1
Fork 0

Rollup merge of #132246 - workingjubilee:campaign-on-irform, r=compiler-errors

Rename `rustc_abi::Abi` to `BackendRepr`

Remove the confabulation of `rustc_abi::Abi` with what "ABI" actually means by renaming it to `BackendRepr`, and rename `Abi::Aggregate` to `BackendRepr::Memory`. The type never actually represented how things are passed, as that has to have `PassMode` considered, at minimum, but rather it just is how we represented some things to the backend. This conflation arose because LLVM, the primary backend at the time, would lower certain IR forms using certain ABIs. Even that only somewhat was true, as it broke down when one ventured significantly afield of what is described by the System V AMD64 ABI either by using different architectures, ABI-modifying IR annotations, the same architecture **with different ISA extensions enabled**, or other... unexpected delights.

Unfortunately both names are still somewhat of a misnomer right now, as people have written code for years based on this misunderstanding. Still, their original names are even moreso, and for better or worse, this backend code hasn't received as much maintenance as the rest of the compiler, lately. Actually arriving at a correct end-state will simply require us to disentangle a lot of code in order to fix, much of it pointlessly repeated in several places. Thus this is not an "actual fix", just a way to deflect further misunderstandings.
This commit is contained in:
Jubilee 2024-10-30 14:01:37 -07:00 committed by GitHub
commit 847b6fe6b0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
98 changed files with 873 additions and 643 deletions

View file

@ -1,7 +1,7 @@
use std::iter;
use rustc_abi::Primitive::Pointer;
use rustc_abi::{Abi, PointerKind, Scalar, Size};
use rustc_abi::{BackendRepr, PointerKind, Scalar, Size};
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_middle::bug;
@ -469,7 +469,7 @@ fn fn_abi_sanity_check<'tcx>(
// careful. Scalar/ScalarPair is fine, since backends will generally use
// `layout.abi` and ignore everything else. We should just reject `Aggregate`
// entirely here, but some targets need to be fixed first.
if matches!(arg.layout.abi, Abi::Aggregate { .. }) {
if matches!(arg.layout.backend_repr, BackendRepr::Memory { .. }) {
// For an unsized type we'd only pass the sized prefix, so there is no universe
// in which we ever want to allow this.
assert!(
@ -500,7 +500,7 @@ fn fn_abi_sanity_check<'tcx>(
// Similar to `Direct`, we need to make sure that backends use `layout.abi` and
// ignore the rest of the layout.
assert!(
matches!(arg.layout.abi, Abi::ScalarPair(..)),
matches!(arg.layout.backend_repr, BackendRepr::ScalarPair(..)),
"PassMode::Pair for type {}",
arg.layout.ty
);
@ -658,9 +658,9 @@ fn fn_abi_adjust_for_abi<'tcx>(
fn unadjust<'tcx>(arg: &mut ArgAbi<'tcx, Ty<'tcx>>) {
// This still uses `PassMode::Pair` for ScalarPair types. That's unlikely to be intended,
// but who knows what breaks if we change this now.
if matches!(arg.layout.abi, Abi::Aggregate { .. }) {
if matches!(arg.layout.backend_repr, BackendRepr::Memory { .. }) {
assert!(
arg.layout.abi.is_sized(),
arg.layout.backend_repr.is_sized(),
"'unadjusted' ABI does not support unsized arguments"
);
}
@ -731,8 +731,8 @@ fn make_thin_self_ptr<'tcx>(
// FIXME (mikeyhew) change this to use &own if it is ever added to the language
Ty::new_mut_ptr(tcx, layout.ty)
} else {
match layout.abi {
Abi::ScalarPair(..) | Abi::Scalar(..) => (),
match layout.backend_repr {
BackendRepr::ScalarPair(..) | BackendRepr::Scalar(..) => (),
_ => bug!("receiver type has unsupported layout: {:?}", layout),
}

View file

@ -5,8 +5,9 @@ use hir::def_id::DefId;
use rustc_abi::Integer::{I8, I32};
use rustc_abi::Primitive::{self, Float, Int, Pointer};
use rustc_abi::{
Abi, AbiAndPrefAlign, AddressSpace, Align, FieldsShape, HasDataLayout, LayoutCalculatorError,
LayoutData, Niche, ReprOptions, Scalar, Size, StructKind, TagEncoding, Variants, WrappingRange,
AbiAndPrefAlign, AddressSpace, Align, BackendRepr, FieldsShape, HasDataLayout,
LayoutCalculatorError, LayoutData, Niche, ReprOptions, Scalar, Size, StructKind, TagEncoding,
Variants, WrappingRange,
};
use rustc_index::bit_set::BitSet;
use rustc_index::{IndexSlice, IndexVec};
@ -173,7 +174,9 @@ fn layout_of_uncached<'tcx>(
let mut layout = LayoutData::clone(&layout.0);
match *pat {
ty::PatternKind::Range { start, end, include_end } => {
if let Abi::Scalar(scalar) | Abi::ScalarPair(scalar, _) = &mut layout.abi {
if let BackendRepr::Scalar(scalar) | BackendRepr::ScalarPair(scalar, _) =
&mut layout.backend_repr
{
if let Some(start) = start {
scalar.valid_range_mut().start = start
.try_to_bits(tcx, param_env)
@ -275,7 +278,7 @@ fn layout_of_uncached<'tcx>(
return Ok(tcx.mk_layout(LayoutData::scalar(cx, data_ptr)));
}
let Abi::Scalar(metadata) = metadata_layout.abi else {
let BackendRepr::Scalar(metadata) = metadata_layout.backend_repr else {
return Err(error(cx, LayoutError::Unknown(pointee)));
};
@ -330,9 +333,9 @@ fn layout_of_uncached<'tcx>(
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
let abi = if count != 0 && ty.is_privately_uninhabited(tcx, param_env) {
Abi::Uninhabited
BackendRepr::Uninhabited
} else {
Abi::Aggregate { sized: true }
BackendRepr::Memory { sized: true }
};
let largest_niche = if count != 0 { element.largest_niche } else { None };
@ -340,7 +343,7 @@ fn layout_of_uncached<'tcx>(
tcx.mk_layout(LayoutData {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: element.size, count },
abi,
backend_repr: abi,
largest_niche,
align: element.align,
size,
@ -353,7 +356,7 @@ fn layout_of_uncached<'tcx>(
tcx.mk_layout(LayoutData {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: element.size, count: 0 },
abi: Abi::Aggregate { sized: false },
backend_repr: BackendRepr::Memory { sized: false },
largest_niche: None,
align: element.align,
size: Size::ZERO,
@ -364,7 +367,7 @@ fn layout_of_uncached<'tcx>(
ty::Str => tcx.mk_layout(LayoutData {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
abi: Abi::Aggregate { sized: false },
backend_repr: BackendRepr::Memory { sized: false },
largest_niche: None,
align: dl.i8_align,
size: Size::ZERO,
@ -384,8 +387,8 @@ fn layout_of_uncached<'tcx>(
&ReprOptions::default(),
StructKind::AlwaysSized,
)?;
match unit.abi {
Abi::Aggregate { ref mut sized } => *sized = false,
match unit.backend_repr {
BackendRepr::Memory { ref mut sized } => *sized = false,
_ => bug!(),
}
tcx.mk_layout(unit)
@ -500,7 +503,7 @@ fn layout_of_uncached<'tcx>(
// Compute the ABI of the element type:
let e_ly = cx.layout_of(e_ty)?;
let Abi::Scalar(e_abi) = e_ly.abi else {
let BackendRepr::Scalar(e_abi) = e_ly.backend_repr else {
// This error isn't caught in typeck, e.g., if
// the element type of the vector is generic.
tcx.dcx().emit_fatal(NonPrimitiveSimdType { ty, e_ty });
@ -516,12 +519,12 @@ fn layout_of_uncached<'tcx>(
// Non-power-of-two vectors have padding up to the next power-of-two.
// If we're a packed repr, remove the padding while keeping the alignment as close
// to a vector as possible.
(Abi::Aggregate { sized: true }, AbiAndPrefAlign {
(BackendRepr::Memory { sized: true }, AbiAndPrefAlign {
abi: Align::max_for_offset(size),
pref: dl.vector_align(size).pref,
})
} else {
(Abi::Vector { element: e_abi, count: e_len }, dl.vector_align(size))
(BackendRepr::Vector { element: e_abi, count: e_len }, dl.vector_align(size))
};
let size = size.align_to(align.abi);
@ -535,7 +538,7 @@ fn layout_of_uncached<'tcx>(
tcx.mk_layout(LayoutData {
variants: Variants::Single { index: FIRST_VARIANT },
fields,
abi,
backend_repr: abi,
largest_niche: e_ly.largest_niche,
size,
align,
@ -985,10 +988,12 @@ fn coroutine_layout<'tcx>(
size = size.align_to(align.abi);
let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi.is_uninhabited()) {
Abi::Uninhabited
let abi = if prefix.backend_repr.is_uninhabited()
|| variants.iter().all(|v| v.backend_repr.is_uninhabited())
{
BackendRepr::Uninhabited
} else {
Abi::Aggregate { sized: true }
BackendRepr::Memory { sized: true }
};
let layout = tcx.mk_layout(LayoutData {
@ -999,7 +1004,7 @@ fn coroutine_layout<'tcx>(
variants,
},
fields: outer_fields,
abi,
backend_repr: abi,
// Suppress niches inside coroutines. If the niche is inside a field that is aliased (due to
// self-referentiality), getting the discriminant can cause aliasing violations.
// `UnsafeCell` blocks niches for the same reason, but we don't yet have `UnsafePinned` that

View file

@ -66,12 +66,12 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLayout<'tcx>) {
// Verify the ABI mandated alignment and size.
let align = layout.abi.inherent_align(cx).map(|align| align.abi);
let size = layout.abi.inherent_size(cx);
let align = layout.backend_repr.inherent_align(cx).map(|align| align.abi);
let size = layout.backend_repr.inherent_size(cx);
let Some((align, size)) = align.zip(size) else {
assert_matches!(
layout.layout.abi(),
Abi::Uninhabited | Abi::Aggregate { .. },
layout.layout.backend_repr(),
BackendRepr::Uninhabited | BackendRepr::Memory { .. },
"ABI unexpectedly missing alignment and/or size in {layout:#?}"
);
return;
@ -88,12 +88,12 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
);
// Verify per-ABI invariants
match layout.layout.abi() {
Abi::Scalar(_) => {
match layout.layout.backend_repr() {
BackendRepr::Scalar(_) => {
// Check that this matches the underlying field.
let inner = skip_newtypes(cx, layout);
assert!(
matches!(inner.layout.abi(), Abi::Scalar(_)),
matches!(inner.layout.backend_repr(), BackendRepr::Scalar(_)),
"`Scalar` type {} is newtype around non-`Scalar` type {}",
layout.ty,
inner.ty
@ -132,7 +132,7 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
"`Scalar` field with bad align in {inner:#?}",
);
assert!(
matches!(field.abi, Abi::Scalar(_)),
matches!(field.backend_repr, BackendRepr::Scalar(_)),
"`Scalar` field with bad ABI in {inner:#?}",
);
}
@ -141,11 +141,11 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
}
}
}
Abi::ScalarPair(scalar1, scalar2) => {
BackendRepr::ScalarPair(scalar1, scalar2) => {
// Check that the underlying pair of fields matches.
let inner = skip_newtypes(cx, layout);
assert!(
matches!(inner.layout.abi(), Abi::ScalarPair(..)),
matches!(inner.layout.backend_repr(), BackendRepr::ScalarPair(..)),
"`ScalarPair` type {} is newtype around non-`ScalarPair` type {}",
layout.ty,
inner.ty
@ -208,8 +208,8 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
"`ScalarPair` first field with bad align in {inner:#?}",
);
assert_matches!(
field1.abi,
Abi::Scalar(_),
field1.backend_repr,
BackendRepr::Scalar(_),
"`ScalarPair` first field with bad ABI in {inner:#?}",
);
let field2_offset = size1.align_to(align2);
@ -226,16 +226,16 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
"`ScalarPair` second field with bad align in {inner:#?}",
);
assert_matches!(
field2.abi,
Abi::Scalar(_),
field2.backend_repr,
BackendRepr::Scalar(_),
"`ScalarPair` second field with bad ABI in {inner:#?}",
);
}
Abi::Vector { element, .. } => {
BackendRepr::Vector { element, .. } => {
assert!(align >= element.align(cx).abi); // just sanity-checking `vector_align`.
// FIXME: Do some kind of check of the inner type, like for Scalar and ScalarPair.
}
Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
BackendRepr::Uninhabited | BackendRepr::Memory { .. } => {} // Nothing to check.
}
}
@ -274,13 +274,13 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
// The top-level ABI and the ABI of the variants should be coherent.
let scalar_coherent =
|s1: Scalar, s2: Scalar| s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx);
let abi_coherent = match (layout.abi, variant.abi) {
(Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
(Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
let abi_coherent = match (layout.backend_repr, variant.backend_repr) {
(BackendRepr::Scalar(s1), BackendRepr::Scalar(s2)) => scalar_coherent(s1, s2),
(BackendRepr::ScalarPair(a1, b1), BackendRepr::ScalarPair(a2, b2)) => {
scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
}
(Abi::Uninhabited, _) => true,
(Abi::Aggregate { .. }, _) => true,
(BackendRepr::Uninhabited, _) => true,
(BackendRepr::Memory { .. }, _) => true,
_ => false,
};
if !abi_coherent {