1
Fork 0

Remove most manual LayoutData creations and move them to rustc_abi

...either as:
- methods on LayoutCalculator, for faillible operations;
- constructors on LayoutData, for infaillible ones.
This commit is contained in:
Moulins 2025-02-28 04:57:17 +01:00
parent cdd8af2299
commit 9917173575
6 changed files with 228 additions and 267 deletions

View file

@ -12,6 +12,8 @@ use crate::{
Variants, WrappingRange,
};
mod simple;
#[cfg(feature = "nightly")]
mod ty;
@ -102,41 +104,27 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
Self { cx }
}
pub fn scalar_pair<FieldIdx: Idx, VariantIdx: Idx>(
pub fn array_like<FieldIdx: Idx, VariantIdx: Idx, F>(
&self,
a: Scalar,
b: Scalar,
) -> LayoutData<FieldIdx, VariantIdx> {
let dl = self.cx.data_layout();
let b_align = b.align(dl);
let align = a.align(dl).max(b_align).max(dl.aggregate_align);
let b_offset = a.size(dl).align_to(b_align.abi);
let size = (b_offset + b.size(dl)).align_to(align.abi);
element: &LayoutData<FieldIdx, VariantIdx>,
count_if_sized: Option<u64>, // None for slices
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let count = count_if_sized.unwrap_or(0);
let size =
element.size.checked_mul(count, &self.cx).ok_or(LayoutCalculatorError::SizeOverflow)?;
// HACK(nox): We iter on `b` and then `a` because `max_by_key`
// returns the last maximum.
let largest_niche = Niche::from_scalar(dl, b_offset, b)
.into_iter()
.chain(Niche::from_scalar(dl, Size::ZERO, a))
.max_by_key(|niche| niche.available(dl));
let combined_seed = a.size(&self.cx).bytes().wrapping_add(b.size(&self.cx).bytes());
LayoutData {
Ok(LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Arbitrary {
offsets: [Size::ZERO, b_offset].into(),
memory_index: [0, 1].into(),
},
backend_repr: BackendRepr::ScalarPair(a, b),
largest_niche,
uninhabited: false,
align,
fields: FieldsShape::Array { stride: element.size, count },
backend_repr: BackendRepr::Memory { sized: count_if_sized.is_some() },
largest_niche: element.largest_niche.filter(|_| count != 0),
uninhabited: element.uninhabited && count != 0,
align: element.align,
size,
max_repr_align: None,
unadjusted_abi_align: align.abi,
randomization_seed: Hash64::new(combined_seed),
}
unadjusted_abi_align: element.align.abi,
randomization_seed: element.randomization_seed.wrapping_add(Hash64::new(count)),
})
}
pub fn univariant<
@ -214,25 +202,6 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
layout
}
pub fn layout_of_never_type<FieldIdx: Idx, VariantIdx: Idx>(
&self,
) -> LayoutData<FieldIdx, VariantIdx> {
let dl = self.cx.data_layout();
// This is also used for uninhabited enums, so we use `Variants::Empty`.
LayoutData {
variants: Variants::Empty,
fields: FieldsShape::Primitive,
backend_repr: BackendRepr::Memory { sized: true },
largest_niche: None,
uninhabited: true,
align: dl.i8_align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: dl.i8_align.abi,
randomization_seed: Hash64::ZERO,
}
}
pub fn layout_of_struct_or_enum<
'a,
FieldIdx: Idx,
@ -260,7 +229,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
Some(present_first) => present_first,
// Uninhabited because it has no variants, or only absent ones.
None if is_enum => {
return Ok(self.layout_of_never_type());
return Ok(LayoutData::never_type(&self.cx));
}
// If it's a struct, still compute a layout so that we can still compute the
// field offsets.
@ -949,7 +918,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
// Common prim might be uninit.
Scalar::Union { value: prim }
};
let pair = self.scalar_pair::<FieldIdx, VariantIdx>(tag, prim_scalar);
let pair =
LayoutData::<FieldIdx, VariantIdx>::scalar_pair(&self.cx, tag, prim_scalar);
let pair_offsets = match pair.fields {
FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
assert_eq!(memory_index.raw, [0, 1]);
@ -1341,7 +1311,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
} else {
((j, b), (i, a))
};
let pair = self.scalar_pair::<FieldIdx, VariantIdx>(a, b);
let pair =
LayoutData::<FieldIdx, VariantIdx>::scalar_pair(&self.cx, a, b);
let pair_offsets = match pair.fields {
FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
assert_eq!(memory_index.raw, [0, 1]);