Changed dec2flt to use the Eisel-Lemire algorithm.
Implementation is based off fast-float-rust, with a few notable changes. - Some unsafe methods have been removed. - Safe methods with inherently unsafe functionality have been removed. - All unsafe functionality is documented and provably safe. - Extensive documentation has been added for simpler maintenance. - Inline annotations on internal routines has been removed. - Fixed Python errors in src/etc/test-float-parse/runtests.py. - Updated test-float-parse to be a library, to avoid missing rand dependency. - Added regression tests for #31109 and #31407 in core tests. - Added regression tests for #31109 and #31407 in ui tests. - Use the existing slice primitive to simplify shared dec2flt methods - Remove Miri ignores from dec2flt, due to faster parsing times. - resolves #85198 - resolves #85214 - resolves #85234 - fixes #31407 - fixes #31109 - fixes #53015 - resolves #68396 - closes https://github.com/aldanor/fast-float-rust/issues/15
This commit is contained in:
parent
d2b04f075c
commit
8752b40369
43 changed files with 2538 additions and 2831 deletions
|
@ -172,7 +172,6 @@ pub enum LitToConstError {
|
|||
/// This is used for graceful error handling (`delay_span_bug`) in
|
||||
/// type checking (`Const::from_anon_const`).
|
||||
TypeError,
|
||||
UnparseableFloat,
|
||||
Reported,
|
||||
}
|
||||
|
||||
|
|
|
@ -46,9 +46,7 @@ crate fn lit_to_const<'tcx>(
|
|||
(ast::LitKind::Int(n, _), ty::Uint(_)) | (ast::LitKind::Int(n, _), ty::Int(_)) => {
|
||||
trunc(if neg { (*n as i128).overflowing_neg().0 as u128 } else { *n })?
|
||||
}
|
||||
(ast::LitKind::Float(n, _), ty::Float(fty)) => {
|
||||
parse_float(*n, *fty, neg).map_err(|_| LitToConstError::UnparseableFloat)?
|
||||
}
|
||||
(ast::LitKind::Float(n, _), ty::Float(fty)) => parse_float(*n, *fty, neg),
|
||||
(ast::LitKind::Bool(b), ty::Bool) => ConstValue::Scalar(Scalar::from_bool(*b)),
|
||||
(ast::LitKind::Char(c), ty::Char) => ConstValue::Scalar(Scalar::from_char(*c)),
|
||||
(ast::LitKind::Err(_), _) => return Err(LitToConstError::Reported),
|
||||
|
@ -57,12 +55,14 @@ crate fn lit_to_const<'tcx>(
|
|||
Ok(ty::Const::from_value(tcx, lit, ty))
|
||||
}
|
||||
|
||||
fn parse_float<'tcx>(num: Symbol, fty: ty::FloatTy, neg: bool) -> Result<ConstValue<'tcx>, ()> {
|
||||
fn parse_float<'tcx>(num: Symbol, fty: ty::FloatTy, neg: bool) -> ConstValue<'tcx> {
|
||||
let num = num.as_str();
|
||||
use rustc_apfloat::ieee::{Double, Single};
|
||||
let scalar = match fty {
|
||||
ty::FloatTy::F32 => {
|
||||
let rust_f = num.parse::<f32>().map_err(|_| ())?;
|
||||
let rust_f = num
|
||||
.parse::<f32>()
|
||||
.unwrap_or_else(|e| panic!("f32 failed to parse `{}`: {:?}", num, e));
|
||||
let mut f = num.parse::<Single>().unwrap_or_else(|e| {
|
||||
panic!("apfloat::ieee::Single failed to parse `{}`: {:?}", num, e)
|
||||
});
|
||||
|
@ -82,7 +82,9 @@ fn parse_float<'tcx>(num: Symbol, fty: ty::FloatTy, neg: bool) -> Result<ConstVa
|
|||
Scalar::from_f32(f)
|
||||
}
|
||||
ty::FloatTy::F64 => {
|
||||
let rust_f = num.parse::<f64>().map_err(|_| ())?;
|
||||
let rust_f = num
|
||||
.parse::<f64>()
|
||||
.unwrap_or_else(|e| panic!("f64 failed to parse `{}`: {:?}", num, e));
|
||||
let mut f = num.parse::<Double>().unwrap_or_else(|e| {
|
||||
panic!("apfloat::ieee::Double failed to parse `{}`: {:?}", num, e)
|
||||
});
|
||||
|
@ -103,5 +105,5 @@ fn parse_float<'tcx>(num: Symbol, fty: ty::FloatTy, neg: bool) -> Result<ConstVa
|
|||
}
|
||||
};
|
||||
|
||||
Ok(ConstValue::Scalar(scalar))
|
||||
ConstValue::Scalar(scalar)
|
||||
}
|
||||
|
|
|
@ -67,12 +67,6 @@ impl<'tcx> Cx<'tcx> {
|
|||
|
||||
match self.tcx.at(sp).lit_to_const(LitToConstInput { lit, ty, neg }) {
|
||||
Ok(c) => c,
|
||||
Err(LitToConstError::UnparseableFloat) => {
|
||||
// FIXME(#31407) this is only necessary because float parsing is buggy
|
||||
self.tcx.sess.span_err(sp, "could not evaluate float literal (see issue #31407)");
|
||||
// create a dummy value and continue compiling
|
||||
self.tcx.const_error(ty)
|
||||
}
|
||||
Err(LitToConstError::Reported) => {
|
||||
// create a dummy value and continue compiling
|
||||
self.tcx.const_error(ty)
|
||||
|
|
|
@ -84,7 +84,7 @@ impl<'tcx> Visitor<'tcx> for MatchVisitor<'_, 'tcx> {
|
|||
}
|
||||
|
||||
impl PatCtxt<'_, '_> {
|
||||
fn report_inlining_errors(&self, pat_span: Span) {
|
||||
fn report_inlining_errors(&self) {
|
||||
for error in &self.errors {
|
||||
match *error {
|
||||
PatternError::StaticInPattern(span) => {
|
||||
|
@ -96,14 +96,6 @@ impl PatCtxt<'_, '_> {
|
|||
PatternError::ConstParamInPattern(span) => {
|
||||
self.span_e0158(span, "const parameters cannot be referenced in patterns")
|
||||
}
|
||||
PatternError::FloatBug => {
|
||||
// FIXME(#31407) this is only necessary because float parsing is buggy
|
||||
rustc_middle::mir::interpret::struct_error(
|
||||
self.tcx.at(pat_span),
|
||||
"could not evaluate float literal (see issue #31407)",
|
||||
)
|
||||
.emit();
|
||||
}
|
||||
PatternError::NonConstPath(span) => {
|
||||
rustc_middle::mir::interpret::struct_error(
|
||||
self.tcx.at(span),
|
||||
|
@ -142,7 +134,7 @@ impl<'tcx> MatchVisitor<'_, 'tcx> {
|
|||
let pattern: &_ = cx.pattern_arena.alloc(expand_pattern(pattern));
|
||||
if !patcx.errors.is_empty() {
|
||||
*have_errors = true;
|
||||
patcx.report_inlining_errors(pat.span);
|
||||
patcx.report_inlining_errors();
|
||||
}
|
||||
(pattern, pattern_ty)
|
||||
}
|
||||
|
|
|
@ -31,7 +31,6 @@ crate enum PatternError {
|
|||
AssocConstInPattern(Span),
|
||||
ConstParamInPattern(Span),
|
||||
StaticInPattern(Span),
|
||||
FloatBug,
|
||||
NonConstPath(Span),
|
||||
}
|
||||
|
||||
|
@ -563,10 +562,6 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> {
|
|||
LitToConstInput { lit: &lit.node, ty: self.typeck_results.expr_ty(expr), neg };
|
||||
match self.tcx.at(expr.span).lit_to_const(lit_input) {
|
||||
Ok(val) => *self.const_to_pat(val, expr.hir_id, lit.span, false).kind,
|
||||
Err(LitToConstError::UnparseableFloat) => {
|
||||
self.errors.push(PatternError::FloatBug);
|
||||
PatKind::Wild
|
||||
}
|
||||
Err(LitToConstError::Reported) => PatKind::Wild,
|
||||
Err(LitToConstError::TypeError) => bug!("lower_lit: had type error"),
|
||||
}
|
||||
|
|
|
@ -1,429 +0,0 @@
|
|||
//! The various algorithms from the paper.
|
||||
|
||||
use crate::cmp::min;
|
||||
use crate::cmp::Ordering::{Equal, Greater, Less};
|
||||
use crate::num::dec2flt::num::{self, Big};
|
||||
use crate::num::dec2flt::rawfp::{self, fp_to_float, next_float, prev_float, RawFloat, Unpacked};
|
||||
use crate::num::dec2flt::table;
|
||||
use crate::num::diy_float::Fp;
|
||||
|
||||
/// Number of significand bits in Fp
|
||||
const P: u32 = 64;
|
||||
|
||||
// We simply store the best approximation for *all* exponents, so the variable "h" and the
|
||||
// associated conditions can be omitted. This trades performance for a couple kilobytes of space.
|
||||
|
||||
fn power_of_ten(e: i16) -> Fp {
|
||||
assert!(e >= table::MIN_E);
|
||||
let i = e - table::MIN_E;
|
||||
let sig = table::POWERS.0[i as usize];
|
||||
let exp = table::POWERS.1[i as usize];
|
||||
Fp { f: sig, e: exp }
|
||||
}
|
||||
|
||||
// In most architectures, floating point operations have an explicit bit size, therefore the
|
||||
// precision of the computation is determined on a per-operation basis.
|
||||
#[cfg(any(not(target_arch = "x86"), target_feature = "sse2"))]
|
||||
mod fpu_precision {
|
||||
pub fn set_precision<T>() {}
|
||||
}
|
||||
|
||||
// On x86, the x87 FPU is used for float operations if the SSE/SSE2 extensions are not available.
|
||||
// The x87 FPU operates with 80 bits of precision by default, which means that operations will
|
||||
// round to 80 bits causing double rounding to happen when values are eventually represented as
|
||||
// 32/64 bit float values. To overcome this, the FPU control word can be set so that the
|
||||
// computations are performed in the desired precision.
|
||||
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
|
||||
mod fpu_precision {
|
||||
use crate::mem::size_of;
|
||||
|
||||
/// A structure used to preserve the original value of the FPU control word, so that it can be
|
||||
/// restored when the structure is dropped.
|
||||
///
|
||||
/// The x87 FPU is a 16-bits register whose fields are as follows:
|
||||
///
|
||||
/// | 12-15 | 10-11 | 8-9 | 6-7 | 5 | 4 | 3 | 2 | 1 | 0 |
|
||||
/// |------:|------:|----:|----:|---:|---:|---:|---:|---:|---:|
|
||||
/// | | RC | PC | | PM | UM | OM | ZM | DM | IM |
|
||||
///
|
||||
/// The documentation for all of the fields is available in the IA-32 Architectures Software
|
||||
/// Developer's Manual (Volume 1).
|
||||
///
|
||||
/// The only field which is relevant for the following code is PC, Precision Control. This
|
||||
/// field determines the precision of the operations performed by the FPU. It can be set to:
|
||||
/// - 0b00, single precision i.e., 32-bits
|
||||
/// - 0b10, double precision i.e., 64-bits
|
||||
/// - 0b11, double extended precision i.e., 80-bits (default state)
|
||||
/// The 0b01 value is reserved and should not be used.
|
||||
pub struct FPUControlWord(u16);
|
||||
|
||||
fn set_cw(cw: u16) {
|
||||
// SAFETY: the `fldcw` instruction has been audited to be able to work correctly with
|
||||
// any `u16`
|
||||
unsafe {
|
||||
asm!(
|
||||
"fldcw word ptr [{}]",
|
||||
in(reg) &cw,
|
||||
options(nostack),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Sets the precision field of the FPU to `T` and returns a `FPUControlWord`.
|
||||
pub fn set_precision<T>() -> FPUControlWord {
|
||||
let mut cw = 0_u16;
|
||||
|
||||
// Compute the value for the Precision Control field that is appropriate for `T`.
|
||||
let cw_precision = match size_of::<T>() {
|
||||
4 => 0x0000, // 32 bits
|
||||
8 => 0x0200, // 64 bits
|
||||
_ => 0x0300, // default, 80 bits
|
||||
};
|
||||
|
||||
// Get the original value of the control word to restore it later, when the
|
||||
// `FPUControlWord` structure is dropped
|
||||
// SAFETY: the `fnstcw` instruction has been audited to be able to work correctly with
|
||||
// any `u16`
|
||||
unsafe {
|
||||
asm!(
|
||||
"fnstcw word ptr [{}]",
|
||||
in(reg) &mut cw,
|
||||
options(nostack),
|
||||
)
|
||||
}
|
||||
|
||||
// Set the control word to the desired precision. This is achieved by masking away the old
|
||||
// precision (bits 8 and 9, 0x300) and replacing it with the precision flag computed above.
|
||||
set_cw((cw & 0xFCFF) | cw_precision);
|
||||
|
||||
FPUControlWord(cw)
|
||||
}
|
||||
|
||||
impl Drop for FPUControlWord {
|
||||
fn drop(&mut self) {
|
||||
set_cw(self.0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The fast path of Bellerophon using machine-sized integers and floats.
|
||||
///
|
||||
/// This is extracted into a separate function so that it can be attempted before constructing
|
||||
/// a bignum.
|
||||
pub fn fast_path<T: RawFloat>(integral: &[u8], fractional: &[u8], e: i64) -> Option<T> {
|
||||
let num_digits = integral.len() + fractional.len();
|
||||
// log_10(f64::MAX_SIG) ~ 15.95. We compare the exact value to MAX_SIG near the end,
|
||||
// this is just a quick, cheap rejection (and also frees the rest of the code from
|
||||
// worrying about underflow).
|
||||
if num_digits > 16 {
|
||||
return None;
|
||||
}
|
||||
if e.abs() >= T::CEIL_LOG5_OF_MAX_SIG as i64 {
|
||||
return None;
|
||||
}
|
||||
let f = num::from_str_unchecked(integral.iter().chain(fractional.iter()));
|
||||
if f > T::MAX_SIG {
|
||||
return None;
|
||||
}
|
||||
|
||||
// The fast path crucially depends on arithmetic being rounded to the correct number of bits
|
||||
// without any intermediate rounding. On x86 (without SSE or SSE2) this requires the precision
|
||||
// of the x87 FPU stack to be changed so that it directly rounds to 64/32 bit.
|
||||
// The `set_precision` function takes care of setting the precision on architectures which
|
||||
// require setting it by changing the global state (like the control word of the x87 FPU).
|
||||
let _cw = fpu_precision::set_precision::<T>();
|
||||
|
||||
// The case e < 0 cannot be folded into the other branch. Negative powers result in
|
||||
// a repeating fractional part in binary, which are rounded, which causes real
|
||||
// (and occasionally quite significant!) errors in the final result.
|
||||
if e >= 0 {
|
||||
Some(T::from_int(f) * T::short_fast_pow10(e as usize))
|
||||
} else {
|
||||
Some(T::from_int(f) / T::short_fast_pow10(e.abs() as usize))
|
||||
}
|
||||
}
|
||||
|
||||
/// Algorithm Bellerophon is trivial code justified by non-trivial numeric analysis.
|
||||
///
|
||||
/// It rounds ``f`` to a float with 64 bit significand and multiplies it by the best approximation
|
||||
/// of `10^e` (in the same floating point format). This is often enough to get the correct result.
|
||||
/// However, when the result is close to halfway between two adjacent (ordinary) floats, the
|
||||
/// compound rounding error from multiplying two approximation means the result may be off by a
|
||||
/// few bits. When this happens, the iterative Algorithm R fixes things up.
|
||||
///
|
||||
/// The hand-wavy "close to halfway" is made precise by the numeric analysis in the paper.
|
||||
/// In the words of Clinger:
|
||||
///
|
||||
/// > Slop, expressed in units of the least significant bit, is an inclusive bound for the error
|
||||
/// > accumulated during the floating point calculation of the approximation to f * 10^e. (Slop is
|
||||
/// > not a bound for the true error, but bounds the difference between the approximation z and
|
||||
/// > the best possible approximation that uses p bits of significand.)
|
||||
pub fn bellerophon<T: RawFloat>(f: &Big, e: i16) -> T {
|
||||
let slop = if f <= &Big::from_u64(T::MAX_SIG) {
|
||||
// The cases abs(e) < log5(2^N) are in fast_path()
|
||||
if e >= 0 { 0 } else { 3 }
|
||||
} else {
|
||||
if e >= 0 { 1 } else { 4 }
|
||||
};
|
||||
let z = rawfp::big_to_fp(f).mul(&power_of_ten(e)).normalize();
|
||||
let exp_p_n = 1 << (P - T::SIG_BITS as u32);
|
||||
let lowbits: i64 = (z.f % exp_p_n) as i64;
|
||||
// Is the slop large enough to make a difference when
|
||||
// rounding to n bits?
|
||||
if (lowbits - exp_p_n as i64 / 2).abs() <= slop {
|
||||
algorithm_r(f, e, fp_to_float(z))
|
||||
} else {
|
||||
fp_to_float(z)
|
||||
}
|
||||
}
|
||||
|
||||
/// An iterative algorithm that improves a floating point approximation of `f * 10^e`.
|
||||
///
|
||||
/// Each iteration gets one unit in the last place closer, which of course takes terribly long to
|
||||
/// converge if `z0` is even mildly off. Luckily, when used as fallback for Bellerophon, the
|
||||
/// starting approximation is off by at most one ULP.
|
||||
fn algorithm_r<T: RawFloat>(f: &Big, e: i16, z0: T) -> T {
|
||||
let mut z = z0;
|
||||
loop {
|
||||
let raw = z.unpack();
|
||||
let (m, k) = (raw.sig, raw.k);
|
||||
let mut x = f.clone();
|
||||
let mut y = Big::from_u64(m);
|
||||
|
||||
// Find positive integers `x`, `y` such that `x / y` is exactly `(f * 10^e) / (m * 2^k)`.
|
||||
// This not only avoids dealing with the signs of `e` and `k`, we also eliminate the
|
||||
// power of two common to `10^e` and `2^k` to make the numbers smaller.
|
||||
make_ratio(&mut x, &mut y, e, k);
|
||||
|
||||
let m_digits = [(m & 0xFF_FF_FF_FF) as u32, (m >> 32) as u32];
|
||||
// This is written a bit awkwardly because our bignums don't support
|
||||
// negative numbers, so we use the absolute value + sign information.
|
||||
// The multiplication with m_digits can't overflow. If `x` or `y` are large enough that
|
||||
// we need to worry about overflow, then they are also large enough that `make_ratio` has
|
||||
// reduced the fraction by a factor of 2^64 or more.
|
||||
let (d2, d_negative) = if x >= y {
|
||||
// Don't need x any more, save a clone().
|
||||
x.sub(&y).mul_pow2(1).mul_digits(&m_digits);
|
||||
(x, false)
|
||||
} else {
|
||||
// Still need y - make a copy.
|
||||
let mut y = y.clone();
|
||||
y.sub(&x).mul_pow2(1).mul_digits(&m_digits);
|
||||
(y, true)
|
||||
};
|
||||
|
||||
if d2 < y {
|
||||
let mut d2_double = d2;
|
||||
d2_double.mul_pow2(1);
|
||||
if m == T::MIN_SIG && d_negative && d2_double > y {
|
||||
z = prev_float(z);
|
||||
} else {
|
||||
return z;
|
||||
}
|
||||
} else if d2 == y {
|
||||
if m % 2 == 0 {
|
||||
if m == T::MIN_SIG && d_negative {
|
||||
z = prev_float(z);
|
||||
} else {
|
||||
return z;
|
||||
}
|
||||
} else if d_negative {
|
||||
z = prev_float(z);
|
||||
} else {
|
||||
z = next_float(z);
|
||||
}
|
||||
} else if d_negative {
|
||||
z = prev_float(z);
|
||||
} else {
|
||||
z = next_float(z);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Given `x = f` and `y = m` where `f` represent input decimal digits as usual and `m` is the
|
||||
/// significand of a floating point approximation, make the ratio `x / y` equal to
|
||||
/// `(f * 10^e) / (m * 2^k)`, possibly reduced by a power of two both have in common.
|
||||
fn make_ratio(x: &mut Big, y: &mut Big, e: i16, k: i16) {
|
||||
let (e_abs, k_abs) = (e.abs() as usize, k.abs() as usize);
|
||||
if e >= 0 {
|
||||
if k >= 0 {
|
||||
// x = f * 10^e, y = m * 2^k, except that we reduce the fraction by some power of two.
|
||||
let common = min(e_abs, k_abs);
|
||||
x.mul_pow5(e_abs).mul_pow2(e_abs - common);
|
||||
y.mul_pow2(k_abs - common);
|
||||
} else {
|
||||
// x = f * 10^e * 2^abs(k), y = m
|
||||
// This can't overflow because it requires positive `e` and negative `k`, which can
|
||||
// only happen for values extremely close to 1, which means that `e` and `k` will be
|
||||
// comparatively tiny.
|
||||
x.mul_pow5(e_abs).mul_pow2(e_abs + k_abs);
|
||||
}
|
||||
} else {
|
||||
if k >= 0 {
|
||||
// x = f, y = m * 10^abs(e) * 2^k
|
||||
// This can't overflow either, see above.
|
||||
y.mul_pow5(e_abs).mul_pow2(k_abs + e_abs);
|
||||
} else {
|
||||
// x = f * 2^abs(k), y = m * 10^abs(e), again reducing by a common power of two.
|
||||
let common = min(e_abs, k_abs);
|
||||
x.mul_pow2(k_abs - common);
|
||||
y.mul_pow5(e_abs).mul_pow2(e_abs - common);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Conceptually, Algorithm M is the simplest way to convert a decimal to a float.
|
||||
///
|
||||
/// We form a ratio that is equal to `f * 10^e`, then throwing in powers of two until it gives
|
||||
/// a valid float significand. The binary exponent `k` is the number of times we multiplied
|
||||
/// numerator or denominator by two, i.e., at all times `f * 10^e` equals `(u / v) * 2^k`.
|
||||
/// When we have found out significand, we only need to round by inspecting the remainder of the
|
||||
/// division, which is done in helper functions further below.
|
||||
///
|
||||
/// This algorithm is super slow, even with the optimization described in `quick_start()`.
|
||||
/// However, it's the simplest of the algorithms to adapt for overflow, underflow, and subnormal
|
||||
/// results. This implementation takes over when Bellerophon and Algorithm R are overwhelmed.
|
||||
/// Detecting underflow and overflow is easy: The ratio still isn't an in-range significand,
|
||||
/// yet the minimum/maximum exponent has been reached. In the case of overflow, we simply return
|
||||
/// infinity.
|
||||
///
|
||||
/// Handling underflow and subnormals is trickier. One big problem is that, with the minimum
|
||||
/// exponent, the ratio might still be too large for a significand. See underflow() for details.
|
||||
pub fn algorithm_m<T: RawFloat>(f: &Big, e: i16) -> T {
|
||||
let mut u;
|
||||
let mut v;
|
||||
let e_abs = e.abs() as usize;
|
||||
let mut k = 0;
|
||||
if e < 0 {
|
||||
u = f.clone();
|
||||
v = Big::from_small(1);
|
||||
v.mul_pow5(e_abs).mul_pow2(e_abs);
|
||||
} else {
|
||||
// FIXME possible optimization: generalize big_to_fp so that we can do the equivalent of
|
||||
// fp_to_float(big_to_fp(u)) here, only without the double rounding.
|
||||
u = f.clone();
|
||||
u.mul_pow5(e_abs).mul_pow2(e_abs);
|
||||
v = Big::from_small(1);
|
||||
}
|
||||
quick_start::<T>(&mut u, &mut v, &mut k);
|
||||
let mut rem = Big::from_small(0);
|
||||
let mut x = Big::from_small(0);
|
||||
let min_sig = Big::from_u64(T::MIN_SIG);
|
||||
let max_sig = Big::from_u64(T::MAX_SIG);
|
||||
loop {
|
||||
u.div_rem(&v, &mut x, &mut rem);
|
||||
if k == T::MIN_EXP_INT {
|
||||
// We have to stop at the minimum exponent, if we wait until `k < T::MIN_EXP_INT`,
|
||||
// then we'd be off by a factor of two. Unfortunately this means we have to special-
|
||||
// case normal numbers with the minimum exponent.
|
||||
// FIXME find a more elegant formulation, but run the `tiny-pow10` test to make sure
|
||||
// that it's actually correct!
|
||||
if x >= min_sig && x <= max_sig {
|
||||
break;
|
||||
}
|
||||
return underflow(x, v, rem);
|
||||
}
|
||||
if k > T::MAX_EXP_INT {
|
||||
return T::INFINITY;
|
||||
}
|
||||
if x < min_sig {
|
||||
u.mul_pow2(1);
|
||||
k -= 1;
|
||||
} else if x > max_sig {
|
||||
v.mul_pow2(1);
|
||||
k += 1;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
let q = num::to_u64(&x);
|
||||
let z = rawfp::encode_normal(Unpacked::new(q, k));
|
||||
round_by_remainder(v, rem, q, z)
|
||||
}
|
||||
|
||||
/// Skips over most Algorithm M iterations by checking the bit length.
|
||||
fn quick_start<T: RawFloat>(u: &mut Big, v: &mut Big, k: &mut i16) {
|
||||
// The bit length is an estimate of the base two logarithm, and log(u / v) = log(u) - log(v).
|
||||
// The estimate is off by at most 1, but always an under-estimate, so the error on log(u)
|
||||
// and log(v) are of the same sign and cancel out (if both are large). Therefore the error
|
||||
// for log(u / v) is at most one as well.
|
||||
// The target ratio is one where u/v is in an in-range significand. Thus our termination
|
||||
// condition is log2(u / v) being the significand bits, plus/minus one.
|
||||
// FIXME Looking at the second bit could improve the estimate and avoid some more divisions.
|
||||
let target_ratio = T::SIG_BITS as i16;
|
||||
let log2_u = u.bit_length() as i16;
|
||||
let log2_v = v.bit_length() as i16;
|
||||
let mut u_shift: i16 = 0;
|
||||
let mut v_shift: i16 = 0;
|
||||
assert!(*k == 0);
|
||||
loop {
|
||||
if *k == T::MIN_EXP_INT {
|
||||
// Underflow or subnormal. Leave it to the main function.
|
||||
break;
|
||||
}
|
||||
if *k == T::MAX_EXP_INT {
|
||||
// Overflow. Leave it to the main function.
|
||||
break;
|
||||
}
|
||||
let log2_ratio = (log2_u + u_shift) - (log2_v + v_shift);
|
||||
if log2_ratio < target_ratio - 1 {
|
||||
u_shift += 1;
|
||||
*k -= 1;
|
||||
} else if log2_ratio > target_ratio + 1 {
|
||||
v_shift += 1;
|
||||
*k += 1;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
u.mul_pow2(u_shift as usize);
|
||||
v.mul_pow2(v_shift as usize);
|
||||
}
|
||||
|
||||
fn underflow<T: RawFloat>(x: Big, v: Big, rem: Big) -> T {
|
||||
if x < Big::from_u64(T::MIN_SIG) {
|
||||
let q = num::to_u64(&x);
|
||||
let z = rawfp::encode_subnormal(q);
|
||||
return round_by_remainder(v, rem, q, z);
|
||||
}
|
||||
// Ratio isn't an in-range significand with the minimum exponent, so we need to round off
|
||||
// excess bits and adjust the exponent accordingly. The real value now looks like this:
|
||||
//
|
||||
// x lsb
|
||||
// /--------------\/
|
||||
// 1010101010101010.10101010101010 * 2^k
|
||||
// \-----/\-------/ \------------/
|
||||
// q trunc. (represented by rem)
|
||||
//
|
||||
// Therefore, when the rounded-off bits are != 0.5 ULP, they decide the rounding
|
||||
// on their own. When they are equal and the remainder is non-zero, the value still
|
||||
// needs to be rounded up. Only when the rounded off bits are 1/2 and the remainder
|
||||
// is zero, we have a half-to-even situation.
|
||||
let bits = x.bit_length();
|
||||
let lsb = bits - T::SIG_BITS as usize;
|
||||
let q = num::get_bits(&x, lsb, bits);
|
||||
let k = T::MIN_EXP_INT + lsb as i16;
|
||||
let z = rawfp::encode_normal(Unpacked::new(q, k));
|
||||
let q_even = q % 2 == 0;
|
||||
match num::compare_with_half_ulp(&x, lsb) {
|
||||
Greater => next_float(z),
|
||||
Less => z,
|
||||
Equal if rem.is_zero() && q_even => z,
|
||||
Equal => next_float(z),
|
||||
}
|
||||
}
|
||||
|
||||
/// Ordinary round-to-even, obfuscated by having to round based on the remainder of a division.
|
||||
fn round_by_remainder<T: RawFloat>(v: Big, r: Big, q: u64, z: T) -> T {
|
||||
let mut v_minus_r = v;
|
||||
v_minus_r.sub(&r);
|
||||
if r < v_minus_r {
|
||||
z
|
||||
} else if r > v_minus_r {
|
||||
next_float(z)
|
||||
} else if q % 2 == 0 {
|
||||
z
|
||||
} else {
|
||||
next_float(z)
|
||||
}
|
||||
}
|
198
library/core/src/num/dec2flt/common.rs
Normal file
198
library/core/src/num/dec2flt/common.rs
Normal file
|
@ -0,0 +1,198 @@
|
|||
//! Common utilities, for internal use only.
|
||||
|
||||
use crate::ptr;
|
||||
|
||||
/// Helper methods to process immutable bytes.
|
||||
pub(crate) trait ByteSlice: AsRef<[u8]> {
|
||||
unsafe fn first_unchecked(&self) -> u8 {
|
||||
debug_assert!(!self.is_empty());
|
||||
// SAFETY: safe as long as self is not empty
|
||||
unsafe { *self.as_ref().get_unchecked(0) }
|
||||
}
|
||||
|
||||
/// Get if the slice contains no elements.
|
||||
fn is_empty(&self) -> bool {
|
||||
self.as_ref().is_empty()
|
||||
}
|
||||
|
||||
/// Check if the slice at least `n` length.
|
||||
fn check_len(&self, n: usize) -> bool {
|
||||
n <= self.as_ref().len()
|
||||
}
|
||||
|
||||
/// Check if the first character in the slice is equal to c.
|
||||
fn first_is(&self, c: u8) -> bool {
|
||||
self.as_ref().first() == Some(&c)
|
||||
}
|
||||
|
||||
/// Check if the first character in the slice is equal to c1 or c2.
|
||||
fn first_is2(&self, c1: u8, c2: u8) -> bool {
|
||||
if let Some(&c) = self.as_ref().first() { c == c1 || c == c2 } else { false }
|
||||
}
|
||||
|
||||
/// Bounds-checked test if the first character in the slice is a digit.
|
||||
fn first_isdigit(&self) -> bool {
|
||||
if let Some(&c) = self.as_ref().first() { c.is_ascii_digit() } else { false }
|
||||
}
|
||||
|
||||
/// Check if self starts with u with a case-insensitive comparison.
|
||||
fn eq_ignore_case(&self, u: &[u8]) -> bool {
|
||||
debug_assert!(self.as_ref().len() >= u.len());
|
||||
let iter = self.as_ref().iter().zip(u.iter());
|
||||
let d = iter.fold(0, |i, (&x, &y)| i | (x ^ y));
|
||||
d == 0 || d == 32
|
||||
}
|
||||
|
||||
/// Get the remaining slice after the first N elements.
|
||||
fn advance(&self, n: usize) -> &[u8] {
|
||||
&self.as_ref()[n..]
|
||||
}
|
||||
|
||||
/// Get the slice after skipping all leading characters equal c.
|
||||
fn skip_chars(&self, c: u8) -> &[u8] {
|
||||
let mut s = self.as_ref();
|
||||
while s.first_is(c) {
|
||||
s = s.advance(1);
|
||||
}
|
||||
s
|
||||
}
|
||||
|
||||
/// Get the slice after skipping all leading characters equal c1 or c2.
|
||||
fn skip_chars2(&self, c1: u8, c2: u8) -> &[u8] {
|
||||
let mut s = self.as_ref();
|
||||
while s.first_is2(c1, c2) {
|
||||
s = s.advance(1);
|
||||
}
|
||||
s
|
||||
}
|
||||
|
||||
/// Read 8 bytes as a 64-bit integer in little-endian order.
|
||||
unsafe fn read_u64_unchecked(&self) -> u64 {
|
||||
debug_assert!(self.check_len(8));
|
||||
let src = self.as_ref().as_ptr() as *const u64;
|
||||
// SAFETY: safe as long as self is at least 8 bytes
|
||||
u64::from_le(unsafe { ptr::read_unaligned(src) })
|
||||
}
|
||||
|
||||
/// Try to read the next 8 bytes from the slice.
|
||||
fn read_u64(&self) -> Option<u64> {
|
||||
if self.check_len(8) {
|
||||
// SAFETY: self must be at least 8 bytes.
|
||||
Some(unsafe { self.read_u64_unchecked() })
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculate the offset of slice from another.
|
||||
fn offset_from(&self, other: &Self) -> isize {
|
||||
other.as_ref().len() as isize - self.as_ref().len() as isize
|
||||
}
|
||||
}
|
||||
|
||||
impl ByteSlice for [u8] {}
|
||||
|
||||
/// Helper methods to process mutable bytes.
|
||||
pub(crate) trait ByteSliceMut: AsMut<[u8]> {
|
||||
/// Write a 64-bit integer as 8 bytes in little-endian order.
|
||||
unsafe fn write_u64_unchecked(&mut self, value: u64) {
|
||||
debug_assert!(self.as_mut().len() >= 8);
|
||||
let dst = self.as_mut().as_mut_ptr() as *mut u64;
|
||||
// NOTE: we must use `write_unaligned`, since dst is not
|
||||
// guaranteed to be properly aligned. Miri will warn us
|
||||
// if we use `write` instead of `write_unaligned`, as expected.
|
||||
// SAFETY: safe as long as self is at least 8 bytes
|
||||
unsafe {
|
||||
ptr::write_unaligned(dst, u64::to_le(value));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ByteSliceMut for [u8] {}
|
||||
|
||||
/// Bytes wrapper with specialized methods for ASCII characters.
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub(crate) struct AsciiStr<'a> {
|
||||
slc: &'a [u8],
|
||||
}
|
||||
|
||||
impl<'a> AsciiStr<'a> {
|
||||
pub fn new(slc: &'a [u8]) -> Self {
|
||||
Self { slc }
|
||||
}
|
||||
|
||||
/// Advance the view by n, advancing it in-place to (n..).
|
||||
pub unsafe fn step_by(&mut self, n: usize) -> &mut Self {
|
||||
// SAFETY: safe as long n is less than the buffer length
|
||||
self.slc = unsafe { self.slc.get_unchecked(n..) };
|
||||
self
|
||||
}
|
||||
|
||||
/// Advance the view by n, advancing it in-place to (1..).
|
||||
pub unsafe fn step(&mut self) -> &mut Self {
|
||||
// SAFETY: safe as long as self is not empty
|
||||
unsafe { self.step_by(1) }
|
||||
}
|
||||
|
||||
/// Iteratively parse and consume digits from bytes.
|
||||
pub fn parse_digits(&mut self, mut func: impl FnMut(u8)) {
|
||||
while let Some(&c) = self.as_ref().first() {
|
||||
let c = c.wrapping_sub(b'0');
|
||||
if c < 10 {
|
||||
func(c);
|
||||
// SAFETY: self cannot be empty
|
||||
unsafe {
|
||||
self.step();
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> AsRef<[u8]> for AsciiStr<'a> {
|
||||
#[inline]
|
||||
fn as_ref(&self) -> &[u8] {
|
||||
self.slc
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ByteSlice for AsciiStr<'a> {}
|
||||
|
||||
/// Determine if 8 bytes are all decimal digits.
|
||||
/// This does not care about the order in which the bytes were loaded.
|
||||
pub(crate) fn is_8digits(v: u64) -> bool {
|
||||
let a = v.wrapping_add(0x4646_4646_4646_4646);
|
||||
let b = v.wrapping_sub(0x3030_3030_3030_3030);
|
||||
(a | b) & 0x8080_8080_8080_8080 == 0
|
||||
}
|
||||
|
||||
/// Iteratively parse and consume digits from bytes.
|
||||
pub(crate) fn parse_digits(s: &mut &[u8], mut f: impl FnMut(u8)) {
|
||||
while let Some(&c) = s.get(0) {
|
||||
let c = c.wrapping_sub(b'0');
|
||||
if c < 10 {
|
||||
f(c);
|
||||
*s = s.advance(1);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A custom 64-bit floating point type, representing `f * 2^e`.
|
||||
/// e is biased, so it be directly shifted into the exponent bits.
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq, Default)]
|
||||
pub struct BiasedFp {
|
||||
/// The significant digits.
|
||||
pub f: u64,
|
||||
/// The biased, binary exponent.
|
||||
pub e: i32,
|
||||
}
|
||||
|
||||
impl BiasedFp {
|
||||
pub const fn zero_pow2(e: i32) -> Self {
|
||||
Self { f: 0, e }
|
||||
}
|
||||
}
|
351
library/core/src/num/dec2flt/decimal.rs
Normal file
351
library/core/src/num/dec2flt/decimal.rs
Normal file
|
@ -0,0 +1,351 @@
|
|||
//! Arbitrary-precision decimal class for fallback algorithms.
|
||||
//!
|
||||
//! This is only used if the fast-path (native floats) and
|
||||
//! the Eisel-Lemire algorithm are unable to unambiguously
|
||||
//! determine the float.
|
||||
//!
|
||||
//! The technique used is "Simple Decimal Conversion", developed
|
||||
//! by Nigel Tao and Ken Thompson. A detailed description of the
|
||||
//! algorithm can be found in "ParseNumberF64 by Simple Decimal Conversion",
|
||||
//! available online: <https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html>.
|
||||
|
||||
use crate::num::dec2flt::common::{is_8digits, parse_digits, ByteSlice, ByteSliceMut};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Decimal {
|
||||
/// The number of significant digits in the decimal.
|
||||
pub num_digits: usize,
|
||||
/// The offset of the decimal point in the significant digits.
|
||||
pub decimal_point: i32,
|
||||
/// If the number of significant digits stored in the decimal is truncated.
|
||||
pub truncated: bool,
|
||||
/// Buffer of the raw digits, in the range [0, 9].
|
||||
pub digits: [u8; Self::MAX_DIGITS],
|
||||
}
|
||||
|
||||
impl Default for Decimal {
|
||||
fn default() -> Self {
|
||||
Self { num_digits: 0, decimal_point: 0, truncated: false, digits: [0; Self::MAX_DIGITS] }
|
||||
}
|
||||
}
|
||||
|
||||
impl Decimal {
|
||||
/// The maximum number of digits required to unambiguously round a float.
|
||||
///
|
||||
/// For a double-precision IEEE-754 float, this required 767 digits,
|
||||
/// so we store the max digits + 1.
|
||||
///
|
||||
/// We can exactly represent a float in radix `b` from radix 2 if
|
||||
/// `b` is divisible by 2. This function calculates the exact number of
|
||||
/// digits required to exactly represent that float.
|
||||
///
|
||||
/// According to the "Handbook of Floating Point Arithmetic",
|
||||
/// for IEEE754, with emin being the min exponent, p2 being the
|
||||
/// precision, and b being the radix, the number of digits follows as:
|
||||
///
|
||||
/// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋`
|
||||
///
|
||||
/// For f32, this follows as:
|
||||
/// emin = -126
|
||||
/// p2 = 24
|
||||
///
|
||||
/// For f64, this follows as:
|
||||
/// emin = -1022
|
||||
/// p2 = 53
|
||||
///
|
||||
/// In Python:
|
||||
/// `-emin + p2 + math.floor((emin+ 1)*math.log(2, b)-math.log(1-2**(-p2), b))`
|
||||
pub const MAX_DIGITS: usize = 768;
|
||||
/// The max digits that can be exactly represented in a 64-bit integer.
|
||||
pub const MAX_DIGITS_WITHOUT_OVERFLOW: usize = 19;
|
||||
pub const DECIMAL_POINT_RANGE: i32 = 2047;
|
||||
|
||||
/// Append a digit to the buffer.
|
||||
pub fn try_add_digit(&mut self, digit: u8) {
|
||||
if self.num_digits < Self::MAX_DIGITS {
|
||||
self.digits[self.num_digits] = digit;
|
||||
}
|
||||
self.num_digits += 1;
|
||||
}
|
||||
|
||||
/// Trim trailing zeros from the buffer.
|
||||
pub fn trim(&mut self) {
|
||||
// All of the following calls to `Decimal::trim` can't panic because:
|
||||
//
|
||||
// 1. `parse_decimal` sets `num_digits` to a max of `Decimal::MAX_DIGITS`.
|
||||
// 2. `right_shift` sets `num_digits` to `write_index`, which is bounded by `num_digits`.
|
||||
// 3. `left_shift` `num_digits` to a max of `Decimal::MAX_DIGITS`.
|
||||
//
|
||||
// Trim is only called in `right_shift` and `left_shift`.
|
||||
debug_assert!(self.num_digits <= Self::MAX_DIGITS);
|
||||
while self.num_digits != 0 && self.digits[self.num_digits - 1] == 0 {
|
||||
self.num_digits -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
pub fn round(&self) -> u64 {
|
||||
if self.num_digits == 0 || self.decimal_point < 0 {
|
||||
return 0;
|
||||
} else if self.decimal_point > 18 {
|
||||
return 0xFFFF_FFFF_FFFF_FFFF_u64;
|
||||
}
|
||||
let dp = self.decimal_point as usize;
|
||||
let mut n = 0_u64;
|
||||
for i in 0..dp {
|
||||
n *= 10;
|
||||
if i < self.num_digits {
|
||||
n += self.digits[i] as u64;
|
||||
}
|
||||
}
|
||||
let mut round_up = false;
|
||||
if dp < self.num_digits {
|
||||
round_up = self.digits[dp] >= 5;
|
||||
if self.digits[dp] == 5 && dp + 1 == self.num_digits {
|
||||
round_up = self.truncated || ((dp != 0) && (1 & self.digits[dp - 1] != 0))
|
||||
}
|
||||
}
|
||||
if round_up {
|
||||
n += 1;
|
||||
}
|
||||
n
|
||||
}
|
||||
|
||||
/// Computes decimal * 2^shift.
|
||||
pub fn left_shift(&mut self, shift: usize) {
|
||||
if self.num_digits == 0 {
|
||||
return;
|
||||
}
|
||||
let num_new_digits = number_of_digits_decimal_left_shift(self, shift);
|
||||
let mut read_index = self.num_digits;
|
||||
let mut write_index = self.num_digits + num_new_digits;
|
||||
let mut n = 0_u64;
|
||||
while read_index != 0 {
|
||||
read_index -= 1;
|
||||
write_index -= 1;
|
||||
n += (self.digits[read_index] as u64) << shift;
|
||||
let quotient = n / 10;
|
||||
let remainder = n - (10 * quotient);
|
||||
if write_index < Self::MAX_DIGITS {
|
||||
self.digits[write_index] = remainder as u8;
|
||||
} else if remainder > 0 {
|
||||
self.truncated = true;
|
||||
}
|
||||
n = quotient;
|
||||
}
|
||||
while n > 0 {
|
||||
write_index -= 1;
|
||||
let quotient = n / 10;
|
||||
let remainder = n - (10 * quotient);
|
||||
if write_index < Self::MAX_DIGITS {
|
||||
self.digits[write_index] = remainder as u8;
|
||||
} else if remainder > 0 {
|
||||
self.truncated = true;
|
||||
}
|
||||
n = quotient;
|
||||
}
|
||||
self.num_digits += num_new_digits;
|
||||
if self.num_digits > Self::MAX_DIGITS {
|
||||
self.num_digits = Self::MAX_DIGITS;
|
||||
}
|
||||
self.decimal_point += num_new_digits as i32;
|
||||
self.trim();
|
||||
}
|
||||
|
||||
/// Computes decimal * 2^-shift.
|
||||
pub fn right_shift(&mut self, shift: usize) {
|
||||
let mut read_index = 0;
|
||||
let mut write_index = 0;
|
||||
let mut n = 0_u64;
|
||||
while (n >> shift) == 0 {
|
||||
if read_index < self.num_digits {
|
||||
n = (10 * n) + self.digits[read_index] as u64;
|
||||
read_index += 1;
|
||||
} else if n == 0 {
|
||||
return;
|
||||
} else {
|
||||
while (n >> shift) == 0 {
|
||||
n *= 10;
|
||||
read_index += 1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
self.decimal_point -= read_index as i32 - 1;
|
||||
if self.decimal_point < -Self::DECIMAL_POINT_RANGE {
|
||||
// `self = Self::Default()`, but without the overhead of clearing `digits`.
|
||||
self.num_digits = 0;
|
||||
self.decimal_point = 0;
|
||||
self.truncated = false;
|
||||
return;
|
||||
}
|
||||
let mask = (1_u64 << shift) - 1;
|
||||
while read_index < self.num_digits {
|
||||
let new_digit = (n >> shift) as u8;
|
||||
n = (10 * (n & mask)) + self.digits[read_index] as u64;
|
||||
read_index += 1;
|
||||
self.digits[write_index] = new_digit;
|
||||
write_index += 1;
|
||||
}
|
||||
while n > 0 {
|
||||
let new_digit = (n >> shift) as u8;
|
||||
n = 10 * (n & mask);
|
||||
if write_index < Self::MAX_DIGITS {
|
||||
self.digits[write_index] = new_digit;
|
||||
write_index += 1;
|
||||
} else if new_digit > 0 {
|
||||
self.truncated = true;
|
||||
}
|
||||
}
|
||||
self.num_digits = write_index;
|
||||
self.trim();
|
||||
}
|
||||
}
|
||||
|
||||
/// Parse a big integer representation of the float as a decimal.
|
||||
pub fn parse_decimal(mut s: &[u8]) -> Decimal {
|
||||
let mut d = Decimal::default();
|
||||
let start = s;
|
||||
s = s.skip_chars(b'0');
|
||||
parse_digits(&mut s, |digit| d.try_add_digit(digit));
|
||||
if s.first_is(b'.') {
|
||||
s = s.advance(1);
|
||||
let first = s;
|
||||
// Skip leading zeros.
|
||||
if d.num_digits == 0 {
|
||||
s = s.skip_chars(b'0');
|
||||
}
|
||||
while s.len() >= 8 && d.num_digits + 8 < Decimal::MAX_DIGITS {
|
||||
// SAFETY: s is at least 8 bytes.
|
||||
let v = unsafe { s.read_u64_unchecked() };
|
||||
if !is_8digits(v) {
|
||||
break;
|
||||
}
|
||||
// SAFETY: d.num_digits + 8 is less than d.digits.len()
|
||||
unsafe {
|
||||
d.digits[d.num_digits..].write_u64_unchecked(v - 0x3030_3030_3030_3030);
|
||||
}
|
||||
d.num_digits += 8;
|
||||
s = s.advance(8);
|
||||
}
|
||||
parse_digits(&mut s, |digit| d.try_add_digit(digit));
|
||||
d.decimal_point = s.len() as i32 - first.len() as i32;
|
||||
}
|
||||
if d.num_digits != 0 {
|
||||
// Ignore the trailing zeros if there are any
|
||||
let mut n_trailing_zeros = 0;
|
||||
for &c in start[..(start.len() - s.len())].iter().rev() {
|
||||
if c == b'0' {
|
||||
n_trailing_zeros += 1;
|
||||
} else if c != b'.' {
|
||||
break;
|
||||
}
|
||||
}
|
||||
d.decimal_point += n_trailing_zeros as i32;
|
||||
d.num_digits -= n_trailing_zeros;
|
||||
d.decimal_point += d.num_digits as i32;
|
||||
if d.num_digits > Decimal::MAX_DIGITS {
|
||||
d.truncated = true;
|
||||
d.num_digits = Decimal::MAX_DIGITS;
|
||||
}
|
||||
}
|
||||
if s.first_is2(b'e', b'E') {
|
||||
s = s.advance(1);
|
||||
let mut neg_exp = false;
|
||||
if s.first_is(b'-') {
|
||||
neg_exp = true;
|
||||
s = s.advance(1);
|
||||
} else if s.first_is(b'+') {
|
||||
s = s.advance(1);
|
||||
}
|
||||
let mut exp_num = 0_i32;
|
||||
parse_digits(&mut s, |digit| {
|
||||
if exp_num < 0x10000 {
|
||||
exp_num = 10 * exp_num + digit as i32;
|
||||
}
|
||||
});
|
||||
d.decimal_point += if neg_exp { -exp_num } else { exp_num };
|
||||
}
|
||||
for i in d.num_digits..Decimal::MAX_DIGITS_WITHOUT_OVERFLOW {
|
||||
d.digits[i] = 0;
|
||||
}
|
||||
d
|
||||
}
|
||||
|
||||
fn number_of_digits_decimal_left_shift(d: &Decimal, mut shift: usize) -> usize {
|
||||
#[rustfmt::skip]
|
||||
const TABLE: [u16; 65] = [
|
||||
0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817, 0x181D, 0x2024,
|
||||
0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067, 0x3073, 0x3080, 0x388E, 0x389C,
|
||||
0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF, 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169,
|
||||
0x5180, 0x5998, 0x59B0, 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B,
|
||||
0x72AA, 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC, 0x8C02,
|
||||
0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C, 0x051C, 0x051C,
|
||||
];
|
||||
#[rustfmt::skip]
|
||||
const TABLE_POW5: [u8; 0x051C] = [
|
||||
5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, 9, 0, 6, 2, 5, 1,
|
||||
9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5,
|
||||
1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2,
|
||||
5, 1, 5, 2, 5, 8, 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6,
|
||||
9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1,
|
||||
6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9,
|
||||
1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6,
|
||||
4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1,
|
||||
4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2,
|
||||
3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6,
|
||||
2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5,
|
||||
4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2,
|
||||
5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5,
|
||||
3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4,
|
||||
6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6,
|
||||
1, 3, 2, 8, 1, 2, 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0,
|
||||
6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, 0, 3, 1, 2, 5, 3,
|
||||
6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8,
|
||||
9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6, 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4,
|
||||
7, 0, 1, 7, 7, 2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5,
|
||||
0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, 3, 7, 3, 6, 7, 5,
|
||||
4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7,
|
||||
7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8,
|
||||
8, 6, 0, 8, 0, 8, 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0,
|
||||
9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0,
|
||||
8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1,
|
||||
0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2,
|
||||
5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8,
|
||||
9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0,
|
||||
6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3,
|
||||
8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2,
|
||||
6, 1, 6, 1, 6, 9, 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4,
|
||||
9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1, 1,
|
||||
1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8,
|
||||
2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5,
|
||||
8, 3, 4, 0, 4, 5, 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1,
|
||||
3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1, 3, 8, 7, 7, 7, 8,
|
||||
7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0,
|
||||
6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2,
|
||||
5, 5, 6, 7, 6, 2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1,
|
||||
8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, 1, 7, 3, 4, 7, 2,
|
||||
3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3,
|
||||
8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2,
|
||||
2, 4, 0, 6, 9, 5, 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5,
|
||||
];
|
||||
|
||||
shift &= 63;
|
||||
let x_a = TABLE[shift];
|
||||
let x_b = TABLE[shift + 1];
|
||||
let num_new_digits = (x_a >> 11) as _;
|
||||
let pow5_a = (0x7FF & x_a) as usize;
|
||||
let pow5_b = (0x7FF & x_b) as usize;
|
||||
let pow5 = &TABLE_POW5[pow5_a..];
|
||||
for (i, &p5) in pow5.iter().enumerate().take(pow5_b - pow5_a) {
|
||||
if i >= d.num_digits {
|
||||
return num_new_digits - 1;
|
||||
} else if d.digits[i] == p5 {
|
||||
continue;
|
||||
} else if d.digits[i] < p5 {
|
||||
return num_new_digits - 1;
|
||||
} else {
|
||||
return num_new_digits;
|
||||
}
|
||||
}
|
||||
num_new_digits
|
||||
}
|
207
library/core/src/num/dec2flt/float.rs
Normal file
207
library/core/src/num/dec2flt/float.rs
Normal file
|
@ -0,0 +1,207 @@
|
|||
//! Helper trait for generic float types.
|
||||
|
||||
use crate::fmt::{Debug, LowerExp};
|
||||
use crate::num::FpCategory;
|
||||
use crate::ops::{Add, Div, Mul, Neg};
|
||||
|
||||
/// A helper trait to avoid duplicating basically all the conversion code for `f32` and `f64`.
|
||||
///
|
||||
/// See the parent module's doc comment for why this is necessary.
|
||||
///
|
||||
/// Should **never ever** be implemented for other types or be used outside the dec2flt module.
|
||||
#[doc(hidden)]
|
||||
pub trait RawFloat:
|
||||
Sized
|
||||
+ Div<Output = Self>
|
||||
+ Neg<Output = Self>
|
||||
+ Mul<Output = Self>
|
||||
+ Add<Output = Self>
|
||||
+ LowerExp
|
||||
+ PartialEq
|
||||
+ PartialOrd
|
||||
+ Default
|
||||
+ Clone
|
||||
+ Copy
|
||||
+ Debug
|
||||
{
|
||||
const INFINITY: Self;
|
||||
const NEG_INFINITY: Self;
|
||||
const NAN: Self;
|
||||
const NEG_NAN: Self;
|
||||
|
||||
/// The number of bits in the significand, *excluding* the hidden bit.
|
||||
const MANTISSA_EXPLICIT_BITS: usize;
|
||||
|
||||
// Round-to-even only happens for negative values of q
|
||||
// when q ≥ −4 in the 64-bit case and when q ≥ −17 in
|
||||
// the 32-bitcase.
|
||||
//
|
||||
// When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
|
||||
// have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
|
||||
// 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
|
||||
//
|
||||
// When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
|
||||
// so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
|
||||
// or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
|
||||
// (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
|
||||
// or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
|
||||
//
|
||||
// Thus we have that we only need to round ties to even when
|
||||
// we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
|
||||
// (in the 32-bit case). In both cases,the power of five(5^|q|)
|
||||
// fits in a 64-bit word.
|
||||
const MIN_EXPONENT_ROUND_TO_EVEN: i32;
|
||||
const MAX_EXPONENT_ROUND_TO_EVEN: i32;
|
||||
|
||||
// Minimum exponent that for a fast path case, or `-⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
|
||||
const MIN_EXPONENT_FAST_PATH: i64;
|
||||
|
||||
// Maximum exponent that for a fast path case, or `⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
|
||||
const MAX_EXPONENT_FAST_PATH: i64;
|
||||
|
||||
// Maximum exponent that can be represented for a disguised-fast path case.
|
||||
// This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_EXPLICIT_BITS+1)/log2(10)⌋`
|
||||
const MAX_EXPONENT_DISGUISED_FAST_PATH: i64;
|
||||
|
||||
// Minimum exponent value `-(1 << (EXP_BITS - 1)) + 1`.
|
||||
const MINIMUM_EXPONENT: i32;
|
||||
|
||||
// Largest exponent value `(1 << EXP_BITS) - 1`.
|
||||
const INFINITE_POWER: i32;
|
||||
|
||||
// Index (in bits) of the sign.
|
||||
const SIGN_INDEX: usize;
|
||||
|
||||
// Smallest decimal exponent for a non-zero value.
|
||||
const SMALLEST_POWER_OF_TEN: i32;
|
||||
|
||||
// Largest decimal exponent for a non-infinite value.
|
||||
const LARGEST_POWER_OF_TEN: i32;
|
||||
|
||||
// Maximum mantissa for the fast-path (`1 << 53` for f64).
|
||||
const MAX_MANTISSA_FAST_PATH: u64 = 2_u64 << Self::MANTISSA_EXPLICIT_BITS;
|
||||
|
||||
/// Convert integer into float through an as cast.
|
||||
/// This is only called in the fast-path algorithm, and therefore
|
||||
/// will not lose precision, since the value will always have
|
||||
/// only if the value is <= Self::MAX_MANTISSA_FAST_PATH.
|
||||
fn from_u64(v: u64) -> Self;
|
||||
|
||||
/// Performs a raw transmutation from an integer.
|
||||
fn from_u64_bits(v: u64) -> Self;
|
||||
|
||||
/// Get a small power-of-ten for fast-path multiplication.
|
||||
fn pow10_fast_path(exponent: usize) -> Self;
|
||||
|
||||
/// Returns the category that this number falls into.
|
||||
fn classify(self) -> FpCategory;
|
||||
|
||||
/// Returns the mantissa, exponent and sign as integers.
|
||||
fn integer_decode(self) -> (u64, i16, i8);
|
||||
}
|
||||
|
||||
impl RawFloat for f32 {
|
||||
const INFINITY: Self = f32::INFINITY;
|
||||
const NEG_INFINITY: Self = f32::NEG_INFINITY;
|
||||
const NAN: Self = f32::NAN;
|
||||
const NEG_NAN: Self = -f32::NAN;
|
||||
|
||||
const MANTISSA_EXPLICIT_BITS: usize = 23;
|
||||
const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -17;
|
||||
const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 10;
|
||||
const MIN_EXPONENT_FAST_PATH: i64 = -10; // assuming FLT_EVAL_METHOD = 0
|
||||
const MAX_EXPONENT_FAST_PATH: i64 = 10;
|
||||
const MAX_EXPONENT_DISGUISED_FAST_PATH: i64 = 17;
|
||||
const MINIMUM_EXPONENT: i32 = -127;
|
||||
const INFINITE_POWER: i32 = 0xFF;
|
||||
const SIGN_INDEX: usize = 31;
|
||||
const SMALLEST_POWER_OF_TEN: i32 = -65;
|
||||
const LARGEST_POWER_OF_TEN: i32 = 38;
|
||||
|
||||
fn from_u64(v: u64) -> Self {
|
||||
debug_assert!(v <= Self::MAX_MANTISSA_FAST_PATH);
|
||||
v as _
|
||||
}
|
||||
|
||||
fn from_u64_bits(v: u64) -> Self {
|
||||
f32::from_bits((v & 0xFFFFFFFF) as u32)
|
||||
}
|
||||
|
||||
fn pow10_fast_path(exponent: usize) -> Self {
|
||||
#[allow(clippy::use_self)]
|
||||
const TABLE: [f32; 16] =
|
||||
[1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 0., 0., 0., 0., 0.];
|
||||
TABLE[exponent & 15]
|
||||
}
|
||||
|
||||
/// Returns the mantissa, exponent and sign as integers.
|
||||
fn integer_decode(self) -> (u64, i16, i8) {
|
||||
let bits = self.to_bits();
|
||||
let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
|
||||
let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
|
||||
let mantissa =
|
||||
if exponent == 0 { (bits & 0x7fffff) << 1 } else { (bits & 0x7fffff) | 0x800000 };
|
||||
// Exponent bias + mantissa shift
|
||||
exponent -= 127 + 23;
|
||||
(mantissa as u64, exponent, sign)
|
||||
}
|
||||
|
||||
fn classify(self) -> FpCategory {
|
||||
self.classify()
|
||||
}
|
||||
}
|
||||
|
||||
impl RawFloat for f64 {
|
||||
const INFINITY: Self = f64::INFINITY;
|
||||
const NEG_INFINITY: Self = f64::NEG_INFINITY;
|
||||
const NAN: Self = f64::NAN;
|
||||
const NEG_NAN: Self = -f64::NAN;
|
||||
|
||||
const MANTISSA_EXPLICIT_BITS: usize = 52;
|
||||
const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -4;
|
||||
const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 23;
|
||||
const MIN_EXPONENT_FAST_PATH: i64 = -22; // assuming FLT_EVAL_METHOD = 0
|
||||
const MAX_EXPONENT_FAST_PATH: i64 = 22;
|
||||
const MAX_EXPONENT_DISGUISED_FAST_PATH: i64 = 37;
|
||||
const MINIMUM_EXPONENT: i32 = -1023;
|
||||
const INFINITE_POWER: i32 = 0x7FF;
|
||||
const SIGN_INDEX: usize = 63;
|
||||
const SMALLEST_POWER_OF_TEN: i32 = -342;
|
||||
const LARGEST_POWER_OF_TEN: i32 = 308;
|
||||
|
||||
fn from_u64(v: u64) -> Self {
|
||||
debug_assert!(v <= Self::MAX_MANTISSA_FAST_PATH);
|
||||
v as _
|
||||
}
|
||||
|
||||
fn from_u64_bits(v: u64) -> Self {
|
||||
f64::from_bits(v)
|
||||
}
|
||||
|
||||
fn pow10_fast_path(exponent: usize) -> Self {
|
||||
const TABLE: [f64; 32] = [
|
||||
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15,
|
||||
1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 0., 0., 0., 0., 0., 0., 0., 0., 0.,
|
||||
];
|
||||
TABLE[exponent & 31]
|
||||
}
|
||||
|
||||
/// Returns the mantissa, exponent and sign as integers.
|
||||
fn integer_decode(self) -> (u64, i16, i8) {
|
||||
let bits = self.to_bits();
|
||||
let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
|
||||
let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
|
||||
let mantissa = if exponent == 0 {
|
||||
(bits & 0xfffffffffffff) << 1
|
||||
} else {
|
||||
(bits & 0xfffffffffffff) | 0x10000000000000
|
||||
};
|
||||
// Exponent bias + mantissa shift
|
||||
exponent -= 1023 + 52;
|
||||
(mantissa, exponent, sign)
|
||||
}
|
||||
|
||||
fn classify(self) -> FpCategory {
|
||||
self.classify()
|
||||
}
|
||||
}
|
89
library/core/src/num/dec2flt/fpu.rs
Normal file
89
library/core/src/num/dec2flt/fpu.rs
Normal file
|
@ -0,0 +1,89 @@
|
|||
//! Platform-specific, assembly instructions to avoid
|
||||
//! intermediate rounding on architectures with FPUs.
|
||||
|
||||
pub use fpu_precision::set_precision;
|
||||
|
||||
// On x86, the x87 FPU is used for float operations if the SSE/SSE2 extensions are not available.
|
||||
// The x87 FPU operates with 80 bits of precision by default, which means that operations will
|
||||
// round to 80 bits causing double rounding to happen when values are eventually represented as
|
||||
// 32/64 bit float values. To overcome this, the FPU control word can be set so that the
|
||||
// computations are performed in the desired precision.
|
||||
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
|
||||
mod fpu_precision {
|
||||
use core::mem::size_of;
|
||||
|
||||
/// A structure used to preserve the original value of the FPU control word, so that it can be
|
||||
/// restored when the structure is dropped.
|
||||
///
|
||||
/// The x87 FPU is a 16-bits register whose fields are as follows:
|
||||
///
|
||||
/// | 12-15 | 10-11 | 8-9 | 6-7 | 5 | 4 | 3 | 2 | 1 | 0 |
|
||||
/// |------:|------:|----:|----:|---:|---:|---:|---:|---:|---:|
|
||||
/// | | RC | PC | | PM | UM | OM | ZM | DM | IM |
|
||||
///
|
||||
/// The documentation for all of the fields is available in the IA-32 Architectures Software
|
||||
/// Developer's Manual (Volume 1).
|
||||
///
|
||||
/// The only field which is relevant for the following code is PC, Precision Control. This
|
||||
/// field determines the precision of the operations performed by the FPU. It can be set to:
|
||||
/// - 0b00, single precision i.e., 32-bits
|
||||
/// - 0b10, double precision i.e., 64-bits
|
||||
/// - 0b11, double extended precision i.e., 80-bits (default state)
|
||||
/// The 0b01 value is reserved and should not be used.
|
||||
pub struct FPUControlWord(u16);
|
||||
|
||||
fn set_cw(cw: u16) {
|
||||
// SAFETY: the `fldcw` instruction has been audited to be able to work correctly with
|
||||
// any `u16`
|
||||
unsafe {
|
||||
asm!(
|
||||
"fldcw word ptr [{}]",
|
||||
in(reg) &cw,
|
||||
options(nostack),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Sets the precision field of the FPU to `T` and returns a `FPUControlWord`.
|
||||
pub fn set_precision<T>() -> FPUControlWord {
|
||||
let mut cw = 0_u16;
|
||||
|
||||
// Compute the value for the Precision Control field that is appropriate for `T`.
|
||||
let cw_precision = match size_of::<T>() {
|
||||
4 => 0x0000, // 32 bits
|
||||
8 => 0x0200, // 64 bits
|
||||
_ => 0x0300, // default, 80 bits
|
||||
};
|
||||
|
||||
// Get the original value of the control word to restore it later, when the
|
||||
// `FPUControlWord` structure is dropped
|
||||
// SAFETY: the `fnstcw` instruction has been audited to be able to work correctly with
|
||||
// any `u16`
|
||||
unsafe {
|
||||
asm!(
|
||||
"fnstcw word ptr [{}]",
|
||||
in(reg) &mut cw,
|
||||
options(nostack),
|
||||
)
|
||||
}
|
||||
|
||||
// Set the control word to the desired precision. This is achieved by masking away the old
|
||||
// precision (bits 8 and 9, 0x300) and replacing it with the precision flag computed above.
|
||||
set_cw((cw & 0xFCFF) | cw_precision);
|
||||
|
||||
FPUControlWord(cw)
|
||||
}
|
||||
|
||||
impl Drop for FPUControlWord {
|
||||
fn drop(&mut self) {
|
||||
set_cw(self.0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// In most architectures, floating point operations have an explicit bit size, therefore the
|
||||
// precision of the computation is determined on a per-operation basis.
|
||||
#[cfg(any(not(target_arch = "x86"), target_feature = "sse2"))]
|
||||
mod fpu_precision {
|
||||
pub fn set_precision<T>() {}
|
||||
}
|
166
library/core/src/num/dec2flt/lemire.rs
Normal file
166
library/core/src/num/dec2flt/lemire.rs
Normal file
|
@ -0,0 +1,166 @@
|
|||
//! Implementation of the Eisel-Lemire algorithm.
|
||||
|
||||
use crate::num::dec2flt::common::BiasedFp;
|
||||
use crate::num::dec2flt::float::RawFloat;
|
||||
use crate::num::dec2flt::table::{
|
||||
LARGEST_POWER_OF_FIVE, POWER_OF_FIVE_128, SMALLEST_POWER_OF_FIVE,
|
||||
};
|
||||
|
||||
/// Compute a float using an extended-precision representation.
|
||||
///
|
||||
/// Fast conversion of a the significant digits and decimal exponent
|
||||
/// a float to a extended representation with a binary float. This
|
||||
/// algorithm will accurately parse the vast majority of cases,
|
||||
/// and uses a 128-bit representation (with a fallback 192-bit
|
||||
/// representation).
|
||||
///
|
||||
/// This algorithm scales the exponent by the decimal exponent
|
||||
/// using pre-computed powers-of-5, and calculates if the
|
||||
/// representation can be unambiguously rounded to the nearest
|
||||
/// machine float. Near-halfway cases are not handled here,
|
||||
/// and are represented by a negative, biased binary exponent.
|
||||
///
|
||||
/// The algorithm is described in detail in "Daniel Lemire, Number Parsing
|
||||
/// at a Gigabyte per Second" in section 5, "Fast Algorithm", and
|
||||
/// section 6, "Exact Numbers And Ties", available online:
|
||||
/// <https://arxiv.org/abs/2101.11408.pdf>.
|
||||
pub fn compute_float<F: RawFloat>(q: i64, mut w: u64) -> BiasedFp {
|
||||
let fp_zero = BiasedFp::zero_pow2(0);
|
||||
let fp_inf = BiasedFp::zero_pow2(F::INFINITE_POWER);
|
||||
let fp_error = BiasedFp::zero_pow2(-1);
|
||||
|
||||
// Short-circuit if the value can only be a literal 0 or infinity.
|
||||
if w == 0 || q < F::SMALLEST_POWER_OF_TEN as i64 {
|
||||
return fp_zero;
|
||||
} else if q > F::LARGEST_POWER_OF_TEN as i64 {
|
||||
return fp_inf;
|
||||
}
|
||||
// Normalize our significant digits, so the most-significant bit is set.
|
||||
let lz = w.leading_zeros();
|
||||
w <<= lz;
|
||||
let (lo, hi) = compute_product_approx(q, w, F::MANTISSA_EXPLICIT_BITS + 3);
|
||||
if lo == 0xFFFF_FFFF_FFFF_FFFF {
|
||||
// If we have failed to approximate w x 5^-q with our 128-bit value.
|
||||
// Since the addition of 1 could lead to an overflow which could then
|
||||
// round up over the half-way point, this can lead to improper rounding
|
||||
// of a float.
|
||||
//
|
||||
// However, this can only occur if q ∈ [-27, 55]. The upper bound of q
|
||||
// is 55 because 5^55 < 2^128, however, this can only happen if 5^q > 2^64,
|
||||
// since otherwise the product can be represented in 64-bits, producing
|
||||
// an exact result. For negative exponents, rounding-to-even can
|
||||
// only occur if 5^-q < 2^64.
|
||||
//
|
||||
// For detailed explanations of rounding for negative exponents, see
|
||||
// <https://arxiv.org/pdf/2101.11408.pdf#section.9.1>. For detailed
|
||||
// explanations of rounding for positive exponents, see
|
||||
// <https://arxiv.org/pdf/2101.11408.pdf#section.8>.
|
||||
let inside_safe_exponent = (q >= -27) && (q <= 55);
|
||||
if !inside_safe_exponent {
|
||||
return fp_error;
|
||||
}
|
||||
}
|
||||
let upperbit = (hi >> 63) as i32;
|
||||
let mut mantissa = hi >> (upperbit + 64 - F::MANTISSA_EXPLICIT_BITS as i32 - 3);
|
||||
let mut power2 = power(q as i32) + upperbit - lz as i32 - F::MINIMUM_EXPONENT;
|
||||
if power2 <= 0 {
|
||||
if -power2 + 1 >= 64 {
|
||||
// Have more than 64 bits below the minimum exponent, must be 0.
|
||||
return fp_zero;
|
||||
}
|
||||
// Have a subnormal value.
|
||||
mantissa >>= -power2 + 1;
|
||||
mantissa += mantissa & 1;
|
||||
mantissa >>= 1;
|
||||
power2 = (mantissa >= (1_u64 << F::MANTISSA_EXPLICIT_BITS)) as i32;
|
||||
return BiasedFp { f: mantissa, e: power2 };
|
||||
}
|
||||
// Need to handle rounding ties. Normally, we need to round up,
|
||||
// but if we fall right in between and and we have an even basis, we
|
||||
// need to round down.
|
||||
//
|
||||
// This will only occur if:
|
||||
// 1. The lower 64 bits of the 128-bit representation is 0.
|
||||
// IE, 5^q fits in single 64-bit word.
|
||||
// 2. The least-significant bit prior to truncated mantissa is odd.
|
||||
// 3. All the bits truncated when shifting to mantissa bits + 1 are 0.
|
||||
//
|
||||
// Or, we may fall between two floats: we are exactly halfway.
|
||||
if lo <= 1
|
||||
&& q >= F::MIN_EXPONENT_ROUND_TO_EVEN as i64
|
||||
&& q <= F::MAX_EXPONENT_ROUND_TO_EVEN as i64
|
||||
&& mantissa & 3 == 1
|
||||
&& (mantissa << (upperbit + 64 - F::MANTISSA_EXPLICIT_BITS as i32 - 3)) == hi
|
||||
{
|
||||
// Zero the lowest bit, so we don't round up.
|
||||
mantissa &= !1_u64;
|
||||
}
|
||||
// Round-to-even, then shift the significant digits into place.
|
||||
mantissa += mantissa & 1;
|
||||
mantissa >>= 1;
|
||||
if mantissa >= (2_u64 << F::MANTISSA_EXPLICIT_BITS) {
|
||||
// Rounding up overflowed, so the carry bit is set. Set the
|
||||
// mantissa to 1 (only the implicit, hidden bit is set) and
|
||||
// increase the exponent.
|
||||
mantissa = 1_u64 << F::MANTISSA_EXPLICIT_BITS;
|
||||
power2 += 1;
|
||||
}
|
||||
// Zero out the hidden bit.
|
||||
mantissa &= !(1_u64 << F::MANTISSA_EXPLICIT_BITS);
|
||||
if power2 >= F::INFINITE_POWER {
|
||||
// Exponent is above largest normal value, must be infinite.
|
||||
return fp_inf;
|
||||
}
|
||||
BiasedFp { f: mantissa, e: power2 }
|
||||
}
|
||||
|
||||
/// Calculate a base 2 exponent from a decimal exponent.
|
||||
/// This uses a pre-computed integer approximation for
|
||||
/// log2(10), where 217706 / 2^16 is accurate for the
|
||||
/// entire range of non-finite decimal exponents.
|
||||
fn power(q: i32) -> i32 {
|
||||
(q.wrapping_mul(152_170 + 65536) >> 16) + 63
|
||||
}
|
||||
|
||||
fn full_multiplication(a: u64, b: u64) -> (u64, u64) {
|
||||
let r = (a as u128) * (b as u128);
|
||||
(r as u64, (r >> 64) as u64)
|
||||
}
|
||||
|
||||
// This will compute or rather approximate w * 5**q and return a pair of 64-bit words
|
||||
// approximating the result, with the "high" part corresponding to the most significant
|
||||
// bits and the low part corresponding to the least significant bits.
|
||||
fn compute_product_approx(q: i64, w: u64, precision: usize) -> (u64, u64) {
|
||||
debug_assert!(q >= SMALLEST_POWER_OF_FIVE as i64);
|
||||
debug_assert!(q <= LARGEST_POWER_OF_FIVE as i64);
|
||||
debug_assert!(precision <= 64);
|
||||
|
||||
let mask = if precision < 64 {
|
||||
0xFFFF_FFFF_FFFF_FFFF_u64 >> precision
|
||||
} else {
|
||||
0xFFFF_FFFF_FFFF_FFFF_u64
|
||||
};
|
||||
|
||||
// 5^q < 2^64, then the multiplication always provides an exact value.
|
||||
// That means whenever we need to round ties to even, we always have
|
||||
// an exact value.
|
||||
let index = (q - SMALLEST_POWER_OF_FIVE as i64) as usize;
|
||||
let (lo5, hi5) = POWER_OF_FIVE_128[index];
|
||||
// Only need one multiplication as long as there is 1 zero but
|
||||
// in the explicit mantissa bits, +1 for the hidden bit, +1 to
|
||||
// determine the rounding direction, +1 for if the computed
|
||||
// product has a leading zero.
|
||||
let (mut first_lo, mut first_hi) = full_multiplication(w, lo5);
|
||||
if first_hi & mask == mask {
|
||||
// Need to do a second multiplication to get better precision
|
||||
// for the lower product. This will always be exact
|
||||
// where q is < 55, since 5^55 < 2^128. If this wraps,
|
||||
// then we need to need to round up the hi product.
|
||||
let (_, second_hi) = full_multiplication(w, hi5);
|
||||
first_lo = first_lo.wrapping_add(second_hi);
|
||||
if second_hi > first_lo {
|
||||
first_hi += 1;
|
||||
}
|
||||
}
|
||||
(first_lo, first_hi)
|
||||
}
|
|
@ -27,20 +27,12 @@
|
|||
//!
|
||||
//! We then try a long chain of progressively more general and expensive special cases using
|
||||
//! machine-sized integers and small, fixed-sized floating point numbers (first `f32`/`f64`, then
|
||||
//! a type with 64 bit significand, `Fp`). When all these fail, we bite the bullet and resort to a
|
||||
//! simple but very slow algorithm that involved computing `f * 10^e` fully and doing an iterative
|
||||
//! search for the best approximation.
|
||||
//!
|
||||
//! Primarily, this module and its children implement the algorithms described in:
|
||||
//! "How to Read Floating Point Numbers Accurately" by William D. Clinger,
|
||||
//! available online: <https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4152>
|
||||
//!
|
||||
//! In addition, there are numerous helper functions that are used in the paper but not available
|
||||
//! in Rust (or at least in core). Our version is additionally complicated by the need to handle
|
||||
//! overflow and underflow and the desire to handle subnormal numbers. Bellerophon and
|
||||
//! Algorithm R have trouble with overflow, subnormals, and underflow. We conservatively switch to
|
||||
//! Algorithm M (with the modifications described in section 8 of the paper) well before the
|
||||
//! inputs get into the critical region.
|
||||
//! a type with 64 bit significand). The extended-precision algorithm
|
||||
//! uses the Eisel-Lemire algorithm, which uses a 128-bit (or 192-bit)
|
||||
//! representation that can accurately and quickly compute the vast majority
|
||||
//! of floats. When all these fail, we bite the bullet and resort to using
|
||||
//! a large-decimal representation, shifting the digits into range, calculating
|
||||
//! the upper significant bits and exactly round to the nearest representation.
|
||||
//!
|
||||
//! Another aspect that needs attention is the ``RawFloat`` trait by which almost all functions
|
||||
//! are parametrized. One might think that it's enough to parse to `f64` and cast the result to
|
||||
|
@ -54,10 +46,9 @@
|
|||
//! operations as well, if you want 0.5 ULP accuracy you need to do *everything* in full precision
|
||||
//! and round *exactly once, at the end*, by considering all truncated bits at once.
|
||||
//!
|
||||
//! FIXME: Although some code duplication is necessary, perhaps parts of the code could be shuffled
|
||||
//! around such that less code is duplicated. Large parts of the algorithms are independent of the
|
||||
//! float type to output, or only needs access to a few constants, which could be passed in as
|
||||
//! parameters.
|
||||
//! Primarily, this module and its children implement the algorithms described in:
|
||||
//! "Number Parsing at a Gigabyte per Second", available online:
|
||||
//! <https://arxiv.org/abs/2101.11408>.
|
||||
//!
|
||||
//! # Other
|
||||
//!
|
||||
|
@ -87,16 +78,22 @@
|
|||
use crate::fmt;
|
||||
use crate::str::FromStr;
|
||||
|
||||
use self::num::digits_to_big;
|
||||
use self::parse::{parse_decimal, Decimal, ParseResult, Sign};
|
||||
use self::rawfp::RawFloat;
|
||||
use self::common::{BiasedFp, ByteSlice};
|
||||
use self::float::RawFloat;
|
||||
use self::lemire::compute_float;
|
||||
use self::parse::{parse_inf_nan, parse_number};
|
||||
use self::slow::parse_long_mantissa;
|
||||
|
||||
mod algorithm;
|
||||
mod num;
|
||||
mod common;
|
||||
mod decimal;
|
||||
mod fpu;
|
||||
mod slow;
|
||||
mod table;
|
||||
// These two have their own tests.
|
||||
// float is used in flt2dec, and all are used in unit tests.
|
||||
pub mod float;
|
||||
pub mod lemire;
|
||||
pub mod number;
|
||||
pub mod parse;
|
||||
pub mod rawfp;
|
||||
|
||||
macro_rules! from_str_float_impl {
|
||||
($t:ty) => {
|
||||
|
@ -136,13 +133,6 @@ macro_rules! from_str_float_impl {
|
|||
///
|
||||
/// [EBNF]: https://www.w3.org/TR/REC-xml/#sec-notation
|
||||
///
|
||||
/// # Known bugs
|
||||
///
|
||||
/// In some situations, some strings that should create a valid float
|
||||
/// instead return an error. See [issue #31407] for details.
|
||||
///
|
||||
/// [issue #31407]: https://github.com/rust-lang/rust/issues/31407
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * src - A string
|
||||
|
@ -211,148 +201,70 @@ impl fmt::Display for ParseFloatError {
|
|||
}
|
||||
}
|
||||
|
||||
fn pfe_empty() -> ParseFloatError {
|
||||
pub(super) fn pfe_empty() -> ParseFloatError {
|
||||
ParseFloatError { kind: FloatErrorKind::Empty }
|
||||
}
|
||||
|
||||
fn pfe_invalid() -> ParseFloatError {
|
||||
// Used in unit tests, keep public.
|
||||
// This is much better than making FloatErrorKind and ParseFloatError::kind public.
|
||||
pub fn pfe_invalid() -> ParseFloatError {
|
||||
ParseFloatError { kind: FloatErrorKind::Invalid }
|
||||
}
|
||||
|
||||
/// Splits a decimal string into sign and the rest, without inspecting or validating the rest.
|
||||
fn extract_sign(s: &str) -> (Sign, &str) {
|
||||
match s.as_bytes()[0] {
|
||||
b'+' => (Sign::Positive, &s[1..]),
|
||||
b'-' => (Sign::Negative, &s[1..]),
|
||||
// If the string is invalid, we never use the sign, so we don't need to validate here.
|
||||
_ => (Sign::Positive, s),
|
||||
}
|
||||
/// Converts a `BiasedFp` to the closest machine float type.
|
||||
fn biased_fp_to_float<T: RawFloat>(x: BiasedFp) -> T {
|
||||
let mut word = x.f;
|
||||
word |= (x.e as u64) << T::MANTISSA_EXPLICIT_BITS;
|
||||
T::from_u64_bits(word)
|
||||
}
|
||||
|
||||
/// Converts a decimal string into a floating point number.
|
||||
fn dec2flt<T: RawFloat>(s: &str) -> Result<T, ParseFloatError> {
|
||||
if s.is_empty() {
|
||||
pub fn dec2flt<F: RawFloat>(s: &str) -> Result<F, ParseFloatError> {
|
||||
let mut s = s.as_bytes();
|
||||
let c = if let Some(&c) = s.first() {
|
||||
c
|
||||
} else {
|
||||
return Err(pfe_empty());
|
||||
};
|
||||
let negative = c == b'-';
|
||||
if c == b'-' || c == b'+' {
|
||||
s = s.advance(1);
|
||||
}
|
||||
let (sign, s) = extract_sign(s);
|
||||
let flt = match parse_decimal(s) {
|
||||
ParseResult::Valid(decimal) => convert(decimal)?,
|
||||
ParseResult::ShortcutToInf => T::INFINITY,
|
||||
ParseResult::ShortcutToZero => T::ZERO,
|
||||
ParseResult::Invalid => {
|
||||
if s.eq_ignore_ascii_case("nan") {
|
||||
T::NAN
|
||||
} else if s.eq_ignore_ascii_case("inf") || s.eq_ignore_ascii_case("infinity") {
|
||||
T::INFINITY
|
||||
if s.is_empty() {
|
||||
return Err(pfe_invalid());
|
||||
}
|
||||
|
||||
let num = match parse_number(s, negative) {
|
||||
Some(r) => r,
|
||||
None => {
|
||||
if let Some(value) = parse_inf_nan(s, negative) {
|
||||
return Ok(value);
|
||||
} else {
|
||||
return Err(pfe_invalid());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
match sign {
|
||||
Sign::Positive => Ok(flt),
|
||||
Sign::Negative => Ok(-flt),
|
||||
if let Some(value) = num.try_fast_path::<F>() {
|
||||
return Ok(value);
|
||||
}
|
||||
}
|
||||
|
||||
/// The main workhorse for the decimal-to-float conversion: Orchestrate all the preprocessing
|
||||
/// and figure out which algorithm should do the actual conversion.
|
||||
fn convert<T: RawFloat>(mut decimal: Decimal<'_>) -> Result<T, ParseFloatError> {
|
||||
simplify(&mut decimal);
|
||||
if let Some(x) = trivial_cases(&decimal) {
|
||||
return Ok(x);
|
||||
}
|
||||
// Remove/shift out the decimal point.
|
||||
let e = decimal.exp - decimal.fractional.len() as i64;
|
||||
if let Some(x) = algorithm::fast_path(decimal.integral, decimal.fractional, e) {
|
||||
return Ok(x);
|
||||
}
|
||||
// Big32x40 is limited to 1280 bits, which translates to about 385 decimal digits.
|
||||
// If we exceed this, we'll crash, so we error out before getting too close (within 10^10).
|
||||
let upper_bound = bound_intermediate_digits(&decimal, e);
|
||||
if upper_bound > 375 {
|
||||
return Err(pfe_invalid());
|
||||
}
|
||||
let f = digits_to_big(decimal.integral, decimal.fractional);
|
||||
|
||||
// Now the exponent certainly fits in 16 bit, which is used throughout the main algorithms.
|
||||
let e = e as i16;
|
||||
// FIXME These bounds are rather conservative. A more careful analysis of the failure modes
|
||||
// of Bellerophon could allow using it in more cases for a massive speed up.
|
||||
let exponent_in_range = table::MIN_E <= e && e <= table::MAX_E;
|
||||
let value_in_range = upper_bound <= T::MAX_NORMAL_DIGITS as u64;
|
||||
if exponent_in_range && value_in_range {
|
||||
Ok(algorithm::bellerophon(&f, e))
|
||||
} else {
|
||||
Ok(algorithm::algorithm_m(&f, e))
|
||||
}
|
||||
}
|
||||
|
||||
// As written, this optimizes badly (see #27130, though it refers to an old version of the code).
|
||||
// `inline(always)` is a workaround for that. There are only two call sites overall and it doesn't
|
||||
// make code size worse.
|
||||
|
||||
/// Strip zeros where possible, even when this requires changing the exponent
|
||||
#[inline(always)]
|
||||
fn simplify(decimal: &mut Decimal<'_>) {
|
||||
let is_zero = &|&&d: &&u8| -> bool { d == b'0' };
|
||||
// Trimming these zeros does not change anything but may enable the fast path (< 15 digits).
|
||||
let leading_zeros = decimal.integral.iter().take_while(is_zero).count();
|
||||
decimal.integral = &decimal.integral[leading_zeros..];
|
||||
let trailing_zeros = decimal.fractional.iter().rev().take_while(is_zero).count();
|
||||
let end = decimal.fractional.len() - trailing_zeros;
|
||||
decimal.fractional = &decimal.fractional[..end];
|
||||
// Simplify numbers of the form 0.0...x and x...0.0, adjusting the exponent accordingly.
|
||||
// This may not always be a win (possibly pushes some numbers out of the fast path), but it
|
||||
// simplifies other parts significantly (notably, approximating the magnitude of the value).
|
||||
if decimal.integral.is_empty() {
|
||||
let leading_zeros = decimal.fractional.iter().take_while(is_zero).count();
|
||||
decimal.fractional = &decimal.fractional[leading_zeros..];
|
||||
decimal.exp -= leading_zeros as i64;
|
||||
} else if decimal.fractional.is_empty() {
|
||||
let trailing_zeros = decimal.integral.iter().rev().take_while(is_zero).count();
|
||||
let end = decimal.integral.len() - trailing_zeros;
|
||||
decimal.integral = &decimal.integral[..end];
|
||||
decimal.exp += trailing_zeros as i64;
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a quick-an-dirty upper bound on the size (log10) of the largest value that Algorithm R
|
||||
/// and Algorithm M will compute while working on the given decimal.
|
||||
fn bound_intermediate_digits(decimal: &Decimal<'_>, e: i64) -> u64 {
|
||||
// We don't need to worry too much about overflow here thanks to trivial_cases() and the
|
||||
// parser, which filter out the most extreme inputs for us.
|
||||
let f_len: u64 = decimal.integral.len() as u64 + decimal.fractional.len() as u64;
|
||||
if e >= 0 {
|
||||
// In the case e >= 0, both algorithms compute about `f * 10^e`. Algorithm R proceeds to
|
||||
// do some complicated calculations with this but we can ignore that for the upper bound
|
||||
// because it also reduces the fraction beforehand, so we have plenty of buffer there.
|
||||
f_len + (e as u64)
|
||||
} else {
|
||||
// If e < 0, Algorithm R does roughly the same thing, but Algorithm M differs:
|
||||
// It tries to find a positive number k such that `f << k / 10^e` is an in-range
|
||||
// significand. This will result in about `2^53 * f * 10^e` < `10^17 * f * 10^e`.
|
||||
// One input that triggers this is 0.33...33 (375 x 3).
|
||||
f_len + e.unsigned_abs() + 17
|
||||
}
|
||||
}
|
||||
|
||||
/// Detects obvious overflows and underflows without even looking at the decimal digits.
|
||||
fn trivial_cases<T: RawFloat>(decimal: &Decimal<'_>) -> Option<T> {
|
||||
// There were zeros but they were stripped by simplify()
|
||||
if decimal.integral.is_empty() && decimal.fractional.is_empty() {
|
||||
return Some(T::ZERO);
|
||||
}
|
||||
// This is a crude approximation of ceil(log10(the real value)). We don't need to worry too
|
||||
// much about overflow here because the input length is tiny (at least compared to 2^64) and
|
||||
// the parser already handles exponents whose absolute value is greater than 10^18
|
||||
// (which is still 10^19 short of 2^64).
|
||||
let max_place = decimal.exp + decimal.integral.len() as i64;
|
||||
if max_place > T::INF_CUTOFF {
|
||||
return Some(T::INFINITY);
|
||||
} else if max_place < T::ZERO_CUTOFF {
|
||||
return Some(T::ZERO);
|
||||
}
|
||||
None
|
||||
|
||||
// If significant digits were truncated, then we can have rounding error
|
||||
// only if `mantissa + 1` produces a different result. We also avoid
|
||||
// redundantly using the Eisel-Lemire algorithm if it was unable to
|
||||
// correctly round on the first pass.
|
||||
let mut fp = compute_float::<F>(num.exponent, num.mantissa);
|
||||
if num.many_digits && fp.e >= 0 && fp != compute_float::<F>(num.exponent, num.mantissa + 1) {
|
||||
fp.e = -1;
|
||||
}
|
||||
// Unable to correctly round the float using the Eisel-Lemire algorithm.
|
||||
// Fallback to a slower, but always correct algorithm.
|
||||
if fp.e < 0 {
|
||||
fp = parse_long_mantissa::<F>(s);
|
||||
}
|
||||
|
||||
let mut float = biased_fp_to_float::<F>(fp);
|
||||
if num.negative {
|
||||
float = -float;
|
||||
}
|
||||
Ok(float)
|
||||
}
|
||||
|
|
|
@ -1,81 +0,0 @@
|
|||
//! Utility functions for bignums that don't make too much sense to turn into methods.
|
||||
|
||||
// FIXME This module's name is a bit unfortunate, since other modules also import `core::num`.
|
||||
|
||||
use crate::cmp::Ordering::{self, Equal, Greater, Less};
|
||||
|
||||
pub use crate::num::bignum::Big32x40 as Big;
|
||||
|
||||
/// Test whether truncating all bits less significant than `ones_place` introduces
|
||||
/// a relative error less, equal, or greater than 0.5 ULP.
|
||||
pub fn compare_with_half_ulp(f: &Big, ones_place: usize) -> Ordering {
|
||||
if ones_place == 0 {
|
||||
return Less;
|
||||
}
|
||||
let half_bit = ones_place - 1;
|
||||
if f.get_bit(half_bit) == 0 {
|
||||
// < 0.5 ULP
|
||||
return Less;
|
||||
}
|
||||
// If all remaining bits are zero, it's = 0.5 ULP, otherwise > 0.5
|
||||
// If there are no more bits (half_bit == 0), the below also correctly returns Equal.
|
||||
for i in 0..half_bit {
|
||||
if f.get_bit(i) == 1 {
|
||||
return Greater;
|
||||
}
|
||||
}
|
||||
Equal
|
||||
}
|
||||
|
||||
/// Converts an ASCII string containing only decimal digits to a `u64`.
|
||||
///
|
||||
/// Does not perform checks for overflow or invalid characters, so if the caller is not careful,
|
||||
/// the result is bogus and can panic (though it won't be `unsafe`). Additionally, empty strings
|
||||
/// are treated as zero. This function exists because
|
||||
///
|
||||
/// 1. using `FromStr` on `&[u8]` requires `from_utf8_unchecked`, which is bad, and
|
||||
/// 2. piecing together the results of `integral.parse()` and `fractional.parse()` is
|
||||
/// more complicated than this entire function.
|
||||
pub fn from_str_unchecked<'a, T>(bytes: T) -> u64
|
||||
where
|
||||
T: IntoIterator<Item = &'a u8>,
|
||||
{
|
||||
let mut result = 0;
|
||||
for &c in bytes {
|
||||
result = result * 10 + (c - b'0') as u64;
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
/// Converts a string of ASCII digits into a bignum.
|
||||
///
|
||||
/// Like `from_str_unchecked`, this function relies on the parser to weed out non-digits.
|
||||
pub fn digits_to_big(integral: &[u8], fractional: &[u8]) -> Big {
|
||||
let mut f = Big::from_small(0);
|
||||
for &c in integral.iter().chain(fractional) {
|
||||
let n = (c - b'0') as u32;
|
||||
f.mul_small(10);
|
||||
f.add_small(n);
|
||||
}
|
||||
f
|
||||
}
|
||||
|
||||
/// Unwraps a bignum into a 64 bit integer. Panics if the number is too large.
|
||||
pub fn to_u64(x: &Big) -> u64 {
|
||||
assert!(x.bit_length() < 64);
|
||||
let d = x.digits();
|
||||
if d.len() < 2 { d[0] as u64 } else { (d[1] as u64) << 32 | d[0] as u64 }
|
||||
}
|
||||
|
||||
/// Extracts a range of bits.
|
||||
|
||||
/// Index 0 is the least significant bit and the range is half-open as usual.
|
||||
/// Panics if asked to extract more bits than fit into the return type.
|
||||
pub fn get_bits(x: &Big, start: usize, end: usize) -> u64 {
|
||||
assert!(end - start <= 64);
|
||||
let mut result: u64 = 0;
|
||||
for i in (start..end).rev() {
|
||||
result = result << 1 | x.get_bit(i) as u64;
|
||||
}
|
||||
result
|
||||
}
|
86
library/core/src/num/dec2flt/number.rs
Normal file
86
library/core/src/num/dec2flt/number.rs
Normal file
|
@ -0,0 +1,86 @@
|
|||
//! Representation of a float as the significant digits and exponent.
|
||||
|
||||
use crate::num::dec2flt::float::RawFloat;
|
||||
use crate::num::dec2flt::fpu::set_precision;
|
||||
|
||||
#[rustfmt::skip]
|
||||
const INT_POW10: [u64; 16] = [
|
||||
1,
|
||||
10,
|
||||
100,
|
||||
1000,
|
||||
10000,
|
||||
100000,
|
||||
1000000,
|
||||
10000000,
|
||||
100000000,
|
||||
1000000000,
|
||||
10000000000,
|
||||
100000000000,
|
||||
1000000000000,
|
||||
10000000000000,
|
||||
100000000000000,
|
||||
1000000000000000,
|
||||
];
|
||||
|
||||
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
|
||||
pub struct Number {
|
||||
pub exponent: i64,
|
||||
pub mantissa: u64,
|
||||
pub negative: bool,
|
||||
pub many_digits: bool,
|
||||
}
|
||||
|
||||
impl Number {
|
||||
/// Detect if the float can be accurately reconstructed from native floats.
|
||||
fn is_fast_path<F: RawFloat>(&self) -> bool {
|
||||
F::MIN_EXPONENT_FAST_PATH <= self.exponent
|
||||
&& self.exponent <= F::MAX_EXPONENT_DISGUISED_FAST_PATH
|
||||
&& self.mantissa <= F::MAX_MANTISSA_FAST_PATH
|
||||
&& !self.many_digits
|
||||
}
|
||||
|
||||
/// The fast path algorithmn using machine-sized integers and floats.
|
||||
///
|
||||
/// This is extracted into a separate function so that it can be attempted before constructing
|
||||
/// a Decimal. This only works if both the mantissa and the exponent
|
||||
/// can be exactly represented as a machine float, since IEE-754 guarantees
|
||||
/// no rounding will occur.
|
||||
///
|
||||
/// There is an exception: disguised fast-path cases, where we can shift
|
||||
/// powers-of-10 from the exponent to the significant digits.
|
||||
pub fn try_fast_path<F: RawFloat>(&self) -> Option<F> {
|
||||
// The fast path crucially depends on arithmetic being rounded to the correct number of bits
|
||||
// without any intermediate rounding. On x86 (without SSE or SSE2) this requires the precision
|
||||
// of the x87 FPU stack to be changed so that it directly rounds to 64/32 bit.
|
||||
// The `set_precision` function takes care of setting the precision on architectures which
|
||||
// require setting it by changing the global state (like the control word of the x87 FPU).
|
||||
let _cw = set_precision::<F>();
|
||||
|
||||
if self.is_fast_path::<F>() {
|
||||
let mut value = if self.exponent <= F::MAX_EXPONENT_FAST_PATH {
|
||||
// normal fast path
|
||||
let value = F::from_u64(self.mantissa);
|
||||
if self.exponent < 0 {
|
||||
value / F::pow10_fast_path((-self.exponent) as _)
|
||||
} else {
|
||||
value * F::pow10_fast_path(self.exponent as _)
|
||||
}
|
||||
} else {
|
||||
// disguised fast path
|
||||
let shift = self.exponent - F::MAX_EXPONENT_FAST_PATH;
|
||||
let mantissa = self.mantissa.checked_mul(INT_POW10[shift as usize])?;
|
||||
if mantissa > F::MAX_MANTISSA_FAST_PATH {
|
||||
return None;
|
||||
}
|
||||
F::from_u64(mantissa) * F::pow10_fast_path(F::MAX_EXPONENT_FAST_PATH as _)
|
||||
};
|
||||
if self.negative {
|
||||
value = -value;
|
||||
}
|
||||
Some(value)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,121 +1,233 @@
|
|||
//! Validating and decomposing a decimal string of the form:
|
||||
//!
|
||||
//! `(digits | digits? '.'? digits?) (('e' | 'E') ('+' | '-')? digits)?`
|
||||
//!
|
||||
//! In other words, standard floating-point syntax, with two exceptions: No sign, and no
|
||||
//! handling of "inf" and "NaN". These are handled by the driver function (super::dec2flt).
|
||||
//!
|
||||
//! Although recognizing valid inputs is relatively easy, this module also has to reject the
|
||||
//! countless invalid variations, never panic, and perform numerous checks that the other
|
||||
//! modules rely on to not panic (or overflow) in turn.
|
||||
//! To make matters worse, all that happens in a single pass over the input.
|
||||
//! So, be careful when modifying anything, and double-check with the other modules.
|
||||
use self::ParseResult::{Invalid, ShortcutToInf, ShortcutToZero, Valid};
|
||||
use super::num;
|
||||
//! Functions to parse floating-point numbers.
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum Sign {
|
||||
Positive,
|
||||
Negative,
|
||||
use crate::num::dec2flt::common::{is_8digits, AsciiStr, ByteSlice};
|
||||
use crate::num::dec2flt::float::RawFloat;
|
||||
use crate::num::dec2flt::number::Number;
|
||||
|
||||
const MIN_19DIGIT_INT: u64 = 100_0000_0000_0000_0000;
|
||||
|
||||
/// Parse 8 digits, loaded as bytes in little-endian order.
|
||||
///
|
||||
/// This uses the trick where every digit is in [0x030, 0x39],
|
||||
/// and therefore can be parsed in 3 multiplications, much
|
||||
/// faster than the normal 8.
|
||||
///
|
||||
/// This is based off the algorithm described in "Fast numeric string to
|
||||
/// int", available here: <https://johnnylee-sde.github.io/Fast-numeric-string-to-int/>.
|
||||
fn parse_8digits(mut v: u64) -> u64 {
|
||||
const MASK: u64 = 0x0000_00FF_0000_00FF;
|
||||
const MUL1: u64 = 0x000F_4240_0000_0064;
|
||||
const MUL2: u64 = 0x0000_2710_0000_0001;
|
||||
v -= 0x3030_3030_3030_3030;
|
||||
v = (v * 10) + (v >> 8); // will not overflow, fits in 63 bits
|
||||
let v1 = (v & MASK).wrapping_mul(MUL1);
|
||||
let v2 = ((v >> 16) & MASK).wrapping_mul(MUL2);
|
||||
((v1.wrapping_add(v2) >> 32) as u32) as u64
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
/// The interesting parts of a decimal string.
|
||||
pub struct Decimal<'a> {
|
||||
pub integral: &'a [u8],
|
||||
pub fractional: &'a [u8],
|
||||
/// The decimal exponent, guaranteed to have fewer than 18 decimal digits.
|
||||
pub exp: i64,
|
||||
/// Parse digits until a non-digit character is found.
|
||||
fn try_parse_digits(s: &mut AsciiStr<'_>, x: &mut u64) {
|
||||
// may cause overflows, to be handled later
|
||||
s.parse_digits(|digit| {
|
||||
*x = x.wrapping_mul(10).wrapping_add(digit as _);
|
||||
});
|
||||
}
|
||||
|
||||
impl<'a> Decimal<'a> {
|
||||
pub fn new(integral: &'a [u8], fractional: &'a [u8], exp: i64) -> Decimal<'a> {
|
||||
Decimal { integral, fractional, exp }
|
||||
/// Parse up to 19 digits (the max that can be stored in a 64-bit integer).
|
||||
fn try_parse_19digits(s: &mut AsciiStr<'_>, x: &mut u64) {
|
||||
while *x < MIN_19DIGIT_INT {
|
||||
if let Some(&c) = s.as_ref().first() {
|
||||
let digit = c.wrapping_sub(b'0');
|
||||
if digit < 10 {
|
||||
*x = (*x * 10) + digit as u64; // no overflows here
|
||||
// SAFETY: cannot be empty
|
||||
unsafe {
|
||||
s.step();
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub enum ParseResult<'a> {
|
||||
Valid(Decimal<'a>),
|
||||
ShortcutToInf,
|
||||
ShortcutToZero,
|
||||
Invalid,
|
||||
}
|
||||
|
||||
/// Checks if the input string is a valid floating point number and if so, locate the integral
|
||||
/// part, the fractional part, and the exponent in it. Does not handle signs.
|
||||
pub fn parse_decimal(s: &str) -> ParseResult<'_> {
|
||||
if s.is_empty() {
|
||||
return Invalid;
|
||||
/// Try to parse 8 digits at a time, using an optimized algorithm.
|
||||
fn try_parse_8digits(s: &mut AsciiStr<'_>, x: &mut u64) {
|
||||
// may cause overflows, to be handled later
|
||||
if let Some(v) = s.read_u64() {
|
||||
if is_8digits(v) {
|
||||
*x = x.wrapping_mul(1_0000_0000).wrapping_add(parse_8digits(v));
|
||||
// SAFETY: already ensured the buffer was >= 8 bytes in read_u64.
|
||||
unsafe {
|
||||
s.step_by(8);
|
||||
}
|
||||
if let Some(v) = s.read_u64() {
|
||||
if is_8digits(v) {
|
||||
*x = x.wrapping_mul(1_0000_0000).wrapping_add(parse_8digits(v));
|
||||
// SAFETY: already ensured the buffer was >= 8 bytes in try_read_u64.
|
||||
unsafe {
|
||||
s.step_by(8);
|
||||
}
|
||||
}
|
||||
|
||||
let s = s.as_bytes();
|
||||
let (integral, s) = eat_digits(s);
|
||||
|
||||
match s.first() {
|
||||
None => Valid(Decimal::new(integral, b"", 0)),
|
||||
Some(&b'e' | &b'E') => {
|
||||
if integral.is_empty() {
|
||||
return Invalid; // No digits before 'e'
|
||||
}
|
||||
|
||||
parse_exp(integral, b"", &s[1..])
|
||||
}
|
||||
Some(&b'.') => {
|
||||
let (fractional, s) = eat_digits(&s[1..]);
|
||||
if integral.is_empty() && fractional.is_empty() {
|
||||
// We require at least a single digit before or after the point.
|
||||
return Invalid;
|
||||
}
|
||||
|
||||
match s.first() {
|
||||
None => Valid(Decimal::new(integral, fractional, 0)),
|
||||
Some(&b'e' | &b'E') => parse_exp(integral, fractional, &s[1..]),
|
||||
_ => Invalid, // Trailing junk after fractional part
|
||||
}
|
||||
}
|
||||
_ => Invalid, // Trailing junk after first digit string
|
||||
}
|
||||
}
|
||||
|
||||
/// Carves off decimal digits up to the first non-digit character.
|
||||
fn eat_digits(s: &[u8]) -> (&[u8], &[u8]) {
|
||||
let pos = s.iter().position(|c| !c.is_ascii_digit()).unwrap_or(s.len());
|
||||
s.split_at(pos)
|
||||
/// Parse the scientific notation component of a float.
|
||||
fn parse_scientific(s: &mut AsciiStr<'_>) -> Option<i64> {
|
||||
let mut exponent = 0_i64;
|
||||
let mut negative = false;
|
||||
if let Some(&c) = s.as_ref().get(0) {
|
||||
negative = c == b'-';
|
||||
if c == b'-' || c == b'+' {
|
||||
// SAFETY: s cannot be empty
|
||||
unsafe {
|
||||
s.step();
|
||||
}
|
||||
}
|
||||
}
|
||||
if s.first_isdigit() {
|
||||
s.parse_digits(|digit| {
|
||||
// no overflows here, saturate well before overflow
|
||||
if exponent < 0x10000 {
|
||||
exponent = 10 * exponent + digit as i64;
|
||||
}
|
||||
});
|
||||
if negative { Some(-exponent) } else { Some(exponent) }
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Exponent extraction and error checking.
|
||||
fn parse_exp<'a>(integral: &'a [u8], fractional: &'a [u8], rest: &'a [u8]) -> ParseResult<'a> {
|
||||
let (sign, rest) = match rest.first() {
|
||||
Some(&b'-') => (Sign::Negative, &rest[1..]),
|
||||
Some(&b'+') => (Sign::Positive, &rest[1..]),
|
||||
_ => (Sign::Positive, rest),
|
||||
};
|
||||
let (mut number, trailing) = eat_digits(rest);
|
||||
if !trailing.is_empty() {
|
||||
return Invalid; // Trailing junk after exponent
|
||||
/// Parse a partial, non-special floating point number.
|
||||
///
|
||||
/// This creates a representation of the float as the
|
||||
/// significant digits and the decimal exponent.
|
||||
fn parse_partial_number(s: &[u8], negative: bool) -> Option<(Number, usize)> {
|
||||
let mut s = AsciiStr::new(s);
|
||||
let start = s;
|
||||
debug_assert!(!s.is_empty());
|
||||
|
||||
// parse initial digits before dot
|
||||
let mut mantissa = 0_u64;
|
||||
let digits_start = s;
|
||||
try_parse_digits(&mut s, &mut mantissa);
|
||||
let mut n_digits = s.offset_from(&digits_start);
|
||||
|
||||
// handle dot with the following digits
|
||||
let mut n_after_dot = 0;
|
||||
let mut exponent = 0_i64;
|
||||
let int_end = s;
|
||||
if s.first_is(b'.') {
|
||||
// SAFETY: s cannot be empty due to first_is
|
||||
unsafe { s.step() };
|
||||
let before = s;
|
||||
try_parse_8digits(&mut s, &mut mantissa);
|
||||
try_parse_digits(&mut s, &mut mantissa);
|
||||
n_after_dot = s.offset_from(&before);
|
||||
exponent = -n_after_dot as i64;
|
||||
}
|
||||
if number.is_empty() {
|
||||
return Invalid; // Empty exponent
|
||||
|
||||
n_digits += n_after_dot;
|
||||
if n_digits == 0 {
|
||||
return None;
|
||||
}
|
||||
// At this point, we certainly have a valid string of digits. It may be too long to put into
|
||||
// an `i64`, but if it's that huge, the input is certainly zero or infinity. Since each zero
|
||||
// in the decimal digits only adjusts the exponent by +/- 1, at exp = 10^18 the input would
|
||||
// have to be 17 exabyte (!) of zeros to get even remotely close to being finite.
|
||||
// This is not exactly a use case we need to cater to.
|
||||
while number.first() == Some(&b'0') {
|
||||
number = &number[1..];
|
||||
|
||||
// handle scientific format
|
||||
let mut exp_number = 0_i64;
|
||||
if s.first_is2(b'e', b'E') {
|
||||
// SAFETY: s cannot be empty
|
||||
unsafe {
|
||||
s.step();
|
||||
}
|
||||
if number.len() >= 18 {
|
||||
return match sign {
|
||||
Sign::Positive => ShortcutToInf,
|
||||
Sign::Negative => ShortcutToZero,
|
||||
};
|
||||
// If None, we have no trailing digits after exponent, or an invalid float.
|
||||
exp_number = parse_scientific(&mut s)?;
|
||||
exponent += exp_number;
|
||||
}
|
||||
let abs_exp = num::from_str_unchecked(number);
|
||||
let e = match sign {
|
||||
Sign::Positive => abs_exp as i64,
|
||||
Sign::Negative => -(abs_exp as i64),
|
||||
};
|
||||
Valid(Decimal::new(integral, fractional, e))
|
||||
|
||||
let len = s.offset_from(&start) as _;
|
||||
|
||||
// handle uncommon case with many digits
|
||||
if n_digits <= 19 {
|
||||
return Some((Number { exponent, mantissa, negative, many_digits: false }, len));
|
||||
}
|
||||
|
||||
n_digits -= 19;
|
||||
let mut many_digits = false;
|
||||
let mut p = digits_start;
|
||||
while p.first_is2(b'0', b'.') {
|
||||
// SAFETY: p cannot be empty due to first_is2
|
||||
unsafe {
|
||||
// '0' = b'.' + 2
|
||||
n_digits -= p.first_unchecked().saturating_sub(b'0' - 1) as isize;
|
||||
p.step();
|
||||
}
|
||||
}
|
||||
if n_digits > 0 {
|
||||
// at this point we have more than 19 significant digits, let's try again
|
||||
many_digits = true;
|
||||
mantissa = 0;
|
||||
let mut s = digits_start;
|
||||
try_parse_19digits(&mut s, &mut mantissa);
|
||||
exponent = if mantissa >= MIN_19DIGIT_INT {
|
||||
// big int
|
||||
int_end.offset_from(&s)
|
||||
} else {
|
||||
// SAFETY: the next byte must be present and be '.'
|
||||
// We know this is true because we had more than 19
|
||||
// digits previously, so we overflowed a 64-bit integer,
|
||||
// but parsing only the integral digits produced less
|
||||
// than 19 digits. That means we must have a decimal
|
||||
// point, and at least 1 fractional digit.
|
||||
unsafe { s.step() };
|
||||
let before = s;
|
||||
try_parse_19digits(&mut s, &mut mantissa);
|
||||
-s.offset_from(&before)
|
||||
} as i64;
|
||||
// add back the explicit part
|
||||
exponent += exp_number;
|
||||
}
|
||||
|
||||
Some((Number { exponent, mantissa, negative, many_digits }, len))
|
||||
}
|
||||
|
||||
/// Try to parse a non-special floating point number.
|
||||
pub fn parse_number(s: &[u8], negative: bool) -> Option<Number> {
|
||||
if let Some((float, rest)) = parse_partial_number(s, negative) {
|
||||
if rest == s.len() {
|
||||
return Some(float);
|
||||
}
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
/// Parse a partial representation of a special, non-finite float.
|
||||
fn parse_partial_inf_nan<F: RawFloat>(s: &[u8]) -> Option<(F, usize)> {
|
||||
fn parse_inf_rest(s: &[u8]) -> usize {
|
||||
if s.len() >= 8 && s[3..].as_ref().eq_ignore_case(b"inity") { 8 } else { 3 }
|
||||
}
|
||||
if s.len() >= 3 {
|
||||
if s.eq_ignore_case(b"nan") {
|
||||
return Some((F::NAN, 3));
|
||||
} else if s.eq_ignore_case(b"inf") {
|
||||
return Some((F::INFINITY, parse_inf_rest(s)));
|
||||
}
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
/// Try to parse a special, non-finite float.
|
||||
pub fn parse_inf_nan<F: RawFloat>(s: &[u8], negative: bool) -> Option<F> {
|
||||
if let Some((mut float, rest)) = parse_partial_inf_nan::<F>(s) {
|
||||
if rest == s.len() {
|
||||
if negative {
|
||||
float = -float;
|
||||
}
|
||||
return Some(float);
|
||||
}
|
||||
}
|
||||
None
|
||||
}
|
||||
|
|
|
@ -1,363 +0,0 @@
|
|||
//! Bit fiddling on positive IEEE 754 floats. Negative numbers aren't and needn't be handled.
|
||||
//! Normal floating point numbers have a canonical representation as (frac, exp) such that the
|
||||
//! value is 2<sup>exp</sup> * (1 + sum(frac[N-i] / 2<sup>i</sup>)) where N is the number of bits.
|
||||
//! Subnormals are slightly different and weird, but the same principle applies.
|
||||
//!
|
||||
//! Here, however, we represent them as (sig, k) with f positive, such that the value is f *
|
||||
//! 2<sup>e</sup>. Besides making the "hidden bit" explicit, this changes the exponent by the
|
||||
//! so-called mantissa shift.
|
||||
//!
|
||||
//! Put another way, normally floats are written as (1) but here they are written as (2):
|
||||
//!
|
||||
//! 1. `1.101100...11 * 2^m`
|
||||
//! 2. `1101100...11 * 2^n`
|
||||
//!
|
||||
//! We call (1) the **fractional representation** and (2) the **integral representation**.
|
||||
//!
|
||||
//! Many functions in this module only handle normal numbers. The dec2flt routines conservatively
|
||||
//! take the universally-correct slow path (Algorithm M) for very small and very large numbers.
|
||||
//! That algorithm needs only next_float() which does handle subnormals and zeros.
|
||||
use crate::cmp::Ordering::{Equal, Greater, Less};
|
||||
use crate::convert::{TryFrom, TryInto};
|
||||
use crate::fmt::{Debug, LowerExp};
|
||||
use crate::num::dec2flt::num::{self, Big};
|
||||
use crate::num::dec2flt::table;
|
||||
use crate::num::diy_float::Fp;
|
||||
use crate::num::FpCategory;
|
||||
use crate::num::FpCategory::{Infinite, Nan, Normal, Subnormal, Zero};
|
||||
use crate::ops::{Add, Div, Mul, Neg};
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct Unpacked {
|
||||
pub sig: u64,
|
||||
pub k: i16,
|
||||
}
|
||||
|
||||
impl Unpacked {
|
||||
pub fn new(sig: u64, k: i16) -> Self {
|
||||
Unpacked { sig, k }
|
||||
}
|
||||
}
|
||||
|
||||
/// A helper trait to avoid duplicating basically all the conversion code for `f32` and `f64`.
|
||||
///
|
||||
/// See the parent module's doc comment for why this is necessary.
|
||||
///
|
||||
/// Should **never ever** be implemented for other types or be used outside the dec2flt module.
|
||||
pub trait RawFloat:
|
||||
Copy + Debug + LowerExp + Mul<Output = Self> + Div<Output = Self> + Neg<Output = Self>
|
||||
{
|
||||
const INFINITY: Self;
|
||||
const NAN: Self;
|
||||
const ZERO: Self;
|
||||
|
||||
/// Type used by `to_bits` and `from_bits`.
|
||||
type Bits: Add<Output = Self::Bits> + From<u8> + TryFrom<u64>;
|
||||
|
||||
/// Performs a raw transmutation to an integer.
|
||||
fn to_bits(self) -> Self::Bits;
|
||||
|
||||
/// Performs a raw transmutation from an integer.
|
||||
fn from_bits(v: Self::Bits) -> Self;
|
||||
|
||||
/// Returns the category that this number falls into.
|
||||
fn classify(self) -> FpCategory;
|
||||
|
||||
/// Returns the mantissa, exponent and sign as integers.
|
||||
fn integer_decode(self) -> (u64, i16, i8);
|
||||
|
||||
/// Decodes the float.
|
||||
fn unpack(self) -> Unpacked;
|
||||
|
||||
/// Casts from a small integer that can be represented exactly. Panic if the integer can't be
|
||||
/// represented, the other code in this module makes sure to never let that happen.
|
||||
fn from_int(x: u64) -> Self;
|
||||
|
||||
/// Gets the value 10<sup>e</sup> from a pre-computed table.
|
||||
/// Panics for `e >= CEIL_LOG5_OF_MAX_SIG`.
|
||||
fn short_fast_pow10(e: usize) -> Self;
|
||||
|
||||
/// What the name says. It's easier to hard code than juggling intrinsics and
|
||||
/// hoping LLVM constant folds it.
|
||||
const CEIL_LOG5_OF_MAX_SIG: i16;
|
||||
|
||||
// A conservative bound on the decimal digits of inputs that can't produce overflow or zero or
|
||||
/// subnormals. Probably the decimal exponent of the maximum normal value, hence the name.
|
||||
const MAX_NORMAL_DIGITS: usize;
|
||||
|
||||
/// When the most significant decimal digit has a place value greater than this, the number
|
||||
/// is certainly rounded to infinity.
|
||||
const INF_CUTOFF: i64;
|
||||
|
||||
/// When the most significant decimal digit has a place value less than this, the number
|
||||
/// is certainly rounded to zero.
|
||||
const ZERO_CUTOFF: i64;
|
||||
|
||||
/// The number of bits in the exponent.
|
||||
const EXP_BITS: u8;
|
||||
|
||||
/// The number of bits in the significand, *including* the hidden bit.
|
||||
const SIG_BITS: u8;
|
||||
|
||||
/// The number of bits in the significand, *excluding* the hidden bit.
|
||||
const EXPLICIT_SIG_BITS: u8;
|
||||
|
||||
/// The maximum legal exponent in fractional representation.
|
||||
const MAX_EXP: i16;
|
||||
|
||||
/// The minimum legal exponent in fractional representation, excluding subnormals.
|
||||
const MIN_EXP: i16;
|
||||
|
||||
/// `MAX_EXP` for integral representation, i.e., with the shift applied.
|
||||
const MAX_EXP_INT: i16;
|
||||
|
||||
/// `MAX_EXP` encoded (i.e., with offset bias)
|
||||
const MAX_ENCODED_EXP: i16;
|
||||
|
||||
/// `MIN_EXP` for integral representation, i.e., with the shift applied.
|
||||
const MIN_EXP_INT: i16;
|
||||
|
||||
/// The maximum normalized significand in integral representation.
|
||||
const MAX_SIG: u64;
|
||||
|
||||
/// The minimal normalized significand in integral representation.
|
||||
const MIN_SIG: u64;
|
||||
}
|
||||
|
||||
// Mostly a workaround for #34344.
|
||||
macro_rules! other_constants {
|
||||
($type: ident) => {
|
||||
const EXPLICIT_SIG_BITS: u8 = Self::SIG_BITS - 1;
|
||||
const MAX_EXP: i16 = (1 << (Self::EXP_BITS - 1)) - 1;
|
||||
const MIN_EXP: i16 = -<Self as RawFloat>::MAX_EXP + 1;
|
||||
const MAX_EXP_INT: i16 = <Self as RawFloat>::MAX_EXP - (Self::SIG_BITS as i16 - 1);
|
||||
const MAX_ENCODED_EXP: i16 = (1 << Self::EXP_BITS) - 1;
|
||||
const MIN_EXP_INT: i16 = <Self as RawFloat>::MIN_EXP - (Self::SIG_BITS as i16 - 1);
|
||||
const MAX_SIG: u64 = (1 << Self::SIG_BITS) - 1;
|
||||
const MIN_SIG: u64 = 1 << (Self::SIG_BITS - 1);
|
||||
|
||||
const INFINITY: Self = $type::INFINITY;
|
||||
const NAN: Self = $type::NAN;
|
||||
const ZERO: Self = 0.0;
|
||||
};
|
||||
}
|
||||
|
||||
impl RawFloat for f32 {
|
||||
type Bits = u32;
|
||||
|
||||
const SIG_BITS: u8 = 24;
|
||||
const EXP_BITS: u8 = 8;
|
||||
const CEIL_LOG5_OF_MAX_SIG: i16 = 11;
|
||||
const MAX_NORMAL_DIGITS: usize = 35;
|
||||
const INF_CUTOFF: i64 = 40;
|
||||
const ZERO_CUTOFF: i64 = -48;
|
||||
other_constants!(f32);
|
||||
|
||||
/// Returns the mantissa, exponent and sign as integers.
|
||||
fn integer_decode(self) -> (u64, i16, i8) {
|
||||
let bits = self.to_bits();
|
||||
let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
|
||||
let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
|
||||
let mantissa =
|
||||
if exponent == 0 { (bits & 0x7fffff) << 1 } else { (bits & 0x7fffff) | 0x800000 };
|
||||
// Exponent bias + mantissa shift
|
||||
exponent -= 127 + 23;
|
||||
(mantissa as u64, exponent, sign)
|
||||
}
|
||||
|
||||
fn unpack(self) -> Unpacked {
|
||||
let (sig, exp, _sig) = self.integer_decode();
|
||||
Unpacked::new(sig, exp)
|
||||
}
|
||||
|
||||
fn from_int(x: u64) -> f32 {
|
||||
// rkruppe is uncertain whether `as` rounds correctly on all platforms.
|
||||
debug_assert!(x as f32 == fp_to_float(Fp { f: x, e: 0 }));
|
||||
x as f32
|
||||
}
|
||||
|
||||
fn short_fast_pow10(e: usize) -> Self {
|
||||
table::F32_SHORT_POWERS[e]
|
||||
}
|
||||
|
||||
fn classify(self) -> FpCategory {
|
||||
self.classify()
|
||||
}
|
||||
fn to_bits(self) -> Self::Bits {
|
||||
self.to_bits()
|
||||
}
|
||||
fn from_bits(v: Self::Bits) -> Self {
|
||||
Self::from_bits(v)
|
||||
}
|
||||
}
|
||||
|
||||
impl RawFloat for f64 {
|
||||
type Bits = u64;
|
||||
|
||||
const SIG_BITS: u8 = 53;
|
||||
const EXP_BITS: u8 = 11;
|
||||
const CEIL_LOG5_OF_MAX_SIG: i16 = 23;
|
||||
const MAX_NORMAL_DIGITS: usize = 305;
|
||||
const INF_CUTOFF: i64 = 310;
|
||||
const ZERO_CUTOFF: i64 = -326;
|
||||
other_constants!(f64);
|
||||
|
||||
/// Returns the mantissa, exponent and sign as integers.
|
||||
fn integer_decode(self) -> (u64, i16, i8) {
|
||||
let bits = self.to_bits();
|
||||
let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
|
||||
let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
|
||||
let mantissa = if exponent == 0 {
|
||||
(bits & 0xfffffffffffff) << 1
|
||||
} else {
|
||||
(bits & 0xfffffffffffff) | 0x10000000000000
|
||||
};
|
||||
// Exponent bias + mantissa shift
|
||||
exponent -= 1023 + 52;
|
||||
(mantissa, exponent, sign)
|
||||
}
|
||||
|
||||
fn unpack(self) -> Unpacked {
|
||||
let (sig, exp, _sig) = self.integer_decode();
|
||||
Unpacked::new(sig, exp)
|
||||
}
|
||||
|
||||
fn from_int(x: u64) -> f64 {
|
||||
// rkruppe is uncertain whether `as` rounds correctly on all platforms.
|
||||
debug_assert!(x as f64 == fp_to_float(Fp { f: x, e: 0 }));
|
||||
x as f64
|
||||
}
|
||||
|
||||
fn short_fast_pow10(e: usize) -> Self {
|
||||
table::F64_SHORT_POWERS[e]
|
||||
}
|
||||
|
||||
fn classify(self) -> FpCategory {
|
||||
self.classify()
|
||||
}
|
||||
fn to_bits(self) -> Self::Bits {
|
||||
self.to_bits()
|
||||
}
|
||||
fn from_bits(v: Self::Bits) -> Self {
|
||||
Self::from_bits(v)
|
||||
}
|
||||
}
|
||||
|
||||
/// Converts an `Fp` to the closest machine float type.
|
||||
/// Does not handle subnormal results.
|
||||
pub fn fp_to_float<T: RawFloat>(x: Fp) -> T {
|
||||
let x = x.normalize();
|
||||
// x.f is 64 bit, so x.e has a mantissa shift of 63
|
||||
let e = x.e + 63;
|
||||
if e > T::MAX_EXP {
|
||||
panic!("fp_to_float: exponent {} too large", e)
|
||||
} else if e > T::MIN_EXP {
|
||||
encode_normal(round_normal::<T>(x))
|
||||
} else {
|
||||
panic!("fp_to_float: exponent {} too small", e)
|
||||
}
|
||||
}
|
||||
|
||||
/// Round the 64-bit significand to T::SIG_BITS bits with half-to-even.
|
||||
/// Does not handle exponent overflow.
|
||||
pub fn round_normal<T: RawFloat>(x: Fp) -> Unpacked {
|
||||
let excess = 64 - T::SIG_BITS as i16;
|
||||
let half: u64 = 1 << (excess - 1);
|
||||
let (q, rem) = (x.f >> excess, x.f & ((1 << excess) - 1));
|
||||
assert_eq!(q << excess | rem, x.f);
|
||||
// Adjust mantissa shift
|
||||
let k = x.e + excess;
|
||||
if rem < half {
|
||||
Unpacked::new(q, k)
|
||||
} else if rem == half && (q % 2) == 0 {
|
||||
Unpacked::new(q, k)
|
||||
} else if q == T::MAX_SIG {
|
||||
Unpacked::new(T::MIN_SIG, k + 1)
|
||||
} else {
|
||||
Unpacked::new(q + 1, k)
|
||||
}
|
||||
}
|
||||
|
||||
/// Inverse of `RawFloat::unpack()` for normalized numbers.
|
||||
/// Panics if the significand or exponent are not valid for normalized numbers.
|
||||
pub fn encode_normal<T: RawFloat>(x: Unpacked) -> T {
|
||||
debug_assert!(
|
||||
T::MIN_SIG <= x.sig && x.sig <= T::MAX_SIG,
|
||||
"encode_normal: significand not normalized"
|
||||
);
|
||||
// Remove the hidden bit
|
||||
let sig_enc = x.sig & !(1 << T::EXPLICIT_SIG_BITS);
|
||||
// Adjust the exponent for exponent bias and mantissa shift
|
||||
let k_enc = x.k + T::MAX_EXP + T::EXPLICIT_SIG_BITS as i16;
|
||||
debug_assert!(k_enc != 0 && k_enc < T::MAX_ENCODED_EXP, "encode_normal: exponent out of range");
|
||||
// Leave sign bit at 0 ("+"), our numbers are all positive
|
||||
let bits = (k_enc as u64) << T::EXPLICIT_SIG_BITS | sig_enc;
|
||||
T::from_bits(bits.try_into().unwrap_or_else(|_| unreachable!()))
|
||||
}
|
||||
|
||||
/// Construct a subnormal. A mantissa of 0 is allowed and constructs zero.
|
||||
pub fn encode_subnormal<T: RawFloat>(significand: u64) -> T {
|
||||
assert!(significand < T::MIN_SIG, "encode_subnormal: not actually subnormal");
|
||||
// Encoded exponent is 0, the sign bit is 0, so we just have to reinterpret the bits.
|
||||
T::from_bits(significand.try_into().unwrap_or_else(|_| unreachable!()))
|
||||
}
|
||||
|
||||
/// Approximate a bignum with an Fp. Rounds within 0.5 ULP with half-to-even.
|
||||
pub fn big_to_fp(f: &Big) -> Fp {
|
||||
let end = f.bit_length();
|
||||
assert!(end != 0, "big_to_fp: unexpectedly, input is zero");
|
||||
let start = end.saturating_sub(64);
|
||||
let leading = num::get_bits(f, start, end);
|
||||
// We cut off all bits prior to the index `start`, i.e., we effectively right-shift by
|
||||
// an amount of `start`, so this is also the exponent we need.
|
||||
let e = start as i16;
|
||||
let rounded_down = Fp { f: leading, e }.normalize();
|
||||
// Round (half-to-even) depending on the truncated bits.
|
||||
match num::compare_with_half_ulp(f, start) {
|
||||
Less => rounded_down,
|
||||
Equal if leading % 2 == 0 => rounded_down,
|
||||
Equal | Greater => match leading.checked_add(1) {
|
||||
Some(f) => Fp { f, e }.normalize(),
|
||||
None => Fp { f: 1 << 63, e: e + 1 },
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
/// Finds the largest floating point number strictly smaller than the argument.
|
||||
/// Does not handle subnormals, zero, or exponent underflow.
|
||||
pub fn prev_float<T: RawFloat>(x: T) -> T {
|
||||
match x.classify() {
|
||||
Infinite => panic!("prev_float: argument is infinite"),
|
||||
Nan => panic!("prev_float: argument is NaN"),
|
||||
Subnormal => panic!("prev_float: argument is subnormal"),
|
||||
Zero => panic!("prev_float: argument is zero"),
|
||||
Normal => {
|
||||
let Unpacked { sig, k } = x.unpack();
|
||||
if sig == T::MIN_SIG {
|
||||
encode_normal(Unpacked::new(T::MAX_SIG, k - 1))
|
||||
} else {
|
||||
encode_normal(Unpacked::new(sig - 1, k))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find the smallest floating point number strictly larger than the argument.
|
||||
// This operation is saturating, i.e., next_float(inf) == inf.
|
||||
// Unlike most code in this module, this function does handle zero, subnormals, and infinities.
|
||||
// However, like all other code here, it does not deal with NaN and negative numbers.
|
||||
pub fn next_float<T: RawFloat>(x: T) -> T {
|
||||
match x.classify() {
|
||||
Nan => panic!("next_float: argument is NaN"),
|
||||
Infinite => T::INFINITY,
|
||||
// This seems too good to be true, but it works.
|
||||
// 0.0 is encoded as the all-zero word. Subnormals are 0x000m...m where m is the mantissa.
|
||||
// In particular, the smallest subnormal is 0x0...01 and the largest is 0x000F...F.
|
||||
// The smallest normal number is 0x0010...0, so this corner case works as well.
|
||||
// If the increment overflows the mantissa, the carry bit increments the exponent as we
|
||||
// want, and the mantissa bits become zero. Because of the hidden bit convention, this
|
||||
// too is exactly what we want!
|
||||
// Finally, f64::MAX + 1 = 7eff...f + 1 = 7ff0...0 = f64::INFINITY.
|
||||
Zero | Subnormal | Normal => T::from_bits(x.to_bits() + T::Bits::from(1u8)),
|
||||
}
|
||||
}
|
109
library/core/src/num/dec2flt/slow.rs
Normal file
109
library/core/src/num/dec2flt/slow.rs
Normal file
|
@ -0,0 +1,109 @@
|
|||
//! Slow, fallback algorithm for cases the Eisel-Lemire algorithm cannot round.
|
||||
|
||||
use crate::num::dec2flt::common::BiasedFp;
|
||||
use crate::num::dec2flt::decimal::{parse_decimal, Decimal};
|
||||
use crate::num::dec2flt::float::RawFloat;
|
||||
|
||||
/// Parse the significant digits and biased, binary exponent of a float.
|
||||
///
|
||||
/// This is a fallback algorithm that uses a big-integer representation
|
||||
/// of the float, and therefore is considerably slower than faster
|
||||
/// approximations. However, it will always determine how to round
|
||||
/// the significant digits to the nearest machine float, allowing
|
||||
/// use to handle near half-way cases.
|
||||
///
|
||||
/// Near half-way cases are halfway between two consecutive machine floats.
|
||||
/// For example, the float `16777217.0` has a bitwise representation of
|
||||
/// `100000000000000000000000 1`. Rounding to a single-precision float,
|
||||
/// the trailing `1` is truncated. Using round-nearest, tie-even, any
|
||||
/// value above `16777217.0` must be rounded up to `16777218.0`, while
|
||||
/// any value before or equal to `16777217.0` must be rounded down
|
||||
/// to `16777216.0`. These near-halfway conversions therefore may require
|
||||
/// a large number of digits to unambiguously determine how to round.
|
||||
///
|
||||
/// The algorithms described here are based on "Processing Long Numbers Quickly",
|
||||
/// available here: <https://arxiv.org/pdf/2101.11408.pdf#section.11>.
|
||||
pub(crate) fn parse_long_mantissa<F: RawFloat>(s: &[u8]) -> BiasedFp {
|
||||
const MAX_SHIFT: usize = 60;
|
||||
const NUM_POWERS: usize = 19;
|
||||
const POWERS: [u8; 19] =
|
||||
[0, 3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 43, 46, 49, 53, 56, 59];
|
||||
|
||||
let get_shift = |n| {
|
||||
if n < NUM_POWERS { POWERS[n] as usize } else { MAX_SHIFT }
|
||||
};
|
||||
|
||||
let fp_zero = BiasedFp::zero_pow2(0);
|
||||
let fp_inf = BiasedFp::zero_pow2(F::INFINITE_POWER);
|
||||
|
||||
let mut d = parse_decimal(s);
|
||||
|
||||
// Short-circuit if the value can only be a literal 0 or infinity.
|
||||
if d.num_digits == 0 || d.decimal_point < -324 {
|
||||
return fp_zero;
|
||||
} else if d.decimal_point >= 310 {
|
||||
return fp_inf;
|
||||
}
|
||||
let mut exp2 = 0_i32;
|
||||
// Shift right toward (1/2 ... 1].
|
||||
while d.decimal_point > 0 {
|
||||
let n = d.decimal_point as usize;
|
||||
let shift = get_shift(n);
|
||||
d.right_shift(shift);
|
||||
if d.decimal_point < -Decimal::DECIMAL_POINT_RANGE {
|
||||
return fp_zero;
|
||||
}
|
||||
exp2 += shift as i32;
|
||||
}
|
||||
// Shift left toward (1/2 ... 1].
|
||||
while d.decimal_point <= 0 {
|
||||
let shift = if d.decimal_point == 0 {
|
||||
match d.digits[0] {
|
||||
digit if digit >= 5 => break,
|
||||
0 | 1 => 2,
|
||||
_ => 1,
|
||||
}
|
||||
} else {
|
||||
get_shift((-d.decimal_point) as _)
|
||||
};
|
||||
d.left_shift(shift);
|
||||
if d.decimal_point > Decimal::DECIMAL_POINT_RANGE {
|
||||
return fp_inf;
|
||||
}
|
||||
exp2 -= shift as i32;
|
||||
}
|
||||
// We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2].
|
||||
exp2 -= 1;
|
||||
while (F::MINIMUM_EXPONENT + 1) > exp2 {
|
||||
let mut n = ((F::MINIMUM_EXPONENT + 1) - exp2) as usize;
|
||||
if n > MAX_SHIFT {
|
||||
n = MAX_SHIFT;
|
||||
}
|
||||
d.right_shift(n);
|
||||
exp2 += n as i32;
|
||||
}
|
||||
if (exp2 - F::MINIMUM_EXPONENT) >= F::INFINITE_POWER {
|
||||
return fp_inf;
|
||||
}
|
||||
// Shift the decimal to the hidden bit, and then round the value
|
||||
// to get the high mantissa+1 bits.
|
||||
d.left_shift(F::MANTISSA_EXPLICIT_BITS + 1);
|
||||
let mut mantissa = d.round();
|
||||
if mantissa >= (1_u64 << (F::MANTISSA_EXPLICIT_BITS + 1)) {
|
||||
// Rounding up overflowed to the carry bit, need to
|
||||
// shift back to the hidden bit.
|
||||
d.right_shift(1);
|
||||
exp2 += 1;
|
||||
mantissa = d.round();
|
||||
if (exp2 - F::MINIMUM_EXPONENT) >= F::INFINITE_POWER {
|
||||
return fp_inf;
|
||||
}
|
||||
}
|
||||
let mut power2 = exp2 - F::MINIMUM_EXPONENT;
|
||||
if mantissa < (1_u64 << F::MANTISSA_EXPLICIT_BITS) {
|
||||
power2 -= 1;
|
||||
}
|
||||
// Zero out all the bits above the explicit mantissa bits.
|
||||
mantissa &= (1_u64 << F::MANTISSA_EXPLICIT_BITS) - 1;
|
||||
BiasedFp { f: mantissa, e: power2 }
|
||||
}
|
File diff suppressed because it is too large
Load diff
|
@ -1,6 +1,6 @@
|
|||
//! Decodes a floating-point value into individual parts and error ranges.
|
||||
|
||||
use crate::num::dec2flt::rawfp::RawFloat;
|
||||
use crate::num::dec2flt::float::RawFloat;
|
||||
use crate::num::FpCategory;
|
||||
|
||||
/// Decoded unsigned finite value, such that:
|
||||
|
|
33
library/core/tests/num/dec2flt/float.rs
Normal file
33
library/core/tests/num/dec2flt/float.rs
Normal file
|
@ -0,0 +1,33 @@
|
|||
use core::num::dec2flt::float::RawFloat;
|
||||
|
||||
#[test]
|
||||
fn test_f32_integer_decode() {
|
||||
assert_eq!(3.14159265359f32.integer_decode(), (13176795, -22, 1));
|
||||
assert_eq!((-8573.5918555f32).integer_decode(), (8779358, -10, -1));
|
||||
assert_eq!(2f32.powf(100.0).integer_decode(), (8388608, 77, 1));
|
||||
assert_eq!(0f32.integer_decode(), (0, -150, 1));
|
||||
assert_eq!((-0f32).integer_decode(), (0, -150, -1));
|
||||
assert_eq!(f32::INFINITY.integer_decode(), (8388608, 105, 1));
|
||||
assert_eq!(f32::NEG_INFINITY.integer_decode(), (8388608, 105, -1));
|
||||
|
||||
// Ignore the "sign" (quiet / signalling flag) of NAN.
|
||||
// It can vary between runtime operations and LLVM folding.
|
||||
let (nan_m, nan_e, _nan_s) = f32::NAN.integer_decode();
|
||||
assert_eq!((nan_m, nan_e), (12582912, 105));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_f64_integer_decode() {
|
||||
assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906, -51, 1));
|
||||
assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931, -39, -1));
|
||||
assert_eq!(2f64.powf(100.0).integer_decode(), (4503599627370496, 48, 1));
|
||||
assert_eq!(0f64.integer_decode(), (0, -1075, 1));
|
||||
assert_eq!((-0f64).integer_decode(), (0, -1075, -1));
|
||||
assert_eq!(f64::INFINITY.integer_decode(), (4503599627370496, 972, 1));
|
||||
assert_eq!(f64::NEG_INFINITY.integer_decode(), (4503599627370496, 972, -1));
|
||||
|
||||
// Ignore the "sign" (quiet / signalling flag) of NAN.
|
||||
// It can vary between runtime operations and LLVM folding.
|
||||
let (nan_m, nan_e, _nan_s) = f64::NAN.integer_decode();
|
||||
assert_eq!((nan_m, nan_e), (6755399441055744, 972));
|
||||
}
|
53
library/core/tests/num/dec2flt/lemire.rs
Normal file
53
library/core/tests/num/dec2flt/lemire.rs
Normal file
|
@ -0,0 +1,53 @@
|
|||
use core::num::dec2flt::lemire::compute_float;
|
||||
|
||||
fn compute_float32(q: i64, w: u64) -> (i32, u64) {
|
||||
let fp = compute_float::<f32>(q, w);
|
||||
(fp.e, fp.f)
|
||||
}
|
||||
|
||||
fn compute_float64(q: i64, w: u64) -> (i32, u64) {
|
||||
let fp = compute_float::<f64>(q, w);
|
||||
(fp.e, fp.f)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn compute_float_f32_rounding() {
|
||||
// These test near-halfway cases for single-precision floats.
|
||||
assert_eq!(compute_float32(0, 16777216), (151, 0));
|
||||
assert_eq!(compute_float32(0, 16777217), (151, 0));
|
||||
assert_eq!(compute_float32(0, 16777218), (151, 1));
|
||||
assert_eq!(compute_float32(0, 16777219), (151, 2));
|
||||
assert_eq!(compute_float32(0, 16777220), (151, 2));
|
||||
|
||||
// These are examples of the above tests, with
|
||||
// digits from the exponent shifted to the mantissa.
|
||||
assert_eq!(compute_float32(-10, 167772160000000000), (151, 0));
|
||||
assert_eq!(compute_float32(-10, 167772170000000000), (151, 0));
|
||||
assert_eq!(compute_float32(-10, 167772180000000000), (151, 1));
|
||||
// Let's check the lines to see if anything is different in table...
|
||||
assert_eq!(compute_float32(-10, 167772190000000000), (151, 2));
|
||||
assert_eq!(compute_float32(-10, 167772200000000000), (151, 2));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn compute_float_f64_rounding() {
|
||||
// These test near-halfway cases for double-precision floats.
|
||||
assert_eq!(compute_float64(0, 9007199254740992), (1076, 0));
|
||||
assert_eq!(compute_float64(0, 9007199254740993), (1076, 0));
|
||||
assert_eq!(compute_float64(0, 9007199254740994), (1076, 1));
|
||||
assert_eq!(compute_float64(0, 9007199254740995), (1076, 2));
|
||||
assert_eq!(compute_float64(0, 9007199254740996), (1076, 2));
|
||||
assert_eq!(compute_float64(0, 18014398509481984), (1077, 0));
|
||||
assert_eq!(compute_float64(0, 18014398509481986), (1077, 0));
|
||||
assert_eq!(compute_float64(0, 18014398509481988), (1077, 1));
|
||||
assert_eq!(compute_float64(0, 18014398509481990), (1077, 2));
|
||||
assert_eq!(compute_float64(0, 18014398509481992), (1077, 2));
|
||||
|
||||
// These are examples of the above tests, with
|
||||
// digits from the exponent shifted to the mantissa.
|
||||
assert_eq!(compute_float64(-3, 9007199254740992000), (1076, 0));
|
||||
assert_eq!(compute_float64(-3, 9007199254740993000), (1076, 0));
|
||||
assert_eq!(compute_float64(-3, 9007199254740994000), (1076, 1));
|
||||
assert_eq!(compute_float64(-3, 9007199254740995000), (1076, 2));
|
||||
assert_eq!(compute_float64(-3, 9007199254740996000), (1076, 2));
|
||||
}
|
|
@ -1,7 +1,8 @@
|
|||
#![allow(overflowing_literals)]
|
||||
|
||||
mod float;
|
||||
mod lemire;
|
||||
mod parse;
|
||||
mod rawfp;
|
||||
|
||||
// Take a float literal, turn it into a string in various ways (that are all trusted
|
||||
// to be correct) and see if those strings are parsed back to the value of the literal.
|
||||
|
@ -28,12 +29,6 @@ fn ordinary() {
|
|||
test_literal!(0.1);
|
||||
test_literal!(12345.);
|
||||
test_literal!(0.9999999);
|
||||
|
||||
if cfg!(miri) {
|
||||
// Miri is too slow
|
||||
return;
|
||||
}
|
||||
|
||||
test_literal!(2.2250738585072014e-308);
|
||||
}
|
||||
|
||||
|
@ -54,7 +49,6 @@ fn large() {
|
|||
}
|
||||
|
||||
#[test]
|
||||
#[cfg_attr(miri, ignore)] // Miri is too slow
|
||||
fn subnormals() {
|
||||
test_literal!(5e-324);
|
||||
test_literal!(91e-324);
|
||||
|
@ -66,7 +60,6 @@ fn subnormals() {
|
|||
}
|
||||
|
||||
#[test]
|
||||
#[cfg_attr(miri, ignore)] // Miri is too slow
|
||||
fn infinity() {
|
||||
test_literal!(1e400);
|
||||
test_literal!(1e309);
|
||||
|
@ -78,12 +71,6 @@ fn infinity() {
|
|||
fn zero() {
|
||||
test_literal!(0.0);
|
||||
test_literal!(1e-325);
|
||||
|
||||
if cfg!(miri) {
|
||||
// Miri is too slow
|
||||
return;
|
||||
}
|
||||
|
||||
test_literal!(1e-326);
|
||||
test_literal!(1e-500);
|
||||
}
|
||||
|
|
|
@ -1,17 +1,23 @@
|
|||
use core::num::dec2flt::parse::ParseResult::{Invalid, Valid};
|
||||
use core::num::dec2flt::parse::{parse_decimal, Decimal};
|
||||
use core::num::dec2flt::number::Number;
|
||||
use core::num::dec2flt::parse::parse_number;
|
||||
use core::num::dec2flt::{dec2flt, pfe_invalid};
|
||||
|
||||
fn new_number(e: i64, m: u64) -> Number {
|
||||
Number { exponent: e, mantissa: m, negative: false, many_digits: false }
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn missing_pieces() {
|
||||
let permutations = &[".e", "1e", "e4", "e", ".12e", "321.e", "32.12e+", "12.32e-"];
|
||||
for &s in permutations {
|
||||
assert_eq!(parse_decimal(s), Invalid);
|
||||
assert_eq!(dec2flt::<f64>(s), Err(pfe_invalid()));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn invalid_chars() {
|
||||
let invalid = "r,?<j";
|
||||
let error = Err(pfe_invalid());
|
||||
let valid_strings = &["123", "666.", ".1", "5e1", "7e-3", "0.0e+1"];
|
||||
for c in invalid.chars() {
|
||||
for s in valid_strings {
|
||||
|
@ -19,23 +25,153 @@ fn invalid_chars() {
|
|||
let mut input = String::new();
|
||||
input.push_str(s);
|
||||
input.insert(i, c);
|
||||
assert!(parse_decimal(&input) == Invalid, "did not reject invalid {:?}", input);
|
||||
assert!(dec2flt::<f64>(&input) == error, "did not reject invalid {:?}", input);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_positive(s: &[u8]) -> Option<Number> {
|
||||
parse_number(s, false)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn valid() {
|
||||
assert_eq!(parse_decimal("123.456e789"), Valid(Decimal::new(b"123", b"456", 789)));
|
||||
assert_eq!(parse_decimal("123.456e+789"), Valid(Decimal::new(b"123", b"456", 789)));
|
||||
assert_eq!(parse_decimal("123.456e-789"), Valid(Decimal::new(b"123", b"456", -789)));
|
||||
assert_eq!(parse_decimal(".050"), Valid(Decimal::new(b"", b"050", 0)));
|
||||
assert_eq!(parse_decimal("999"), Valid(Decimal::new(b"999", b"", 0)));
|
||||
assert_eq!(parse_decimal("1.e300"), Valid(Decimal::new(b"1", b"", 300)));
|
||||
assert_eq!(parse_decimal(".1e300"), Valid(Decimal::new(b"", b"1", 300)));
|
||||
assert_eq!(parse_decimal("101e-33"), Valid(Decimal::new(b"101", b"", -33)));
|
||||
assert_eq!(parse_positive(b"123.456e789"), Some(new_number(786, 123456)));
|
||||
assert_eq!(parse_positive(b"123.456e+789"), Some(new_number(786, 123456)));
|
||||
assert_eq!(parse_positive(b"123.456e-789"), Some(new_number(-792, 123456)));
|
||||
assert_eq!(parse_positive(b".050"), Some(new_number(-3, 50)));
|
||||
assert_eq!(parse_positive(b"999"), Some(new_number(0, 999)));
|
||||
assert_eq!(parse_positive(b"1.e300"), Some(new_number(300, 1)));
|
||||
assert_eq!(parse_positive(b".1e300"), Some(new_number(299, 1)));
|
||||
assert_eq!(parse_positive(b"101e-33"), Some(new_number(-33, 101)));
|
||||
let zeros = "0".repeat(25);
|
||||
let s = format!("1.5e{}", zeros);
|
||||
assert_eq!(parse_decimal(&s), Valid(Decimal::new(b"1", b"5", 0)));
|
||||
assert_eq!(parse_positive(s.as_bytes()), Some(new_number(-1, 15)));
|
||||
}
|
||||
|
||||
macro_rules! assert_float_result_bits_eq {
|
||||
($bits:literal, $ty:ty, $str:literal) => {{
|
||||
let p = dec2flt::<$ty>($str);
|
||||
assert_eq!(p.map(|x| x.to_bits()), Ok($bits));
|
||||
}};
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn issue31109() {
|
||||
// Regression test for #31109.
|
||||
// Ensure the test produces a valid float with the expected bit pattern.
|
||||
assert_float_result_bits_eq!(
|
||||
0x3fd5555555555555,
|
||||
f64,
|
||||
"0.3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333"
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn issue31407() {
|
||||
// Regression test for #31407.
|
||||
// Ensure the test produces a valid float with the expected bit pattern.
|
||||
assert_float_result_bits_eq!(
|
||||
0x1752a64e34ba0d3,
|
||||
f64,
|
||||
"1234567890123456789012345678901234567890e-340"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0xfffffffffffff,
|
||||
f64,
|
||||
"2.225073858507201136057409796709131975934819546351645648023426109724822222021076945516529523908135087914149158913039621106870086438694594645527657207407820621743379988141063267329253552286881372149012981122451451889849057222307285255133155755015914397476397983411801999323962548289017107081850690630666655994938275772572015763062690663332647565300009245888316433037779791869612049497390377829704905051080609940730262937128958950003583799967207254304360284078895771796150945516748243471030702609144621572289880258182545180325707018860872113128079512233426288368622321503775666622503982534335974568884423900265498198385487948292206894721689831099698365846814022854243330660339850886445804001034933970427567186443383770486037861622771738545623065874679014086723327636718749999999999999999999999999999999999999e-308"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x10000000000000,
|
||||
f64,
|
||||
"2.22507385850720113605740979670913197593481954635164564802342610972482222202107694551652952390813508791414915891303962110687008643869459464552765720740782062174337998814106326732925355228688137214901298112245145188984905722230728525513315575501591439747639798341180199932396254828901710708185069063066665599493827577257201576306269066333264756530000924588831643303777979186961204949739037782970490505108060994073026293712895895000358379996720725430436028407889577179615094551674824347103070260914462157228988025818254518032570701886087211312807951223342628836862232150377566662250398253433597456888442390026549819838548794829220689472168983109969836584681402285424333066033985088644580400103493397042756718644338377048603786162277173854562306587467901408672332763671875e-308"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x10000000000000,
|
||||
f64,
|
||||
"0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000222507385850720138309023271733240406421921598046233183055332741688720443481391819585428315901251102056406733973103581100515243416155346010885601238537771882113077799353200233047961014744258363607192156504694250373420837525080665061665815894872049117996859163964850063590877011830487479978088775374994945158045160505091539985658247081864511353793580499211598108576605199243335211435239014879569960959128889160299264151106346631339366347758651302937176204732563178148566435087212282863764204484681140761391147706280168985324411002416144742161856716615054015428508471675290190316132277889672970737312333408698898317506783884692609277397797285865965494109136909540613646756870239867831529068098461721092462539672851562500000000000000001"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x7fefffffffffffff,
|
||||
f64,
|
||||
"179769313486231580793728971405303415079934132710037826936173778980444968292764750946649017977587207096330286416692887910946555547851940402630657488671505820681908902000708383676273854845817711531764475730270069855571366959622842914819860834936475292719074168444365510704342711559699508093042880177904174497791.9999999999999999999999999999999999999999999999999999999999999999999999"
|
||||
);
|
||||
assert_float_result_bits_eq!(0x0, f64, "2.47032822920623272e-324");
|
||||
assert_float_result_bits_eq!(
|
||||
0x8000000,
|
||||
f64,
|
||||
"6.631236871469758276785396630275967243399099947355303144249971758736286630139265439618068200788048744105960420552601852889715006376325666595539603330361800519107591783233358492337208057849499360899425128640718856616503093444922854759159988160304439909868291973931426625698663157749836252274523485312442358651207051292453083278116143932569727918709786004497872322193856150225415211997283078496319412124640111777216148110752815101775295719811974338451936095907419622417538473679495148632480391435931767981122396703443803335529756003353209830071832230689201383015598792184172909927924176339315507402234836120730914783168400715462440053817592702766213559042115986763819482654128770595766806872783349146967171293949598850675682115696218943412532098591327667236328125E-316"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x10000,
|
||||
f64,
|
||||
"3.237883913302901289588352412501532174863037669423108059901297049552301970670676565786835742587799557860615776559838283435514391084153169252689190564396459577394618038928365305143463955100356696665629202017331344031730044369360205258345803431471660032699580731300954848363975548690010751530018881758184174569652173110473696022749934638425380623369774736560008997404060967498028389191878963968575439222206416981462690113342524002724385941651051293552601421155333430225237291523843322331326138431477823591142408800030775170625915670728657003151953664260769822494937951845801530895238439819708403389937873241463484205608000027270531106827387907791444918534771598750162812548862768493201518991668028251730299953143924168545708663913273994694463908672332763671875E-319"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x800000000100,
|
||||
f64,
|
||||
"6.953355807847677105972805215521891690222119817145950754416205607980030131549636688806115726399441880065386399864028691275539539414652831584795668560082999889551357784961446896042113198284213107935110217162654939802416034676213829409720583759540476786936413816541621287843248433202369209916612249676005573022703244799714622116542188837770376022371172079559125853382801396219552418839469770514904192657627060319372847562301074140442660237844114174497210955449896389180395827191602886654488182452409583981389442783377001505462015745017848754574668342161759496661766020028752888783387074850773192997102997936619876226688096314989645766000479009083731736585750335262099860150896718774401964796827166283225641992040747894382698751809812609536720628966577351093292236328125E-310"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x10800,
|
||||
f64,
|
||||
"3.339068557571188581835713701280943911923401916998521771655656997328440314559615318168849149074662609099998113009465566426808170378434065722991659642619467706034884424989741080790766778456332168200464651593995817371782125010668346652995912233993254584461125868481633343674905074271064409763090708017856584019776878812425312008812326260363035474811532236853359905334625575404216060622858633280744301892470300555678734689978476870369853549413277156622170245846166991655321535529623870646888786637528995592800436177901746286272273374471701452991433047257863864601424252024791567368195056077320885329384322332391564645264143400798619665040608077549162173963649264049738362290606875883456826586710961041737908872035803481241600376705491726170293986797332763671875E-319"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x0,
|
||||
f64,
|
||||
"2.4703282292062327208828439643411068618252990130716238221279284125033775363510437593264991818081799618989828234772285886546332835517796989819938739800539093906315035659515570226392290858392449105184435931802849936536152500319370457678249219365623669863658480757001585769269903706311928279558551332927834338409351978015531246597263579574622766465272827220056374006485499977096599470454020828166226237857393450736339007967761930577506740176324673600968951340535537458516661134223766678604162159680461914467291840300530057530849048765391711386591646239524912623653881879636239373280423891018672348497668235089863388587925628302755995657524455507255189313690836254779186948667994968324049705821028513185451396213837722826145437693412532098591327667236328124999e-324"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x0,
|
||||
f64,
|
||||
"2.4703282292062327208828439643411068618252990130716238221279284125033775363510437593264991818081799618989828234772285886546332835517796989819938739800539093906315035659515570226392290858392449105184435931802849936536152500319370457678249219365623669863658480757001585769269903706311928279558551332927834338409351978015531246597263579574622766465272827220056374006485499977096599470454020828166226237857393450736339007967761930577506740176324673600968951340535537458516661134223766678604162159680461914467291840300530057530849048765391711386591646239524912623653881879636239373280423891018672348497668235089863388587925628302755995657524455507255189313690836254779186948667994968324049705821028513185451396213837722826145437693412532098591327667236328125e-324"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x1,
|
||||
f64,
|
||||
"2.4703282292062327208828439643411068618252990130716238221279284125033775363510437593264991818081799618989828234772285886546332835517796989819938739800539093906315035659515570226392290858392449105184435931802849936536152500319370457678249219365623669863658480757001585769269903706311928279558551332927834338409351978015531246597263579574622766465272827220056374006485499977096599470454020828166226237857393450736339007967761930577506740176324673600968951340535537458516661134223766678604162159680461914467291840300530057530849048765391711386591646239524912623653881879636239373280423891018672348497668235089863388587925628302755995657524455507255189313690836254779186948667994968324049705821028513185451396213837722826145437693412532098591327667236328125001e-324"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x1,
|
||||
f64,
|
||||
"7.4109846876186981626485318930233205854758970392148714663837852375101326090531312779794975454245398856969484704316857659638998506553390969459816219401617281718945106978546710679176872575177347315553307795408549809608457500958111373034747658096871009590975442271004757307809711118935784838675653998783503015228055934046593739791790738723868299395818481660169122019456499931289798411362062484498678713572180352209017023903285791732520220528974020802906854021606612375549983402671300035812486479041385743401875520901590172592547146296175134159774938718574737870961645638908718119841271673056017045493004705269590165763776884908267986972573366521765567941072508764337560846003984904972149117463085539556354188641513168478436313080237596295773983001708984374999e-324"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x2,
|
||||
f64,
|
||||
"7.4109846876186981626485318930233205854758970392148714663837852375101326090531312779794975454245398856969484704316857659638998506553390969459816219401617281718945106978546710679176872575177347315553307795408549809608457500958111373034747658096871009590975442271004757307809711118935784838675653998783503015228055934046593739791790738723868299395818481660169122019456499931289798411362062484498678713572180352209017023903285791732520220528974020802906854021606612375549983402671300035812486479041385743401875520901590172592547146296175134159774938718574737870961645638908718119841271673056017045493004705269590165763776884908267986972573366521765567941072508764337560846003984904972149117463085539556354188641513168478436313080237596295773983001708984375e-324"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x2,
|
||||
f64,
|
||||
"7.4109846876186981626485318930233205854758970392148714663837852375101326090531312779794975454245398856969484704316857659638998506553390969459816219401617281718945106978546710679176872575177347315553307795408549809608457500958111373034747658096871009590975442271004757307809711118935784838675653998783503015228055934046593739791790738723868299395818481660169122019456499931289798411362062484498678713572180352209017023903285791732520220528974020802906854021606612375549983402671300035812486479041385743401875520901590172592547146296175134159774938718574737870961645638908718119841271673056017045493004705269590165763776884908267986972573366521765567941072508764337560846003984904972149117463085539556354188641513168478436313080237596295773983001708984375001e-324"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x6c9a143590c14,
|
||||
f64,
|
||||
"94393431193180696942841837085033647913224148539854e-358"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x7802665fd9600,
|
||||
f64,
|
||||
"104308485241983990666713401708072175773165034278685682646111762292409330928739751702404658197872319129036519947435319418387839758990478549477777586673075945844895981012024387992135617064532141489278815239849108105951619997829153633535314849999674266169258928940692239684771590065027025835804863585454872499320500023126142553932654370362024104462255244034053203998964360882487378334860197725139151265590832887433736189468858614521708567646743455601905935595381852723723645799866672558576993978025033590728687206296379801363024094048327273913079612469982585674824156000783167963081616214710691759864332339239688734656548790656486646106983450809073750535624894296242072010195710276073042036425579852459556183541199012652571123898996574563824424330960027873516082763671875e-1075"
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn many_digits() {
|
||||
// Check large numbers of digits to ensure we have cases where significant
|
||||
// digits (above Decimal::MAX_DIGITS) occurs.
|
||||
assert_float_result_bits_eq!(
|
||||
0x7ffffe,
|
||||
f32,
|
||||
"1.175494140627517859246175898662808184331245864732796240031385942718174675986064769972472277004271745681762695312500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-38"
|
||||
);
|
||||
assert_float_result_bits_eq!(
|
||||
0x7ffffe,
|
||||
f32,
|
||||
"1.175494140627517859246175898662808184331245864732796240031385942718174675986064769972472277004271745681762695312500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-38"
|
||||
);
|
||||
}
|
||||
|
|
|
@ -1,172 +0,0 @@
|
|||
use core::num::dec2flt::rawfp::RawFloat;
|
||||
use core::num::dec2flt::rawfp::{fp_to_float, next_float, prev_float, round_normal};
|
||||
use core::num::diy_float::Fp;
|
||||
|
||||
fn integer_decode(f: f64) -> (u64, i16, i8) {
|
||||
RawFloat::integer_decode(f)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn fp_to_float_half_to_even() {
|
||||
fn is_normalized(sig: u64) -> bool {
|
||||
// intentionally written without {min,max}_sig() as a sanity check
|
||||
sig >> 52 == 1 && sig >> 53 == 0
|
||||
}
|
||||
|
||||
fn conv(sig: u64) -> u64 {
|
||||
// The significands are perfectly in range, so the exponent should not matter
|
||||
let (m1, e1, _) = integer_decode(fp_to_float::<f64>(Fp { f: sig, e: 0 }));
|
||||
assert_eq!(e1, 0 + 64 - 53);
|
||||
let (m2, e2, _) = integer_decode(fp_to_float::<f64>(Fp { f: sig, e: 55 }));
|
||||
assert_eq!(e2, 55 + 64 - 53);
|
||||
assert_eq!(m2, m1);
|
||||
let (m3, e3, _) = integer_decode(fp_to_float::<f64>(Fp { f: sig, e: -78 }));
|
||||
assert_eq!(e3, -78 + 64 - 53);
|
||||
assert_eq!(m3, m2);
|
||||
m3
|
||||
}
|
||||
|
||||
let odd = 0x1F_EDCB_A012_345F;
|
||||
let even = odd - 1;
|
||||
assert!(is_normalized(odd));
|
||||
assert!(is_normalized(even));
|
||||
assert_eq!(conv(odd << 11), odd);
|
||||
assert_eq!(conv(even << 11), even);
|
||||
assert_eq!(conv(odd << 11 | 1 << 10), odd + 1);
|
||||
assert_eq!(conv(even << 11 | 1 << 10), even);
|
||||
assert_eq!(conv(even << 11 | 1 << 10 | 1), even + 1);
|
||||
assert_eq!(conv(odd << 11 | 1 << 9), odd);
|
||||
assert_eq!(conv(even << 11 | 1 << 9), even);
|
||||
assert_eq!(conv(odd << 11 | 0x7FF), odd + 1);
|
||||
assert_eq!(conv(even << 11 | 0x7FF), even + 1);
|
||||
assert_eq!(conv(odd << 11 | 0x3FF), odd);
|
||||
assert_eq!(conv(even << 11 | 0x3FF), even);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn integers_to_f64() {
|
||||
assert_eq!(fp_to_float::<f64>(Fp { f: 1, e: 0 }), 1.0);
|
||||
assert_eq!(fp_to_float::<f64>(Fp { f: 42, e: 7 }), (42 << 7) as f64);
|
||||
assert_eq!(fp_to_float::<f64>(Fp { f: 1 << 20, e: 30 }), (1u64 << 50) as f64);
|
||||
assert_eq!(fp_to_float::<f64>(Fp { f: 4, e: -3 }), 0.5);
|
||||
}
|
||||
|
||||
const SOME_FLOATS: [f64; 9] = [
|
||||
0.1f64,
|
||||
33.568,
|
||||
42.1e-5,
|
||||
777.0e9,
|
||||
1.1111,
|
||||
0.347997,
|
||||
9843579834.35892,
|
||||
12456.0e-150,
|
||||
54389573.0e-150,
|
||||
];
|
||||
|
||||
#[test]
|
||||
fn human_f64_roundtrip() {
|
||||
for &x in &SOME_FLOATS {
|
||||
let (f, e, _) = integer_decode(x);
|
||||
let fp = Fp { f: f, e: e };
|
||||
assert_eq!(fp_to_float::<f64>(fp), x);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn rounding_overflow() {
|
||||
let x = Fp { f: 0xFF_FF_FF_FF_FF_FF_FF_00u64, e: 42 };
|
||||
let rounded = round_normal::<f64>(x);
|
||||
let adjusted_k = x.e + 64 - 53;
|
||||
assert_eq!(rounded.sig, 1 << 52);
|
||||
assert_eq!(rounded.k, adjusted_k + 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn prev_float_monotonic() {
|
||||
let mut x = 1.0;
|
||||
for _ in 0..100 {
|
||||
let x1 = prev_float(x);
|
||||
assert!(x1 < x);
|
||||
assert!(x - x1 < 1e-15);
|
||||
x = x1;
|
||||
}
|
||||
}
|
||||
|
||||
const MIN_SUBNORMAL: f64 = 5e-324;
|
||||
|
||||
#[test]
|
||||
fn next_float_zero() {
|
||||
let tiny = next_float(0.0);
|
||||
assert_eq!(tiny, MIN_SUBNORMAL);
|
||||
assert!(tiny != 0.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn next_float_subnormal() {
|
||||
let second = next_float(MIN_SUBNORMAL);
|
||||
// For subnormals, MIN_SUBNORMAL is the ULP
|
||||
assert!(second != MIN_SUBNORMAL);
|
||||
assert!(second > 0.0);
|
||||
assert_eq!(second - MIN_SUBNORMAL, MIN_SUBNORMAL);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn next_float_inf() {
|
||||
assert_eq!(next_float(f64::MAX), f64::INFINITY);
|
||||
assert_eq!(next_float(f64::INFINITY), f64::INFINITY);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn next_prev_identity() {
|
||||
for &x in &SOME_FLOATS {
|
||||
assert_eq!(prev_float(next_float(x)), x);
|
||||
assert_eq!(prev_float(prev_float(next_float(next_float(x)))), x);
|
||||
assert_eq!(next_float(prev_float(x)), x);
|
||||
assert_eq!(next_float(next_float(prev_float(prev_float(x)))), x);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn next_float_monotonic() {
|
||||
let mut x = 0.49999999999999;
|
||||
assert!(x < 0.5);
|
||||
for _ in 0..200 {
|
||||
let x1 = next_float(x);
|
||||
assert!(x1 > x);
|
||||
assert!(x1 - x < 1e-15, "next_float_monotonic: delta = {:?}", x1 - x);
|
||||
x = x1;
|
||||
}
|
||||
assert!(x > 0.5);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_f32_integer_decode() {
|
||||
assert_eq!(3.14159265359f32.integer_decode(), (13176795, -22, 1));
|
||||
assert_eq!((-8573.5918555f32).integer_decode(), (8779358, -10, -1));
|
||||
assert_eq!(2f32.powf(100.0).integer_decode(), (8388608, 77, 1));
|
||||
assert_eq!(0f32.integer_decode(), (0, -150, 1));
|
||||
assert_eq!((-0f32).integer_decode(), (0, -150, -1));
|
||||
assert_eq!(f32::INFINITY.integer_decode(), (8388608, 105, 1));
|
||||
assert_eq!(f32::NEG_INFINITY.integer_decode(), (8388608, 105, -1));
|
||||
|
||||
// Ignore the "sign" (quiet / signalling flag) of NAN.
|
||||
// It can vary between runtime operations and LLVM folding.
|
||||
let (nan_m, nan_e, _nan_s) = f32::NAN.integer_decode();
|
||||
assert_eq!((nan_m, nan_e), (12582912, 105));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_f64_integer_decode() {
|
||||
assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906, -51, 1));
|
||||
assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931, -39, -1));
|
||||
assert_eq!(2f64.powf(100.0).integer_decode(), (4503599627370496, 48, 1));
|
||||
assert_eq!(0f64.integer_decode(), (0, -1075, 1));
|
||||
assert_eq!((-0f64).integer_decode(), (0, -1075, -1));
|
||||
assert_eq!(f64::INFINITY.integer_decode(), (4503599627370496, 972, 1));
|
||||
assert_eq!(f64::NEG_INFINITY.integer_decode(), (4503599627370496, 972, -1));
|
||||
|
||||
// Ignore the "sign" (quiet / signalling flag) of NAN.
|
||||
// It can vary between runtime operations and LLVM folding.
|
||||
let (nan_m, nan_e, _nan_s) = f64::NAN.integer_decode();
|
||||
assert_eq!((nan_m, nan_e), (6755399441055744, 972));
|
||||
}
|
195
src/etc/dec2flt_table.py
Executable file → Normal file
195
src/etc/dec2flt_table.py
Executable file → Normal file
|
@ -1,141 +1,110 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
"""
|
||||
Generate powers of ten using William Clinger's ``AlgorithmM`` for use in
|
||||
Generate powers of five using Daniel Lemire's ``Eisel-Lemire algorithm`` for use in
|
||||
decimal to floating point conversions.
|
||||
|
||||
Specifically, computes and outputs (as Rust code) a table of 10^e for some
|
||||
range of exponents e. The output is one array of 64 bit significands and
|
||||
another array of corresponding base two exponents. The approximations are
|
||||
normalized and rounded perfectly, i.e., within 0.5 ULP of the true value.
|
||||
range of exponents e. The output is one array of 128 bit significands.
|
||||
The base two exponents can be inferred using a logarithmic slope
|
||||
of the decimal exponent. The approximations are normalized and rounded perfectly,
|
||||
i.e., within 0.5 ULP of the true value.
|
||||
|
||||
The representation ([u64], [i16]) instead of the more natural [(u64, i16)]
|
||||
is used because (u64, i16) has a ton of padding which would make the table
|
||||
even larger, and it's already uncomfortably large (6 KiB).
|
||||
Adapted from Daniel Lemire's fast_float ``table_generation.py``,
|
||||
available here: <https://github.com/fastfloat/fast_float/blob/main/script/table_generation.py>.
|
||||
"""
|
||||
from __future__ import print_function
|
||||
from math import ceil, log
|
||||
from math import ceil, floor, log, log2
|
||||
from fractions import Fraction
|
||||
from collections import namedtuple
|
||||
|
||||
|
||||
N = 64 # Size of the significand field in bits
|
||||
MIN_SIG = 2 ** (N - 1)
|
||||
MAX_SIG = (2 ** N) - 1
|
||||
|
||||
# Hand-rolled fp representation without arithmetic or any other operations.
|
||||
# The significand is normalized and always N bit, but the exponent is
|
||||
# unrestricted in range.
|
||||
Fp = namedtuple('Fp', 'sig exp')
|
||||
|
||||
|
||||
def algorithm_m(f, e):
|
||||
assert f > 0
|
||||
if e < 0:
|
||||
u = f
|
||||
v = 10 ** abs(e)
|
||||
else:
|
||||
u = f * 10 ** e
|
||||
v = 1
|
||||
k = 0
|
||||
x = u // v
|
||||
while True:
|
||||
if x < MIN_SIG:
|
||||
u <<= 1
|
||||
k -= 1
|
||||
elif x >= MAX_SIG:
|
||||
v <<= 1
|
||||
k += 1
|
||||
else:
|
||||
break
|
||||
x = u // v
|
||||
return ratio_to_float(u, v, k)
|
||||
|
||||
|
||||
def ratio_to_float(u, v, k):
|
||||
q, r = divmod(u, v)
|
||||
v_r = v - r
|
||||
z = Fp(q, k)
|
||||
if r < v_r:
|
||||
return z
|
||||
elif r > v_r:
|
||||
return next_float(z)
|
||||
elif q % 2 == 0:
|
||||
return z
|
||||
else:
|
||||
return next_float(z)
|
||||
|
||||
|
||||
def next_float(z):
|
||||
if z.sig == MAX_SIG:
|
||||
return Fp(MIN_SIG, z.exp + 1)
|
||||
else:
|
||||
return Fp(z.sig + 1, z.exp)
|
||||
|
||||
|
||||
def error(f, e, z):
|
||||
decimal = f * Fraction(10) ** e
|
||||
binary = z.sig * Fraction(2) ** z.exp
|
||||
abs_err = abs(decimal - binary)
|
||||
# The unit in the last place has value z.exp
|
||||
ulp_err = abs_err / Fraction(2) ** z.exp
|
||||
return float(ulp_err)
|
||||
|
||||
from collections import deque
|
||||
|
||||
HEADER = """
|
||||
//! Tables of approximations of powers of ten.
|
||||
//! Pre-computed tables powers-of-5 for extended-precision representations.
|
||||
//!
|
||||
//! These tables enable fast scaling of the significant digits
|
||||
//! of a float to the decimal exponent, with minimal rounding
|
||||
//! errors, in a 128 or 192-bit representation.
|
||||
//!
|
||||
//! DO NOT MODIFY: Generated by `src/etc/dec2flt_table.py`
|
||||
"""
|
||||
|
||||
STATIC_WARNING = """
|
||||
// Use static to avoid long compile times: Rust compiler errors
|
||||
// can have the entire table compiled multiple times, and then
|
||||
// emit code multiple times, even if it's stripped out in
|
||||
// the final binary.
|
||||
"""
|
||||
|
||||
def main():
|
||||
min_exp = minimum_exponent(10)
|
||||
max_exp = maximum_exponent(10)
|
||||
bias = -minimum_exponent(5)
|
||||
|
||||
print(HEADER.strip())
|
||||
print()
|
||||
print_proper_powers()
|
||||
print('pub const SMALLEST_POWER_OF_FIVE: i32 = {};'.format(min_exp))
|
||||
print('pub const LARGEST_POWER_OF_FIVE: i32 = {};'.format(max_exp))
|
||||
print('pub const N_POWERS_OF_FIVE: usize = ', end='')
|
||||
print('(LARGEST_POWER_OF_FIVE - SMALLEST_POWER_OF_FIVE + 1) as usize;')
|
||||
print()
|
||||
print_short_powers(32, 24)
|
||||
print()
|
||||
print_short_powers(64, 53)
|
||||
print_proper_powers(min_exp, max_exp, bias)
|
||||
|
||||
|
||||
def print_proper_powers():
|
||||
MIN_E = -305
|
||||
MAX_E = 305
|
||||
e_range = range(MIN_E, MAX_E+1)
|
||||
def minimum_exponent(base):
|
||||
return ceil(log(5e-324, base) - log(0xFFFFFFFFFFFFFFFF, base))
|
||||
|
||||
|
||||
def maximum_exponent(base):
|
||||
return floor(log(1.7976931348623157e+308, base))
|
||||
|
||||
|
||||
def print_proper_powers(min_exp, max_exp, bias):
|
||||
powers = deque()
|
||||
|
||||
# Add negative exponents.
|
||||
# 2^(2b)/(5^−q) with b=64 + int(math.ceil(log2(5^−q)))
|
||||
powers = []
|
||||
for e in e_range:
|
||||
z = algorithm_m(1, e)
|
||||
err = error(1, e, z)
|
||||
assert err < 0.5
|
||||
powers.append(z)
|
||||
print("pub const MIN_E: i16 = {};".format(MIN_E))
|
||||
print("pub const MAX_E: i16 = {};".format(MAX_E))
|
||||
print()
|
||||
print("#[rustfmt::skip]")
|
||||
typ = "([u64; {0}], [i16; {0}])".format(len(powers))
|
||||
print("pub static POWERS: ", typ, " = (", sep='')
|
||||
print(" [")
|
||||
for z in powers:
|
||||
print(" 0x{:x},".format(z.sig))
|
||||
print(" ],")
|
||||
print(" [")
|
||||
for z in powers:
|
||||
print(" {},".format(z.exp))
|
||||
print(" ],")
|
||||
print(");")
|
||||
for q in range(min_exp, 0):
|
||||
power5 = 5 ** -q
|
||||
z = 0
|
||||
while (1 << z) < power5:
|
||||
z += 1
|
||||
if q >= -27:
|
||||
b = z + 127
|
||||
c = 2 ** b // power5 + 1
|
||||
powers.append((c, q))
|
||||
else:
|
||||
b = 2 * z + 2 * 64
|
||||
c = 2 ** b // power5 + 1
|
||||
# truncate
|
||||
while c >= (1<<128):
|
||||
c //= 2
|
||||
powers.append((c, q))
|
||||
|
||||
# Add positive exponents
|
||||
for q in range(0, max_exp + 1):
|
||||
power5 = 5 ** q
|
||||
# move the most significant bit in position
|
||||
while power5 < (1<<127):
|
||||
power5 *= 2
|
||||
# *truncate*
|
||||
while power5 >= (1<<128):
|
||||
power5 //= 2
|
||||
powers.append((power5, q))
|
||||
|
||||
def print_short_powers(num_bits, significand_size):
|
||||
max_sig = 2**significand_size - 1
|
||||
# The fast path bails out for exponents >= ceil(log5(max_sig))
|
||||
max_e = int(ceil(log(max_sig, 5)))
|
||||
e_range = range(max_e)
|
||||
typ = "[f{}; {}]".format(num_bits, len(e_range))
|
||||
print("#[rustfmt::skip]")
|
||||
print("pub const F", num_bits, "_SHORT_POWERS: ", typ, " = [", sep='')
|
||||
for e in e_range:
|
||||
print(" 1e{},".format(e))
|
||||
print("];")
|
||||
# Print the powers.
|
||||
print(STATIC_WARNING.strip())
|
||||
print('#[rustfmt::skip]')
|
||||
typ = '[(u64, u64); N_POWERS_OF_FIVE]'
|
||||
print('pub static POWER_OF_FIVE_128: {} = ['.format(typ))
|
||||
lo_mask = (1 << 64) - 1
|
||||
for c, exp in powers:
|
||||
hi = '0x{:x}'.format(c // (1 << 64))
|
||||
lo = '0x{:x}'.format(c % (1 << 64))
|
||||
value = ' ({}, {}), '.format(hi, lo)
|
||||
comment = '// {}^{}'.format(5, exp)
|
||||
print(value.ljust(46, ' ') + comment)
|
||||
print('];')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
13
src/etc/test-float-parse/Cargo.toml
Normal file
13
src/etc/test-float-parse/Cargo.toml
Normal file
|
@ -0,0 +1,13 @@
|
|||
[package]
|
||||
name = "test-float-parse"
|
||||
version = "0.1.0"
|
||||
edition = "2018"
|
||||
publish = false
|
||||
|
||||
[workspace]
|
||||
|
||||
[dependencies]
|
||||
rand = "0.4"
|
||||
|
||||
[lib]
|
||||
name = "test_float_parse"
|
|
@ -131,22 +131,20 @@ def write_errors():
|
|||
exit_status = 101
|
||||
|
||||
|
||||
def rustc(test):
|
||||
rs = test + '.rs'
|
||||
exe = test + '.exe' # hopefully this makes it work on *nix
|
||||
print("compiling", test)
|
||||
def cargo():
|
||||
print("compiling tests")
|
||||
sys.stdout.flush()
|
||||
check_call(['rustc', rs, '-o', exe])
|
||||
check_call(['cargo', 'build', '--release'])
|
||||
|
||||
|
||||
def run(test):
|
||||
global test_name
|
||||
test_name = test
|
||||
|
||||
t0 = time.clock()
|
||||
t0 = time.perf_counter()
|
||||
msg("setting up supervisor")
|
||||
exe = test + '.exe'
|
||||
proc = Popen(exe, bufsize=1<<20 , stdin=PIPE, stdout=PIPE, stderr=PIPE)
|
||||
command = ['cargo', 'run', '--bin', test, '--release']
|
||||
proc = Popen(command, bufsize=1<<20 , stdin=PIPE, stdout=PIPE, stderr=PIPE)
|
||||
done = multiprocessing.Value(ctypes.c_bool)
|
||||
queue = multiprocessing.Queue(maxsize=5)#(maxsize=1024)
|
||||
workers = []
|
||||
|
@ -166,7 +164,7 @@ def run(test):
|
|||
worker.join()
|
||||
msg("python is done")
|
||||
assert queue.empty(), "did not validate everything"
|
||||
dt = time.clock() - t0
|
||||
dt = time.perf_counter() - t0
|
||||
msg("took", round(dt, 3), "seconds")
|
||||
|
||||
|
||||
|
@ -176,7 +174,7 @@ def interact(proc, queue):
|
|||
line = proc.stdout.readline()
|
||||
if not line:
|
||||
continue
|
||||
assert line.endswith('\n'), "incomplete line: " + repr(line)
|
||||
assert line.endswith(b'\n'), "incomplete line: " + repr(line)
|
||||
queue.put(line)
|
||||
n += 1
|
||||
if n % UPDATE_EVERY_N == 0:
|
||||
|
@ -185,7 +183,7 @@ def interact(proc, queue):
|
|||
rest, stderr = proc.communicate()
|
||||
if stderr:
|
||||
msg("rust stderr output:", stderr)
|
||||
for line in rest.split('\n'):
|
||||
for line in rest.split(b'\n'):
|
||||
if not line:
|
||||
continue
|
||||
queue.put(line)
|
||||
|
@ -193,18 +191,19 @@ def interact(proc, queue):
|
|||
|
||||
def main():
|
||||
global MAILBOX
|
||||
all_tests = [os.path.splitext(f)[0] for f in glob('*.rs') if not f.startswith('_')]
|
||||
files = glob('src/bin/*.rs')
|
||||
basenames = [os.path.basename(i) for i in files]
|
||||
all_tests = [os.path.splitext(f)[0] for f in basenames if not f.startswith('_')]
|
||||
args = sys.argv[1:]
|
||||
if args:
|
||||
tests = [test for test in all_tests if test in args]
|
||||
else
|
||||
else:
|
||||
tests = all_tests
|
||||
if not tests:
|
||||
print("Error: No tests to run")
|
||||
sys.exit(1)
|
||||
# Compile first for quicker feedback
|
||||
for test in tests:
|
||||
rustc(test)
|
||||
cargo()
|
||||
# Set up mailbox once for all tests
|
||||
MAILBOX = multiprocessing.Queue()
|
||||
mailman = threading.Thread(target=write_errors)
|
||||
|
@ -251,7 +250,7 @@ def do_work(queue):
|
|||
else:
|
||||
continue
|
||||
bin64, bin32, text = line.rstrip().split()
|
||||
validate(bin64, bin32, text)
|
||||
validate(bin64, bin32, text.decode('utf-8'))
|
||||
|
||||
|
||||
def decode_binary64(x):
|
||||
|
@ -331,7 +330,11 @@ SINGLE_ZERO_CUTOFF = MIN_SUBNORMAL_SINGLE / 2
|
|||
SINGLE_INF_CUTOFF = MAX_SINGLE + 2 ** (MAX_ULP_SINGLE - 1)
|
||||
|
||||
def validate(bin64, bin32, text):
|
||||
try:
|
||||
double = decode_binary64(bin64)
|
||||
except AssertionError:
|
||||
print(bin64, bin32, text)
|
||||
raise
|
||||
single = decode_binary32(bin32)
|
||||
real = Fraction(text)
|
||||
|
||||
|
|
|
@ -1,6 +1,4 @@
|
|||
mod _common;
|
||||
|
||||
use _common::validate;
|
||||
use test_float_parse::validate;
|
||||
|
||||
fn main() {
|
||||
let mut pow = vec![];
|
|
@ -1,6 +1,4 @@
|
|||
mod _common;
|
||||
|
||||
use _common::validate;
|
||||
use test_float_parse::validate;
|
||||
|
||||
fn main() {
|
||||
for e in 300..310 {
|
|
@ -1,7 +1,5 @@
|
|||
mod _common;
|
||||
|
||||
use _common::validate;
|
||||
use std::char;
|
||||
use test_float_parse::validate;
|
||||
|
||||
fn main() {
|
||||
for n in 0..10 {
|
|
@ -1,11 +1,9 @@
|
|||
extern crate rand;
|
||||
|
||||
mod _common;
|
||||
|
||||
use _common::{validate, SEED};
|
||||
use rand::distributions::{Range, Sample};
|
||||
use rand::{IsaacRng, Rng, SeedableRng};
|
||||
use std::char;
|
||||
use test_float_parse::{validate, SEED};
|
||||
|
||||
fn main() {
|
||||
let mut rnd = IsaacRng::from_seed(&SEED);
|
|
@ -1,10 +1,8 @@
|
|||
extern crate rand;
|
||||
|
||||
mod _common;
|
||||
|
||||
use _common::{validate, SEED};
|
||||
use rand::{IsaacRng, Rng, SeedableRng};
|
||||
use std::mem::transmute;
|
||||
use test_float_parse::{validate, SEED};
|
||||
|
||||
fn main() {
|
||||
let mut rnd = IsaacRng::from_seed(&SEED);
|
|
@ -1,6 +1,4 @@
|
|||
mod _common;
|
||||
|
||||
use _common::validate;
|
||||
use test_float_parse::validate;
|
||||
|
||||
fn main() {
|
||||
// Skip e = 0 because small-u32 already does those.
|
|
@ -1,7 +1,5 @@
|
|||
mod _common;
|
||||
|
||||
use _common::validate;
|
||||
use std::mem::transmute;
|
||||
use test_float_parse::validate;
|
||||
|
||||
fn main() {
|
||||
for bits in 0u32..(1 << 21) {
|
|
@ -1,6 +1,4 @@
|
|||
mod _common;
|
||||
|
||||
use _common::validate;
|
||||
use test_float_parse::validate;
|
||||
|
||||
fn main() {
|
||||
for e in 301..327 {
|
|
@ -1,6 +1,4 @@
|
|||
mod _common;
|
||||
|
||||
use _common::validate;
|
||||
use test_float_parse::validate;
|
||||
|
||||
fn main() {
|
||||
for i in 0..(1 << 19) {
|
|
@ -1,6 +1,4 @@
|
|||
mod _common;
|
||||
|
||||
use _common::validate;
|
||||
use test_float_parse::validate;
|
||||
|
||||
fn main() {
|
||||
for exp in 19..64 {
|
|
@ -1,6 +0,0 @@
|
|||
fn main() {
|
||||
// FIXME(#31407) this error should go away, but in the meantime we test that it
|
||||
// is accompanied by a somewhat useful error message.
|
||||
let _: f64 = 1234567890123456789012345678901234567890e-340;
|
||||
//~^ ERROR could not evaluate float literal (see issue #31407)
|
||||
}
|
|
@ -1,8 +0,0 @@
|
|||
error: could not evaluate float literal (see issue #31407)
|
||||
--> $DIR/issue-31109.rs:4:18
|
||||
|
|
||||
LL | let _: f64 = 1234567890123456789012345678901234567890e-340;
|
||||
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
error: aborting due to previous error
|
||||
|
9
src/test/ui/parser/float-literals.rs
Normal file
9
src/test/ui/parser/float-literals.rs
Normal file
|
@ -0,0 +1,9 @@
|
|||
// build-pass
|
||||
// ignore-tidy-linelength
|
||||
// Regression test for #31109 and #31407.
|
||||
|
||||
pub fn main() {
|
||||
let _: f64 = 0.3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333;
|
||||
|
||||
let _: f64 = 1234567890123456789012345678901234567890e-340;
|
||||
}
|
|
@ -1,7 +0,0 @@
|
|||
fn main() {
|
||||
let 1234567890123456789012345678901234567890e-340: f64 = 0.0;
|
||||
//~^ ERROR could not evaluate float literal (see issue #31407)
|
||||
|
||||
fn param(1234567890123456789012345678901234567890e-340: f64) {}
|
||||
//~^ ERROR could not evaluate float literal (see issue #31407)
|
||||
}
|
|
@ -1,15 +0,0 @@
|
|||
error[E0080]: could not evaluate float literal (see issue #31407)
|
||||
--> $DIR/issue-68396-let-float-bug.rs:2:9
|
||||
|
|
||||
LL | let 1234567890123456789012345678901234567890e-340: f64 = 0.0;
|
||||
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
error[E0080]: could not evaluate float literal (see issue #31407)
|
||||
--> $DIR/issue-68396-let-float-bug.rs:5:14
|
||||
|
|
||||
LL | fn param(1234567890123456789012345678901234567890e-340: f64) {}
|
||||
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
error: aborting due to 2 previous errors
|
||||
|
||||
For more information about this error, try `rustc --explain E0080`.
|
Loading…
Add table
Add a link
Reference in a new issue