu {
flags.push("-Wl,--enable-new-dtags".to_owned());
}
flags
}
fn rpaths_to_flags(rpaths: &[String]) -> Vec<String> {
let mut ret = Vec::with_capacity(rpaths.len()); // the minimum needed capacity
for rpath in rpaths {
if rpath.contains(',') {
ret.push("-Wl,-rpath".into());
ret.push("-Xlinker".into());
ret.push(rpath.clone());
} else {
ret.push(format!("-Wl,-rpath,{}", &(*rpath)));
}
}
ret
}
fn get_rpaths(config: &mut RPathConfig<'_>, libs: &[PathBuf]) -> Vec<String> {
debug!("output: {:?}", config.out_filename.display());
debug!("libs:");
for libpath in libs {
debug!(" {:?}", libpath.display());
}
// Use relative paths to the libraries. Binaries can be moved
// as long as they maintain the relative relationship to the
// crates they depend on.
let rel_rpaths = get_rpaths_relative_to_output(config, libs);
// And a final backup rpath to the global library location.
let fallback_rpaths = vec![get_install_prefix_rpath(config)];
fn log_rpaths(desc: &str, rpaths: &[String]) {
debug!("{} rpaths:", desc);
for rpath in rpaths {
debug!(" {}", *rpath);
}
}
log_rpaths("relative", &rel_rpaths);
log_rpaths("fallback", &fallback_rpaths);
let mut rpaths = rel_rpaths;
rpaths.extend_from_slice(&fallback_rpaths);
// Remove duplicates
minimize_rpaths(&rpaths)
}
fn get_rpaths_relative_to_output(config: &mut RPathConfig<'_>, libs: &[PathBuf]) -> Vec<String> {
libs.iter().map(|a| get_rpath_relative_to_output(config, a)).collect()
}
fn get_rpath_relative_to_output(config: &mut RPathConfig<'_>, lib: &Path) -> String {
// Mac doesn't appear to support $ORIGIN
let prefix = if config.is_like_osx { "@loader_path" } else { "$ORIGIN" };
let cwd = env::current_dir().unwrap();
let mut lib = fs::canonicalize(&cwd.join(lib)).unwrap_or_else(|_| cwd.join(lib));
lib.pop(); // strip filename
let mut output = cwd.join(&config.out_filename);
output.pop(); // strip filename
let output = fs::canonicalize(&output).unwrap_or(output);
let relative = path_relative_from(&lib, &output)
.unwrap_or_else(|| panic!("couldn't create relative path from {:?} to {:?}", output, lib));
// FIXME (#9639): This needs to handle non-utf8 paths
format!("{}/{}", prefix, relative.to_str().expect("non-utf8 component in path"))
}
// This routine is adapted from the *old* Path's `path_relative_from`
// function, which works differently from the new `relative_from` function.
// In particular, this handles the case on unix where both paths are
// absolute but with only the root as the common directory.
fn path_relative_from(path: &Path, base: &Path) -> Option<PathBuf> {
diff_paths(path, base)
}
fn get_install_prefix_rpath(config: &mut RPathConfig<'_>) -> String {
let path = (config.get_install_prefix_lib_path)();
let path = env::current_dir().unwrap().join(&path);
// FIXME (#9639): This needs to handle non-utf8 paths
path.to_str().expect("non-utf8 component in rpath").to_owned()
}
fn minimize_rpaths(rpaths: &[String]) -> Vec<String> {
let mut set = FxHashSet::default();
let mut minimized = Vec::new();
for rpath in rpaths {
if set.insert(rpath) {
minimized.push(rpath.clone());
}
}
minimized
}
#[cfg(all(unix, test))]
mod tests;

View file

@ -0,0 +1,74 @@
use super::RPathConfig;
use super::{get_rpath_relative_to_output, minimize_rpaths, rpaths_to_flags};
use std::path::{Path, PathBuf};
#[test]
fn test_rpaths_to_flags() {
let flags = rpaths_to_flags(&["path1".to_string(), "path2".to_string()]);
assert_eq!(flags, ["-Wl,-rpath,path1", "-Wl,-rpath,path2"]);
}
#[test]
fn test_minimize1() {
let res = minimize_rpaths(&["rpath1".to_string(), "rpath2".to_string(), "rpath1".to_string()]);
assert!(res == ["rpath1", "rpath2",]);
}
#[test]
fn test_minimize2() {
let res = minimize_rpaths(&[
"1a".to_string(),
"2".to_string(),
"2".to_string(),
"1a".to_string(),
"4a".to_string(),
"1a".to_string(),
"2".to_string(),
"3".to_string(),
"4a".to_string(),
"3".to_string(),
]);
assert!(res == ["1a", "2", "4a", "3",]);
}
#[test]
fn test_rpath_relative() {
if cfg!(target_os = "macos") {
let config = &mut RPathConfig {
used_crates: &[],
has_rpath: true,
is_like_osx: true,
linker_is_gnu: false,
out_filename: PathBuf::from("bin/rustc"),
get_install_prefix_lib_path: &mut || panic!(),
};
let res = get_rpath_relative_to_output(config, Path::new("lib/libstd.so"));
assert_eq!(res, "@loader_path/../lib");
} else {
let config = &mut RPathConfig {
used_crates: &[],
out_filename: PathBuf::from("bin/rustc"),
get_install_prefix_lib_path: &mut || panic!(),
has_rpath: true,
is_like_osx: false,
linker_is_gnu: true,
};
let res = get_rpath_relative_to_output(config, Path::new("lib/libstd.so"));
assert_eq!(res, "$ORIGIN/../lib");
}
}
#[test]
fn test_xlinker() {
let args = rpaths_to_flags(&["a/normal/path".to_string(), "a,comma,path".to_string()]);
assert_eq!(
args,
vec![
"-Wl,-rpath,a/normal/path".to_string(),
"-Wl,-rpath".to_string(),
"-Xlinker".to_string(),
"a,comma,path".to_string()
]
);
}

View file

@ -0,0 +1,446 @@
use std::collections::hash_map::Entry::*;
use rustc_ast::expand::allocator::ALLOCATOR_METHODS;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_hir as hir;
use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc_hir::Node;
use rustc_index::vec::IndexVec;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::middle::exported_symbols::{
metadata_symbol_name, ExportedSymbol, SymbolExportLevel,
};
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::subst::{GenericArgKind, SubstsRef};
use rustc_middle::ty::Instance;
use rustc_middle::ty::{SymbolName, TyCtxt};
use rustc_session::config::{CrateType, SanitizerSet};
pub fn threshold(tcx: TyCtxt<'_>) -> SymbolExportLevel {
crates_export_threshold(&tcx.sess.crate_types())
}
fn crate_export_threshold(crate_type: CrateType) -> SymbolExportLevel {
match crate_type {
CrateType::Executable | CrateType::Staticlib | CrateType::ProcMacro | CrateType::Cdylib => {
SymbolExportLevel::C
}
CrateType::Rlib | CrateType::Dylib => SymbolExportLevel::Rust,
}
}
pub fn crates_export_threshold(crate_types: &[CrateType]) -> SymbolExportLevel {
if crate_types
.iter()
.any(|&crate_type| crate_export_threshold(crate_type) == SymbolExportLevel::Rust)
{
SymbolExportLevel::Rust
} else {
SymbolExportLevel::C
}
}
fn reachable_non_generics_provider(tcx: TyCtxt<'_>, cnum: CrateNum) -> DefIdMap<SymbolExportLevel> {
assert_eq!(cnum, LOCAL_CRATE);
if !tcx.sess.opts.output_types.should_codegen() {
return Default::default();
}
// Check to see if this crate is a "special runtime crate". These
// crates, implementation details of the standard library, typically
// have a bunch of `pub extern` and `#[no_mangle]` functions as the
// ABI between them. We don't want their symbols to have a `C`
// export level, however, as they're just implementation details.
// Down below we'll hardwire all of the symbols to the `Rust` export
// level instead.
let special_runtime_crate =
tcx.is_panic_runtime(LOCAL_CRATE) || tcx.is_compiler_builtins(LOCAL_CRATE);
let mut reachable_non_generics: DefIdMap<_> = tcx
.reachable_set(LOCAL_CRATE)
.iter()
.filter_map(|&def_id| {
// We want to ignore some FFI functions that are not exposed from
// this crate. Reachable FFI functions can be lumped into two
// categories:
//
// 1. Those that are included statically via a static library
// 2. Those included otherwise (e.g., dynamically or via a framework)
//
// Although our LLVM module is not literally emitting code for the
// statically included symbols, it's an export of our library which
// needs to be passed on to the linker and encoded in the metadata.
//
// As a result, if this id is an FFI item (foreign item) then we only
// let it through if it's included statically.
match tcx.hir().get(tcx.hir().local_def_id_to_hir_id(def_id)) {
Node::ForeignItem(..) => {
tcx.is_statically_included_foreign_item(def_id).then_some(def_id)
}
// Only consider nodes that actually have exported symbols.
Node::Item(&hir::Item {
kind: hir::ItemKind::Static(..) | hir::ItemKind::Fn(..),
..
})
| Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) => {
let generics = tcx.generics_of(def_id);
if !generics.requires_monomorphization(tcx)
// Functions marked with #[inline] are codegened with "internal"
// linkage and are not exported unless marked with an extern
// inidicator
&& (!Instance::mono(tcx, def_id.to_def_id()).def.generates_cgu_internal_copy(tcx)
|| tcx.codegen_fn_attrs(def_id.to_def_id()).contains_extern_indicator())
{
Some(def_id)
} else {
None
}
}
_ => None,
}
})
.map(|def_id| {
let export_level = if special_runtime_crate {
let name = tcx.symbol_name(Instance::mono(tcx, def_id.to_def_id())).name;
// We can probably do better here by just ensuring that
// it has hidden visibility rather than public
// visibility, as this is primarily here to ensure it's
// not stripped during LTO.
//
// In general though we won't link right if these
// symbols are stripped, and LTO currently strips them.
match name {
"rust_eh_personality"
| "rust_eh_register_frames"
| "rust_eh_unregister_frames" =>
SymbolExportLevel::C,
_ => SymbolExportLevel::Rust,
}
} else {
symbol_export_level(tcx, def_id.to_def_id())
};
debug!(
"EXPORTED SYMBOL (local): {} ({:?})",
tcx.symbol_name(Instance::mono(tcx, def_id.to_def_id())),
export_level
);
(def_id.to_def_id(), export_level)
})
.collect();
if let Some(id) = tcx.proc_macro_decls_static(LOCAL_CRATE) {
reachable_non_generics.insert(id, SymbolExportLevel::C);
}
if let Some(id) = tcx.plugin_registrar_fn(LOCAL_CRATE) {
reachable_non_generics.insert(id, SymbolExportLevel::C);
}
reachable_non_generics
}
fn is_reachable_non_generic_provider_local(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
let export_threshold = threshold(tcx);
if let Some(&level) = tcx.reachable_non_generics(def_id.krate).get(&def_id) {
level.is_below_threshold(export_threshold)
} else {
false
}
}
fn is_reachable_non_generic_provider_extern(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
tcx.reachable_non_generics(def_id.krate).contains_key(&def_id)
}
fn exported_symbols_provider_local(
tcx: TyCtxt<'tcx>,
cnum: CrateNum,
) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportLevel)] {
assert_eq!(cnum, LOCAL_CRATE);
if !tcx.sess.opts.output_types.should_codegen() {
return &[];
}
let mut symbols: Vec<_> = tcx
.reachable_non_generics(LOCAL_CRATE)
.iter()
.map(|(&def_id, &level)| (ExportedSymbol::NonGeneric(def_id), level))
.collect();
if tcx.entry_fn(LOCAL_CRATE).is_some() {
let exported_symbol = ExportedSymbol::NoDefId(SymbolName::new(tcx, "main"));
symbols.push((exported_symbol, SymbolExportLevel::C));
}
if tcx.allocator_kind().is_some() {
for method in ALLOCATOR_METHODS {
let symbol_name = format!("__rust_{}", method.name);
let exported_symbol = ExportedSymbol::NoDefId(SymbolName::new(tcx, &symbol_name));
symbols.push((exported_symbol, SymbolExportLevel::Rust));
}
}
if tcx.sess.opts.debugging_opts.instrument_coverage
|| tcx.sess.opts.cg.profile_generate.enabled()
{
// These are weak symbols that point to the profile version and the
// profile name, which need to be treated as exported so LTO doesn't nix
// them.
const PROFILER_WEAK_SYMBOLS: [&str; 2] =
["__llvm_profile_raw_version", "__llvm_profile_filename"];
symbols.extend(PROFILER_WEAK_SYMBOLS.iter().map(|sym| {
let exported_symbol = ExportedSymbol::NoDefId(SymbolName::new(tcx, sym));
(exported_symbol, SymbolExportLevel::C)
}));
}
if tcx.sess.opts.debugging_opts.sanitizer.contains(SanitizerSet::MEMORY) {
// Similar to profiling, preserve weak msan symbol during LTO.
const MSAN_WEAK_SYMBOLS: [&str; 2] = ["__msan_track_origins", "__msan_keep_going"];
symbols.extend(MSAN_WEAK_SYMBOLS.iter().map(|sym| {
let exported_symbol = ExportedSymbol::NoDefId(SymbolName::new(tcx, sym));
(exported_symbol, SymbolExportLevel::C)
}));
}
if tcx.sess.crate_types().contains(&CrateType::Dylib) {
let symbol_name = metadata_symbol_name(tcx);
let exported_symbol = ExportedSymbol::NoDefId(SymbolName::new(tcx, &symbol_name));
symbols.push((exported_symbol, SymbolExportLevel::Rust));
}
if tcx.sess.opts.share_generics() && tcx.local_crate_exports_generics() {
use rustc_middle::mir::mono::{Linkage, MonoItem, Visibility};
use rustc_middle::ty::InstanceDef;
// Normally, we require that shared monomorphizations are not hidden,
// because if we want to re-use a monomorphization from a Rust dylib, it
// needs to be exported.
// However, on platforms that don't allow for Rust dylibs, having
// external linkage is enough for monomorphization to be linked to.
let need_visibility = tcx.sess.target.target.options.dynamic_linking
&& !tcx.sess.target.target.options.only_cdylib;
let (_, cgus) = tcx.collect_and_partition_mono_items(LOCAL_CRATE);
for (mono_item, &(linkage, visibility)) in cgus.iter().flat_map(|cgu| cgu.items().iter()) {
if linkage != Linkage::External {
// We can only re-use things with external linkage, otherwise
// we'll get a linker error
continue;
}
if need_visibility && visibility == Visibility::Hidden {
// If we potentially share things from Rust dylibs, they must
// not be hidden
continue;
}
match *mono_item {
MonoItem::Fn(Instance { def: InstanceDef::Item(def), substs }) => {
if substs.non_erasable_generics().next().is_some() {
let symbol = ExportedSymbol::Generic(def.did, substs);
symbols.push((symbol, SymbolExportLevel::Rust));
}
}
MonoItem::Fn(Instance { def: InstanceDef::DropGlue(_, Some(ty)), substs }) => {
// A little sanity-check
debug_assert_eq!(
substs.non_erasable_generics().next(),
Some(GenericArgKind::Type(ty))
);
symbols.push((ExportedSymbol::DropGlue(ty), SymbolExportLevel::Rust));
}
_ => {
// Any other symbols don't qualify for sharing
}
}
}
}
// Sort so we get a stable incr. comp. hash.
symbols.sort_by_cached_key(|s| s.0.symbol_name_for_local_instance(tcx));
tcx.arena.alloc_from_iter(symbols)
}
fn upstream_monomorphizations_provider(
tcx: TyCtxt<'_>,
cnum: CrateNum,
) -> DefIdMap<FxHashMap<SubstsRef<'_>, CrateNum>> {
debug_assert!(cnum == LOCAL_CRATE);
let cnums = tcx.all_crate_nums(LOCAL_CRATE);
let mut instances: DefIdMap<FxHashMap<_, _>> = Default::default();
let cnum_stable_ids: IndexVec<CrateNum, Fingerprint> = {
let mut cnum_stable_ids = IndexVec::from_elem_n(Fingerprint::ZERO, cnums.len() + 1);
for &cnum in cnums.iter() {
cnum_stable_ids[cnum] =
tcx.def_path_hash(DefId { krate: cnum, index: CRATE_DEF_INDEX }).0;
}
cnum_stable_ids
};
let drop_in_place_fn_def_id = tcx.lang_items().drop_in_place_fn();
for &cnum in cnums.iter() {
for (exported_symbol, _) in tcx.exported_symbols(cnum).iter() {
let (def_id, substs) = match *exported_symbol {
ExportedSymbol::Generic(def_id, substs) => (def_id, substs),
ExportedSymbol::DropGlue(ty) => {
if let Some(drop_in_place_fn_def_id) = drop_in_place_fn_def_id {
(drop_in_place_fn_def_id, tcx.intern_substs(&[ty.into()]))
} else {
// `drop_in_place` in place does not exist, don't try
// to use it.
continue;
}
}
ExportedSymbol::NonGeneric(..) | ExportedSymbol::NoDefId(..) => {
// These are no monomorphizations
continue;
}
};
let substs_map = instances.entry(def_id).or_default();
match substs_map.entry(substs) {
Occupied(mut e) => {
// If there are multiple monomorphizations available,
// we select one deterministically.
let other_cnum = *e.get();
if cnum_stable_ids[other_cnum] > cnum_stable_ids[cnum] {
e.insert(cnum);
}
}
Vacant(e) => {
e.insert(cnum);
}
}
}
}
instances
}
fn upstream_monomorphizations_for_provider(
tcx: TyCtxt<'_>,
def_id: DefId,
) -> Option<&FxHashMap<SubstsRef<'_>, CrateNum>> {
debug_assert!(!def_id.is_local());
tcx.upstream_monomorphizations(LOCAL_CRATE).get(&def_id)
}
fn upstream_drop_glue_for_provider<'tcx>(
tcx: TyCtxt<'tcx>,
substs: SubstsRef<'tcx>,
) -> Option<CrateNum> {
if let Some(def_id) = tcx.lang_items().drop_in_place_fn() {
tcx.upstream_monomorphizations_for(def_id).and_then(|monos| monos.get(&substs).cloned())
} else {
None
}
}
fn is_unreachable_local_definition_provider(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
if let Some(def_id) = def_id.as_local() {
!tcx.reachable_set(LOCAL_CRATE).contains(&def_id)
} else {
bug!("is_unreachable_local_definition called with non-local DefId: {:?}", def_id)
}
}
pub fn provide(providers: &mut Providers) {
providers.reachable_non_generics = reachable_non_generics_provider;
providers.is_reachable_non_generic = is_reachable_non_generic_provider_local;
providers.exported_symbols = exported_symbols_provider_local;
providers.upstream_monomorphizations = upstream_monomorphizations_provider;
providers.is_unreachable_local_definition = is_unreachable_local_definition_provider;
providers.upstream_drop_glue_for = upstream_drop_glue_for_provider;
}
pub fn provide_extern(providers: &mut Providers) {
providers.is_reachable_non_generic = is_reachable_non_generic_provider_extern;
providers.upstream_monomorphizations_for = upstream_monomorphizations_for_provider;
}
fn symbol_export_level(tcx: TyCtxt<'_>, sym_def_id: DefId) -> SymbolExportLevel {
// We export anything that's not mangled at the "C" layer as it probably has
// to do with ABI concerns. We do not, however, apply such treatment to
// special symbols in the standard library for various plumbing between
// core/std/allocators/etc. For example symbols used to hook up allocation
// are not considered for export
let codegen_fn_attrs = tcx.codegen_fn_attrs(sym_def_id);
let is_extern = codegen_fn_attrs.contains_extern_indicator();
let std_internal =
codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL);
if is_extern && !std_internal {
let target = &tcx.sess.target.target.llvm_target;
// WebAssembly cannot export data symbols, so reduce their export level
if target.contains("emscripten") {
if let Some(Node::Item(&hir::Item { kind: hir::ItemKind::Static(..), .. })) =
tcx.hir().get_if_local(sym_def_id)
{
return SymbolExportLevel::Rust;
}
}
SymbolExportLevel::C
} else {
SymbolExportLevel::Rust
}
}
/// This is the symbol name of the given instance instantiated in a specific crate.
pub fn symbol_name_for_instance_in_crate<'tcx>(
tcx: TyCtxt<'tcx>,
symbol: ExportedSymbol<'tcx>,
instantiating_crate: CrateNum,
) -> String {
// If this is something instantiated in the local crate then we might
// already have cached the name as a query result.
if instantiating_crate == LOCAL_CRATE {
return symbol.symbol_name_for_local_instance(tcx).to_string();
}
// This is something instantiated in an upstream crate, so we have to use
// the slower (because uncached) version of computing the symbol name.
match symbol {
ExportedSymbol::NonGeneric(def_id) => {
rustc_symbol_mangling::symbol_name_for_instance_in_crate(
tcx,
Instance::mono(tcx, def_id),
instantiating_crate,
)
}
ExportedSymbol::Generic(def_id, substs) => {
rustc_symbol_mangling::symbol_name_for_instance_in_crate(
tcx,
Instance::new(def_id, substs),
instantiating_crate,
)
}
ExportedSymbol::DropGlue(ty) => rustc_symbol_mangling::symbol_name_for_instance_in_crate(
tcx,
Instance::resolve_drop_in_place(tcx, ty),
instantiating_crate,
),
ExportedSymbol::NoDefId(symbol_name) => symbol_name.to_string(),
}
}

File diff suppressed because it is too large Load diff