1
Fork 0

miri weak memory emulation: initialize store buffer only on atomic writes; pre-fill with previous value

This commit is contained in:
Ralf Jung 2024-08-10 21:54:44 +02:00
parent 04ba50e823
commit 8b18c6bdd3
6 changed files with 153 additions and 109 deletions

View file

@ -1011,7 +1011,7 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
/// ///
/// We do this so Miri's allocation access tracking does not show the validation /// We do this so Miri's allocation access tracking does not show the validation
/// reads as spurious accesses. /// reads as spurious accesses.
pub(super) fn run_for_validation<R>(&self, f: impl FnOnce() -> R) -> R { pub fn run_for_validation<R>(&self, f: impl FnOnce() -> R) -> R {
// This deliberately uses `==` on `bool` to follow the pattern // This deliberately uses `==` on `bool` to follow the pattern
// `assert!(val.replace(new) == old)`. // `assert!(val.replace(new) == old)`.
assert!( assert!(

View file

@ -617,9 +617,10 @@ pub trait EvalContextExt<'tcx>: MiriInterpCxExt<'tcx> {
// the *value* (including the associated provenance if this is an AtomicPtr) at this location. // the *value* (including the associated provenance if this is an AtomicPtr) at this location.
// Only metadata on the location itself is used. // Only metadata on the location itself is used.
let scalar = this.allow_data_races_ref(move |this| this.read_scalar(place))?; let scalar = this.allow_data_races_ref(move |this| this.read_scalar(place))?;
this.buffered_atomic_read(place, atomic, scalar, || { let buffered_scalar = this.buffered_atomic_read(place, atomic, scalar, || {
this.validate_atomic_load(place, atomic) this.validate_atomic_load(place, atomic)
}) })?;
Ok(buffered_scalar.ok_or_else(|| err_ub!(InvalidUninitBytes(None)))?)
} }
/// Perform an atomic write operation at the memory location. /// Perform an atomic write operation at the memory location.
@ -632,14 +633,14 @@ pub trait EvalContextExt<'tcx>: MiriInterpCxExt<'tcx> {
let this = self.eval_context_mut(); let this = self.eval_context_mut();
this.atomic_access_check(dest, AtomicAccessType::Store)?; this.atomic_access_check(dest, AtomicAccessType::Store)?;
// Read the previous value so we can put it in the store buffer later.
// The program didn't actually do a read, so suppress the memory access hooks.
// This is also a very special exception where we just ignore an error -- if this read
// was UB e.g. because the memory is uninitialized, we don't want to know!
let old_val = this.run_for_validation(|| this.read_scalar(dest)).ok();
this.allow_data_races_mut(move |this| this.write_scalar(val, dest))?; this.allow_data_races_mut(move |this| this.write_scalar(val, dest))?;
this.validate_atomic_store(dest, atomic)?; this.validate_atomic_store(dest, atomic)?;
// FIXME: it's not possible to get the value before write_scalar. A read_scalar will cause this.buffered_atomic_write(val, dest, atomic, old_val)
// side effects from a read the program did not perform. So we have to initialise
// the store buffer with the value currently being written
// ONCE this is fixed please remove the hack in buffered_atomic_write() in weak_memory.rs
// https://github.com/rust-lang/miri/issues/2164
this.buffered_atomic_write(val, dest, atomic, val)
} }
/// Perform an atomic RMW operation on a memory location. /// Perform an atomic RMW operation on a memory location.
@ -768,7 +769,7 @@ pub trait EvalContextExt<'tcx>: MiriInterpCxExt<'tcx> {
// in the modification order. // in the modification order.
// Since `old` is only a value and not the store element, we need to separately // Since `old` is only a value and not the store element, we need to separately
// find it in our store buffer and perform load_impl on it. // find it in our store buffer and perform load_impl on it.
this.perform_read_on_buffered_latest(place, fail, old.to_scalar())?; this.perform_read_on_buffered_latest(place, fail)?;
} }
// Return the old value. // Return the old value.

View file

@ -39,11 +39,10 @@
//! to attach store buffers to atomic objects. However, Rust follows LLVM in that it only has //! to attach store buffers to atomic objects. However, Rust follows LLVM in that it only has
//! 'atomic accesses'. Therefore Miri cannot know when and where atomic 'objects' are being //! 'atomic accesses'. Therefore Miri cannot know when and where atomic 'objects' are being
//! created or destroyed, to manage its store buffers. Instead, we hence lazily create an //! created or destroyed, to manage its store buffers. Instead, we hence lazily create an
//! atomic object on the first atomic access to a given region, and we destroy that object //! atomic object on the first atomic write to a given region, and we destroy that object
//! on the next non-atomic or imperfectly overlapping atomic access to that region. //! on the next non-atomic or imperfectly overlapping atomic write to that region.
//! These lazy (de)allocations happen in memory_accessed() on non-atomic accesses, and //! These lazy (de)allocations happen in memory_accessed() on non-atomic accesses, and
//! get_or_create_store_buffer() on atomic accesses. This mostly works well, but it does //! get_or_create_store_buffer_mut() on atomic writes.
//! lead to some issues (<https://github.com/rust-lang/miri/issues/2164>).
//! //!
//! One consequence of this difference is that safe/sound Rust allows for more operations on atomic locations //! One consequence of this difference is that safe/sound Rust allows for more operations on atomic locations
//! than the C++20 atomic API was intended to allow, such as non-atomically accessing //! than the C++20 atomic API was intended to allow, such as non-atomically accessing
@ -144,11 +143,9 @@ struct StoreElement {
/// The timestamp of the storing thread when it performed the store /// The timestamp of the storing thread when it performed the store
timestamp: VTimestamp, timestamp: VTimestamp,
/// The value of this store /// The value of this store. `None` means uninitialized.
// FIXME: this means the store must be fully initialized; // FIXME: Currently, we cannot represent partial initialization.
// we will have to change this if we want to support atomics on val: Option<Scalar>,
// (partially) uninitialized data.
val: Scalar,
/// Metadata about loads from this store element, /// Metadata about loads from this store element,
/// behind a RefCell to keep load op take &self /// behind a RefCell to keep load op take &self
@ -170,7 +167,7 @@ impl StoreBufferAlloc {
/// When a non-atomic access happens on a location that has been atomically accessed /// When a non-atomic access happens on a location that has been atomically accessed
/// before without data race, we can determine that the non-atomic access fully happens /// before without data race, we can determine that the non-atomic access fully happens
/// after all the prior atomic accesses so the location no longer needs to exhibit /// after all the prior atomic writes so the location no longer needs to exhibit
/// any weak memory behaviours until further atomic accesses. /// any weak memory behaviours until further atomic accesses.
pub fn memory_accessed(&self, range: AllocRange, global: &DataRaceState) { pub fn memory_accessed(&self, range: AllocRange, global: &DataRaceState) {
if !global.ongoing_action_data_race_free() { if !global.ongoing_action_data_race_free() {
@ -192,37 +189,29 @@ impl StoreBufferAlloc {
} }
} }
/// Gets a store buffer associated with an atomic object in this allocation, /// Gets a store buffer associated with an atomic object in this allocation.
/// or creates one with the specified initial value if no atomic object exists yet. /// Returns `None` if there is no store buffer.
fn get_or_create_store_buffer<'tcx>( fn get_store_buffer<'tcx>(
&self, &self,
range: AllocRange, range: AllocRange,
init: Scalar, ) -> InterpResult<'tcx, Option<Ref<'_, StoreBuffer>>> {
) -> InterpResult<'tcx, Ref<'_, StoreBuffer>> {
let access_type = self.store_buffers.borrow().access_type(range); let access_type = self.store_buffers.borrow().access_type(range);
let pos = match access_type { let pos = match access_type {
AccessType::PerfectlyOverlapping(pos) => pos, AccessType::PerfectlyOverlapping(pos) => pos,
AccessType::Empty(pos) => { // If there is nothing here yet, that means there wasn't an atomic write yet so
let mut buffers = self.store_buffers.borrow_mut(); // we can't return anything outdated.
buffers.insert_at_pos(pos, range, StoreBuffer::new(init)); _ => return Ok(None),
pos
}
AccessType::ImperfectlyOverlapping(pos_range) => {
// Once we reach here we would've already checked that this access is not racy.
let mut buffers = self.store_buffers.borrow_mut();
buffers.remove_pos_range(pos_range.clone());
buffers.insert_at_pos(pos_range.start, range, StoreBuffer::new(init));
pos_range.start
}
}; };
Ok(Ref::map(self.store_buffers.borrow(), |buffer| &buffer[pos])) let store_buffer = Ref::map(self.store_buffers.borrow(), |buffer| &buffer[pos]);
Ok(Some(store_buffer))
} }
/// Gets a mutable store buffer associated with an atomic object in this allocation /// Gets a mutable store buffer associated with an atomic object in this allocation,
/// or creates one with the specified initial value if no atomic object exists yet.
fn get_or_create_store_buffer_mut<'tcx>( fn get_or_create_store_buffer_mut<'tcx>(
&mut self, &mut self,
range: AllocRange, range: AllocRange,
init: Scalar, init: Option<Scalar>,
) -> InterpResult<'tcx, &mut StoreBuffer> { ) -> InterpResult<'tcx, &mut StoreBuffer> {
let buffers = self.store_buffers.get_mut(); let buffers = self.store_buffers.get_mut();
let access_type = buffers.access_type(range); let access_type = buffers.access_type(range);
@ -244,10 +233,8 @@ impl StoreBufferAlloc {
} }
impl<'tcx> StoreBuffer { impl<'tcx> StoreBuffer {
fn new(init: Scalar) -> Self { fn new(init: Option<Scalar>) -> Self {
let mut buffer = VecDeque::new(); let mut buffer = VecDeque::new();
buffer.reserve(STORE_BUFFER_LIMIT);
let mut ret = Self { buffer };
let store_elem = StoreElement { let store_elem = StoreElement {
// The thread index and timestamp of the initialisation write // The thread index and timestamp of the initialisation write
// are never meaningfully used, so it's fine to leave them as 0 // are never meaningfully used, so it's fine to leave them as 0
@ -257,11 +244,11 @@ impl<'tcx> StoreBuffer {
is_seqcst: false, is_seqcst: false,
load_info: RefCell::new(LoadInfo::default()), load_info: RefCell::new(LoadInfo::default()),
}; };
ret.buffer.push_back(store_elem); buffer.push_back(store_elem);
ret Self { buffer }
} }
/// Reads from the last store in modification order /// Reads from the last store in modification order, if any.
fn read_from_last_store( fn read_from_last_store(
&self, &self,
global: &DataRaceState, global: &DataRaceState,
@ -282,7 +269,7 @@ impl<'tcx> StoreBuffer {
is_seqcst: bool, is_seqcst: bool,
rng: &mut (impl rand::Rng + ?Sized), rng: &mut (impl rand::Rng + ?Sized),
validate: impl FnOnce() -> InterpResult<'tcx>, validate: impl FnOnce() -> InterpResult<'tcx>,
) -> InterpResult<'tcx, (Scalar, LoadRecency)> { ) -> InterpResult<'tcx, (Option<Scalar>, LoadRecency)> {
// Having a live borrow to store_buffer while calling validate_atomic_load is fine // Having a live borrow to store_buffer while calling validate_atomic_load is fine
// because the race detector doesn't touch store_buffer // because the race detector doesn't touch store_buffer
@ -419,15 +406,15 @@ impl<'tcx> StoreBuffer {
// In the language provided in the paper, an atomic store takes the value from a // In the language provided in the paper, an atomic store takes the value from a
// non-atomic memory location. // non-atomic memory location.
// But we already have the immediate value here so we don't need to do the memory // But we already have the immediate value here so we don't need to do the memory
// access // access.
val, val: Some(val),
is_seqcst, is_seqcst,
load_info: RefCell::new(LoadInfo::default()), load_info: RefCell::new(LoadInfo::default()),
}; };
self.buffer.push_back(store_elem); if self.buffer.len() >= STORE_BUFFER_LIMIT {
if self.buffer.len() > STORE_BUFFER_LIMIT {
self.buffer.pop_front(); self.buffer.pop_front();
} }
self.buffer.push_back(store_elem);
if is_seqcst { if is_seqcst {
// Every store that happens before this needs to be marked as SC // Every store that happens before this needs to be marked as SC
// so that in a later SC load, only the last SC store (i.e. this one) or stores that // so that in a later SC load, only the last SC store (i.e. this one) or stores that
@ -450,7 +437,12 @@ impl StoreElement {
/// buffer regardless of subsequent loads by the same thread; if the earliest load of another /// buffer regardless of subsequent loads by the same thread; if the earliest load of another
/// thread doesn't happen before the current one, then no subsequent load by the other thread /// thread doesn't happen before the current one, then no subsequent load by the other thread
/// can happen before the current one. /// can happen before the current one.
fn load_impl(&self, index: VectorIdx, clocks: &ThreadClockSet, is_seqcst: bool) -> Scalar { fn load_impl(
&self,
index: VectorIdx,
clocks: &ThreadClockSet,
is_seqcst: bool,
) -> Option<Scalar> {
let mut load_info = self.load_info.borrow_mut(); let mut load_info = self.load_info.borrow_mut();
load_info.sc_loaded |= is_seqcst; load_info.sc_loaded |= is_seqcst;
let _ = load_info.timestamps.try_insert(index, clocks.clock[index]); let _ = load_info.timestamps.try_insert(index, clocks.clock[index]);
@ -479,7 +471,7 @@ pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
global.sc_write(threads); global.sc_write(threads);
} }
let range = alloc_range(base_offset, place.layout.size); let range = alloc_range(base_offset, place.layout.size);
let buffer = alloc_buffers.get_or_create_store_buffer_mut(range, init)?; let buffer = alloc_buffers.get_or_create_store_buffer_mut(range, Some(init))?;
buffer.read_from_last_store(global, threads, atomic == AtomicRwOrd::SeqCst); buffer.read_from_last_store(global, threads, atomic == AtomicRwOrd::SeqCst);
buffer.buffered_write(new_val, global, threads, atomic == AtomicRwOrd::SeqCst)?; buffer.buffered_write(new_val, global, threads, atomic == AtomicRwOrd::SeqCst)?;
} }
@ -492,47 +484,55 @@ pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
atomic: AtomicReadOrd, atomic: AtomicReadOrd,
latest_in_mo: Scalar, latest_in_mo: Scalar,
validate: impl FnOnce() -> InterpResult<'tcx>, validate: impl FnOnce() -> InterpResult<'tcx>,
) -> InterpResult<'tcx, Scalar> { ) -> InterpResult<'tcx, Option<Scalar>> {
let this = self.eval_context_ref(); let this = self.eval_context_ref();
if let Some(global) = &this.machine.data_race { 'fallback: {
let (alloc_id, base_offset, ..) = this.ptr_get_alloc_id(place.ptr(), 0)?; if let Some(global) = &this.machine.data_race {
if let Some(alloc_buffers) = this.get_alloc_extra(alloc_id)?.weak_memory.as_ref() { let (alloc_id, base_offset, ..) = this.ptr_get_alloc_id(place.ptr(), 0)?;
if atomic == AtomicReadOrd::SeqCst { if let Some(alloc_buffers) = this.get_alloc_extra(alloc_id)?.weak_memory.as_ref() {
global.sc_read(&this.machine.threads); if atomic == AtomicReadOrd::SeqCst {
} global.sc_read(&this.machine.threads);
let mut rng = this.machine.rng.borrow_mut(); }
let buffer = alloc_buffers.get_or_create_store_buffer( let mut rng = this.machine.rng.borrow_mut();
alloc_range(base_offset, place.layout.size), let Some(buffer) = alloc_buffers
latest_in_mo, .get_store_buffer(alloc_range(base_offset, place.layout.size))?
)?; else {
let (loaded, recency) = buffer.buffered_read( // No old writes available, fall back to base case.
global, break 'fallback;
&this.machine.threads, };
atomic == AtomicReadOrd::SeqCst, let (loaded, recency) = buffer.buffered_read(
&mut *rng, global,
validate, &this.machine.threads,
)?; atomic == AtomicReadOrd::SeqCst,
if global.track_outdated_loads && recency == LoadRecency::Outdated { &mut *rng,
this.emit_diagnostic(NonHaltingDiagnostic::WeakMemoryOutdatedLoad { validate,
ptr: place.ptr(), )?;
}); if global.track_outdated_loads && recency == LoadRecency::Outdated {
} this.emit_diagnostic(NonHaltingDiagnostic::WeakMemoryOutdatedLoad {
ptr: place.ptr(),
});
}
return Ok(loaded); return Ok(loaded);
}
} }
} }
// Race detector or weak memory disabled, simply read the latest value // Race detector or weak memory disabled, simply read the latest value
validate()?; validate()?;
Ok(latest_in_mo) Ok(Some(latest_in_mo))
} }
/// Add the given write to the store buffer. (Does not change machine memory.)
///
/// `init` says with which value to initialize the store buffer in case there wasn't a store
/// buffer for this memory range before.
fn buffered_atomic_write( fn buffered_atomic_write(
&mut self, &mut self,
val: Scalar, val: Scalar,
dest: &MPlaceTy<'tcx>, dest: &MPlaceTy<'tcx>,
atomic: AtomicWriteOrd, atomic: AtomicWriteOrd,
init: Scalar, init: Option<Scalar>,
) -> InterpResult<'tcx> { ) -> InterpResult<'tcx> {
let this = self.eval_context_mut(); let this = self.eval_context_mut();
let (alloc_id, base_offset, ..) = this.ptr_get_alloc_id(dest.ptr(), 0)?; let (alloc_id, base_offset, ..) = this.ptr_get_alloc_id(dest.ptr(), 0)?;
@ -545,23 +545,8 @@ pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
global.sc_write(threads); global.sc_write(threads);
} }
// UGLY HACK: in write_scalar_atomic() we don't know the value before our write,
// so init == val always. If the buffer is fresh then we would've duplicated an entry,
// so we need to remove it.
// See https://github.com/rust-lang/miri/issues/2164
let was_empty = matches!(
alloc_buffers
.store_buffers
.borrow()
.access_type(alloc_range(base_offset, dest.layout.size)),
AccessType::Empty(_)
);
let buffer = alloc_buffers let buffer = alloc_buffers
.get_or_create_store_buffer_mut(alloc_range(base_offset, dest.layout.size), init)?; .get_or_create_store_buffer_mut(alloc_range(base_offset, dest.layout.size), init)?;
if was_empty {
buffer.buffer.pop_front();
}
buffer.buffered_write(val, global, threads, atomic == AtomicWriteOrd::SeqCst)?; buffer.buffered_write(val, global, threads, atomic == AtomicWriteOrd::SeqCst)?;
} }
@ -576,7 +561,6 @@ pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
&self, &self,
place: &MPlaceTy<'tcx>, place: &MPlaceTy<'tcx>,
atomic: AtomicReadOrd, atomic: AtomicReadOrd,
init: Scalar,
) -> InterpResult<'tcx> { ) -> InterpResult<'tcx> {
let this = self.eval_context_ref(); let this = self.eval_context_ref();
@ -587,8 +571,12 @@ pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
let size = place.layout.size; let size = place.layout.size;
let (alloc_id, base_offset, ..) = this.ptr_get_alloc_id(place.ptr(), 0)?; let (alloc_id, base_offset, ..) = this.ptr_get_alloc_id(place.ptr(), 0)?;
if let Some(alloc_buffers) = this.get_alloc_extra(alloc_id)?.weak_memory.as_ref() { if let Some(alloc_buffers) = this.get_alloc_extra(alloc_id)?.weak_memory.as_ref() {
let buffer = alloc_buffers let Some(buffer) =
.get_or_create_store_buffer(alloc_range(base_offset, size), init)?; alloc_buffers.get_store_buffer(alloc_range(base_offset, size))?
else {
// No store buffer, nothing to do.
return Ok(());
};
buffer.read_from_last_store( buffer.read_from_last_store(
global, global,
&this.machine.threads, &this.machine.threads,

View file

@ -0,0 +1,43 @@
//@compile-flags: -Zmiri-ignore-leaks -Zmiri-preemption-rate=0
// Tests showing weak memory behaviours are exhibited. All tests
// return true when the desired behaviour is seen.
// This is scheduler and pseudo-RNG dependent, so each test is
// run multiple times until one try returns true.
// Spurious failure is possible, if you are really unlucky with
// the RNG and always read the latest value from the store buffer.
#![feature(new_uninit)]
use std::sync::atomic::*;
use std::thread::spawn;
#[allow(dead_code)]
#[derive(Copy, Clone)]
struct EvilSend<T>(pub T);
unsafe impl<T> Send for EvilSend<T> {}
unsafe impl<T> Sync for EvilSend<T> {}
// We can't create static items because we need to run each test multiple times.
fn static_uninit_atomic() -> &'static AtomicUsize {
unsafe { Box::leak(Box::new_uninit()).assume_init_ref() }
}
fn relaxed() {
let x = static_uninit_atomic();
let j1 = spawn(move || {
x.store(1, Ordering::Relaxed);
});
let j2 = spawn(move || x.load(Ordering::Relaxed)); //~ERROR: using uninitialized data
j1.join().unwrap();
j2.join().unwrap();
}
pub fn main() {
// If we try often enough, we should hit UB.
for _ in 0..100 {
relaxed();
}
}

View file

@ -0,0 +1,15 @@
error: Undefined Behavior: using uninitialized data, but this operation requires initialized memory
--> $DIR/weak_uninit.rs:LL:CC
|
LL | let j2 = spawn(move || x.load(Ordering::Relaxed));
| ^^^^^^^^^^^^^^^^^^^^^^^^^ using uninitialized data, but this operation requires initialized memory
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= note: BACKTRACE on thread `unnamed-ID`:
= note: inside closure at $DIR/weak_uninit.rs:LL:CC
note: some details are omitted, run with `MIRIFLAGS=-Zmiri-backtrace=full` for a verbose backtrace
error: aborting due to 1 previous error

View file

@ -18,11 +18,9 @@ struct EvilSend<T>(pub T);
unsafe impl<T> Send for EvilSend<T> {} unsafe impl<T> Send for EvilSend<T> {}
unsafe impl<T> Sync for EvilSend<T> {} unsafe impl<T> Sync for EvilSend<T> {}
// We can't create static items because we need to run each test // We can't create static items because we need to run each test multiple times.
// multiple times
fn static_atomic(val: usize) -> &'static AtomicUsize { fn static_atomic(val: usize) -> &'static AtomicUsize {
let ret = Box::leak(Box::new(AtomicUsize::new(val))); Box::leak(Box::new(AtomicUsize::new(val)))
ret
} }
// Spins until it reads the given value // Spins until it reads the given value
@ -33,7 +31,7 @@ fn reads_value(loc: &AtomicUsize, val: usize) -> usize {
val val
} }
fn relaxed() -> bool { fn relaxed(initial_read: bool) -> bool {
let x = static_atomic(0); let x = static_atomic(0);
let j1 = spawn(move || { let j1 = spawn(move || {
x.store(1, Relaxed); x.store(1, Relaxed);
@ -47,7 +45,9 @@ fn relaxed() -> bool {
j1.join().unwrap(); j1.join().unwrap();
let r2 = j2.join().unwrap(); let r2 = j2.join().unwrap();
r2 == 1 // There are three possible values here: 0 (from the initial read), 1 (from the first relaxed
// read), and 2 (the last read). The last case is boring and we cover the other two.
r2 == if initial_read { 0 } else { 1 }
} }
// https://www.doc.ic.ac.uk/~afd/homepages/papers/pdfs/2017/POPL.pdf Figure 8 // https://www.doc.ic.ac.uk/~afd/homepages/papers/pdfs/2017/POPL.pdf Figure 8
@ -74,7 +74,6 @@ fn seq_cst() -> bool {
fn initialization_write(add_fence: bool) -> bool { fn initialization_write(add_fence: bool) -> bool {
let x = static_atomic(11); let x = static_atomic(11);
assert_eq!(x.load(Relaxed), 11); // work around https://github.com/rust-lang/miri/issues/2164
let wait = static_atomic(0); let wait = static_atomic(0);
@ -112,11 +111,8 @@ fn faa_replaced_by_load() -> bool {
} }
let x = static_atomic(0); let x = static_atomic(0);
assert_eq!(x.load(Relaxed), 0); // work around https://github.com/rust-lang/miri/issues/2164
let y = static_atomic(0); let y = static_atomic(0);
assert_eq!(y.load(Relaxed), 0); // work around https://github.com/rust-lang/miri/issues/2164
let z = static_atomic(0); let z = static_atomic(0);
assert_eq!(z.load(Relaxed), 0); // work around https://github.com/rust-lang/miri/issues/2164
// Since each thread is so short, we need to make sure that they truely run at the same time // Since each thread is so short, we need to make sure that they truely run at the same time
// Otherwise t1 will finish before t2 even starts // Otherwise t1 will finish before t2 even starts
@ -146,7 +142,8 @@ fn assert_once(f: fn() -> bool) {
} }
pub fn main() { pub fn main() {
assert_once(relaxed); assert_once(|| relaxed(false));
assert_once(|| relaxed(true));
assert_once(seq_cst); assert_once(seq_cst);
assert_once(|| initialization_write(false)); assert_once(|| initialization_write(false));
assert_once(|| initialization_write(true)); assert_once(|| initialization_write(true));