1
Fork 0

Auto merge of #116270 - cjgillot:gvn-aggregate, r=oli-obk,RalfJung

See through aggregates in GVN

This PR is extracted from https://github.com/rust-lang/rust/pull/111344

The first 2 commit are cleanups to avoid repeated work. I propose to stop removing useless assignments as part of this pass, and let a later `SimplifyLocals` do it. This makes tests easier to read (among others).

The next 3 commits add a constant folding mechanism to the GVN pass, presented in https://github.com/rust-lang/rust/pull/116012. ~This pass is designed to only use global allocations, to avoid any risk of accidental modification of the stored state.~

The following commits implement opportunistic simplifications, in particular:
- projections of aggregates: `MyStruct { x: a }.x` gets replaced by `a`, works with enums too;
- projections of arrays: `[a, b][0]` becomes `a`;
- projections of repeat expressions: `[a; N][x]` becomes `a`;
- transform arrays of equal operands into a repeat rvalue.

Fixes https://github.com/rust-lang/miri/issues/3090

r? `@oli-obk`
This commit is contained in:
bors 2023-10-29 14:50:53 +00:00
commit 83c9732e0c
51 changed files with 4333 additions and 2622 deletions

View file

@ -406,7 +406,8 @@ impl<'a, 'tcx> ConstAnalysis<'a, 'tcx> {
TrackElem::Variant(idx) => self.ecx.project_downcast(op, idx).ok(),
TrackElem::Discriminant => {
let variant = self.ecx.read_discriminant(op).ok()?;
let discr_value = self.ecx.discriminant_for_variant(op.layout, variant).ok()?;
let discr_value =
self.ecx.discriminant_for_variant(op.layout.ty, variant).ok()?;
Some(discr_value.into())
}
TrackElem::DerefLen => {
@ -507,7 +508,8 @@ impl<'a, 'tcx> ConstAnalysis<'a, 'tcx> {
return None;
}
let enum_ty_layout = self.tcx.layout_of(self.param_env.and(enum_ty)).ok()?;
let discr_value = self.ecx.discriminant_for_variant(enum_ty_layout, variant_index).ok()?;
let discr_value =
self.ecx.discriminant_for_variant(enum_ty_layout.ty, variant_index).ok()?;
Some(discr_value.to_scalar())
}
@ -854,7 +856,7 @@ impl<'tcx> Visitor<'tcx> for OperandCollector<'tcx, '_, '_, '_> {
}
}
struct DummyMachine;
pub(crate) struct DummyMachine;
impl<'mir, 'tcx: 'mir> rustc_const_eval::interpret::Machine<'mir, 'tcx> for DummyMachine {
rustc_const_eval::interpret::compile_time_machine!(<'mir, 'tcx>);

View file

@ -52,19 +52,59 @@
//! _a = *_b // _b is &Freeze
//! _c = *_b // replaced by _c = _a
//! ```
//!
//! # Determinism of constant propagation
//!
//! When registering a new `Value`, we attempt to opportunistically evaluate it as a constant.
//! The evaluated form is inserted in `evaluated` as an `OpTy` or `None` if evaluation failed.
//!
//! The difficulty is non-deterministic evaluation of MIR constants. Some `Const` can have
//! different runtime values each time they are evaluated. This is the case with
//! `Const::Slice` which have a new pointer each time they are evaluated, and constants that
//! contain a fn pointer (`AllocId` pointing to a `GlobalAlloc::Function`) pointing to a different
//! symbol in each codegen unit.
//!
//! Meanwhile, we want to be able to read indirect constants. For instance:
//! ```
//! static A: &'static &'static u8 = &&63;
//! fn foo() -> u8 {
//! **A // We want to replace by 63.
//! }
//! fn bar() -> u8 {
//! b"abc"[1] // We want to replace by 'b'.
//! }
//! ```
//!
//! The `Value::Constant` variant stores a possibly unevaluated constant. Evaluating that constant
//! may be non-deterministic. When that happens, we assign a disambiguator to ensure that we do not
//! merge the constants. See `duplicate_slice` test in `gvn.rs`.
//!
//! Second, when writing constants in MIR, we do not write `Const::Slice` or `Const`
//! that contain `AllocId`s.
use rustc_const_eval::interpret::{intern_const_alloc_for_constprop, MemoryKind};
use rustc_const_eval::interpret::{ImmTy, InterpCx, OpTy, Projectable, Scalar};
use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
use rustc_data_structures::graph::dominators::Dominators;
use rustc_hir::def::DefKind;
use rustc_index::bit_set::BitSet;
use rustc_index::IndexVec;
use rustc_macros::newtype_index;
use rustc_middle::mir::interpret::GlobalAlloc;
use rustc_middle::mir::visit::*;
use rustc_middle::mir::*;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_target::abi::{VariantIdx, FIRST_VARIANT};
use rustc_middle::ty::adjustment::PointerCoercion;
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeAndMut};
use rustc_span::def_id::DefId;
use rustc_span::DUMMY_SP;
use rustc_target::abi::{self, Abi, Size, VariantIdx, FIRST_VARIANT};
use std::borrow::Cow;
use crate::dataflow_const_prop::DummyMachine;
use crate::ssa::{AssignedValue, SsaLocals};
use crate::MirPass;
use either::Either;
pub struct GVN;
@ -118,22 +158,33 @@ fn propagate_ssa<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let data = &mut body.basic_blocks.as_mut_preserves_cfg()[bb];
state.visit_basic_block_data(bb, data);
}
let any_replacement = state.any_replacement;
// For each local that is reused (`y` above), we remove its storage statements do avoid any
// difficulty. Those locals are SSA, so should be easy to optimize by LLVM without storage
// statements.
StorageRemover { tcx, reused_locals: state.reused_locals }.visit_body_preserves_cfg(body);
if any_replacement {
crate::simplify::remove_unused_definitions(body);
}
}
newtype_index! {
struct VnIndex {}
}
/// Computing the aggregate's type can be quite slow, so we only keep the minimal amount of
/// information to reconstruct it when needed.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum AggregateTy<'tcx> {
/// Invariant: this must not be used for an empty array.
Array,
Tuple,
Def(DefId, ty::GenericArgsRef<'tcx>),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum AddressKind {
Ref(BorrowKind),
Address(Mutability),
}
#[derive(Debug, PartialEq, Eq, Hash)]
enum Value<'tcx> {
// Root values.
@ -141,15 +192,21 @@ enum Value<'tcx> {
/// The `usize` is a counter incremented by `new_opaque`.
Opaque(usize),
/// Evaluated or unevaluated constant value.
Constant(Const<'tcx>),
Constant {
value: Const<'tcx>,
/// Some constants do not have a deterministic value. To avoid merging two instances of the
/// same `Const`, we assign them an additional integer index.
disambiguator: usize,
},
/// An aggregate value, either tuple/closure/struct/enum.
/// This does not contain unions, as we cannot reason with the value.
Aggregate(Ty<'tcx>, VariantIdx, Vec<VnIndex>),
Aggregate(AggregateTy<'tcx>, VariantIdx, Vec<VnIndex>),
/// This corresponds to a `[value; count]` expression.
Repeat(VnIndex, ty::Const<'tcx>),
/// The address of a place.
Address {
place: Place<'tcx>,
kind: AddressKind,
/// Give each borrow and pointer a different provenance, so we don't merge them.
provenance: usize,
},
@ -177,6 +234,7 @@ enum Value<'tcx> {
struct VnState<'body, 'tcx> {
tcx: TyCtxt<'tcx>,
ecx: InterpCx<'tcx, 'tcx, DummyMachine>,
param_env: ty::ParamEnv<'tcx>,
local_decls: &'body LocalDecls<'tcx>,
/// Value stored in each local.
@ -184,13 +242,14 @@ struct VnState<'body, 'tcx> {
/// First local to be assigned that value.
rev_locals: FxHashMap<VnIndex, Vec<Local>>,
values: FxIndexSet<Value<'tcx>>,
/// Values evaluated as constants if possible.
evaluated: IndexVec<VnIndex, Option<OpTy<'tcx>>>,
/// Counter to generate different values.
/// This is an option to stop creating opaques during replacement.
next_opaque: Option<usize>,
ssa: &'body SsaLocals,
dominators: &'body Dominators<BasicBlock>,
reused_locals: BitSet<Local>,
any_replacement: bool,
}
impl<'body, 'tcx> VnState<'body, 'tcx> {
@ -203,23 +262,30 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
) -> Self {
VnState {
tcx,
ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
param_env,
local_decls,
locals: IndexVec::from_elem(None, local_decls),
rev_locals: FxHashMap::default(),
values: FxIndexSet::default(),
evaluated: IndexVec::new(),
next_opaque: Some(0),
ssa,
dominators,
reused_locals: BitSet::new_empty(local_decls.len()),
any_replacement: false,
}
}
#[instrument(level = "trace", skip(self), ret)]
fn insert(&mut self, value: Value<'tcx>) -> VnIndex {
let (index, _) = self.values.insert_full(value);
VnIndex::from_usize(index)
let (index, new) = self.values.insert_full(value);
let index = VnIndex::from_usize(index);
if new {
let evaluated = self.eval_to_const(index);
let _index = self.evaluated.push(evaluated);
debug_assert_eq!(index, _index);
}
index
}
/// Create a new `Value` for which we have no information at all, except that it is distinct
@ -234,9 +300,9 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
/// Create a new `Value::Address` distinct from all the others.
#[instrument(level = "trace", skip(self), ret)]
fn new_pointer(&mut self, place: Place<'tcx>) -> Option<VnIndex> {
fn new_pointer(&mut self, place: Place<'tcx>, kind: AddressKind) -> Option<VnIndex> {
let next_opaque = self.next_opaque.as_mut()?;
let value = Value::Address { place, provenance: *next_opaque };
let value = Value::Address { place, kind, provenance: *next_opaque };
*next_opaque += 1;
Some(self.insert(value))
}
@ -258,6 +324,343 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
}
}
fn insert_constant(&mut self, value: Const<'tcx>) -> Option<VnIndex> {
let disambiguator = if value.is_deterministic() {
// The constant is deterministic, no need to disambiguate.
0
} else {
// Multiple mentions of this constant will yield different values,
// so assign a different `disambiguator` to ensure they do not get the same `VnIndex`.
let next_opaque = self.next_opaque.as_mut()?;
let disambiguator = *next_opaque;
*next_opaque += 1;
disambiguator
};
Some(self.insert(Value::Constant { value, disambiguator }))
}
fn insert_scalar(&mut self, scalar: Scalar, ty: Ty<'tcx>) -> VnIndex {
self.insert_constant(Const::from_scalar(self.tcx, scalar, ty))
.expect("scalars are deterministic")
}
#[instrument(level = "trace", skip(self), ret)]
fn eval_to_const(&mut self, value: VnIndex) -> Option<OpTy<'tcx>> {
use Value::*;
let op = match *self.get(value) {
Opaque(_) => return None,
// Do not bother evaluating repeat expressions. This would uselessly consume memory.
Repeat(..) => return None,
Constant { ref value, disambiguator: _ } => {
self.ecx.eval_mir_constant(value, None, None).ok()?
}
Aggregate(kind, variant, ref fields) => {
let fields = fields
.iter()
.map(|&f| self.evaluated[f].as_ref())
.collect::<Option<Vec<_>>>()?;
let ty = match kind {
AggregateTy::Array => {
assert!(fields.len() > 0);
Ty::new_array(self.tcx, fields[0].layout.ty, fields.len() as u64)
}
AggregateTy::Tuple => {
Ty::new_tup_from_iter(self.tcx, fields.iter().map(|f| f.layout.ty))
}
AggregateTy::Def(def_id, args) => {
self.tcx.type_of(def_id).instantiate(self.tcx, args)
}
};
let variant = if ty.is_enum() { Some(variant) } else { None };
let ty = self.ecx.layout_of(ty).ok()?;
if ty.is_zst() {
ImmTy::uninit(ty).into()
} else if matches!(ty.abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
let dest = self.ecx.allocate(ty, MemoryKind::Stack).ok()?;
let variant_dest = if let Some(variant) = variant {
self.ecx.project_downcast(&dest, variant).ok()?
} else {
dest.clone()
};
for (field_index, op) in fields.into_iter().enumerate() {
let field_dest = self.ecx.project_field(&variant_dest, field_index).ok()?;
self.ecx.copy_op(op, &field_dest, /*allow_transmute*/ false).ok()?;
}
self.ecx.write_discriminant(variant.unwrap_or(FIRST_VARIANT), &dest).ok()?;
self.ecx.alloc_mark_immutable(dest.ptr().provenance.unwrap()).ok()?;
dest.into()
} else {
return None;
}
}
Projection(base, elem) => {
let value = self.evaluated[base].as_ref()?;
let elem = match elem {
ProjectionElem::Deref => ProjectionElem::Deref,
ProjectionElem::Downcast(name, read_variant) => {
ProjectionElem::Downcast(name, read_variant)
}
ProjectionElem::Field(f, ty) => ProjectionElem::Field(f, ty),
ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
ProjectionElem::ConstantIndex { offset, min_length, from_end }
}
ProjectionElem::Subslice { from, to, from_end } => {
ProjectionElem::Subslice { from, to, from_end }
}
ProjectionElem::OpaqueCast(ty) => ProjectionElem::OpaqueCast(ty),
ProjectionElem::Subtype(ty) => ProjectionElem::Subtype(ty),
// This should have been replaced by a `ConstantIndex` earlier.
ProjectionElem::Index(_) => return None,
};
self.ecx.project(value, elem).ok()?
}
Address { place, kind, provenance: _ } => {
if !place.is_indirect_first_projection() {
return None;
}
let local = self.locals[place.local]?;
let pointer = self.evaluated[local].as_ref()?;
let mut mplace = self.ecx.deref_pointer(pointer).ok()?;
for proj in place.projection.iter().skip(1) {
// We have no call stack to associate a local with a value, so we cannot interpret indexing.
if matches!(proj, ProjectionElem::Index(_)) {
return None;
}
mplace = self.ecx.project(&mplace, proj).ok()?;
}
let pointer = mplace.to_ref(&self.ecx);
let ty = match kind {
AddressKind::Ref(bk) => Ty::new_ref(
self.tcx,
self.tcx.lifetimes.re_erased,
ty::TypeAndMut { ty: mplace.layout.ty, mutbl: bk.to_mutbl_lossy() },
),
AddressKind::Address(mutbl) => {
Ty::new_ptr(self.tcx, TypeAndMut { ty: mplace.layout.ty, mutbl })
}
};
let layout = self.ecx.layout_of(ty).ok()?;
ImmTy::from_immediate(pointer, layout).into()
}
Discriminant(base) => {
let base = self.evaluated[base].as_ref()?;
let variant = self.ecx.read_discriminant(base).ok()?;
let discr_value =
self.ecx.discriminant_for_variant(base.layout.ty, variant).ok()?;
discr_value.into()
}
Len(slice) => {
let slice = self.evaluated[slice].as_ref()?;
let usize_layout = self.ecx.layout_of(self.tcx.types.usize).unwrap();
let len = slice.len(&self.ecx).ok()?;
let imm = ImmTy::try_from_uint(len, usize_layout)?;
imm.into()
}
NullaryOp(null_op, ty) => {
let layout = self.ecx.layout_of(ty).ok()?;
if let NullOp::SizeOf | NullOp::AlignOf = null_op && layout.is_unsized() {
return None;
}
let val = match null_op {
NullOp::SizeOf => layout.size.bytes(),
NullOp::AlignOf => layout.align.abi.bytes(),
NullOp::OffsetOf(fields) => layout
.offset_of_subfield(&self.ecx, fields.iter().map(|f| f.index()))
.bytes(),
};
let usize_layout = self.ecx.layout_of(self.tcx.types.usize).unwrap();
let imm = ImmTy::try_from_uint(val, usize_layout)?;
imm.into()
}
UnaryOp(un_op, operand) => {
let operand = self.evaluated[operand].as_ref()?;
let operand = self.ecx.read_immediate(operand).ok()?;
let (val, _) = self.ecx.overflowing_unary_op(un_op, &operand).ok()?;
val.into()
}
BinaryOp(bin_op, lhs, rhs) => {
let lhs = self.evaluated[lhs].as_ref()?;
let lhs = self.ecx.read_immediate(lhs).ok()?;
let rhs = self.evaluated[rhs].as_ref()?;
let rhs = self.ecx.read_immediate(rhs).ok()?;
let (val, _) = self.ecx.overflowing_binary_op(bin_op, &lhs, &rhs).ok()?;
val.into()
}
CheckedBinaryOp(bin_op, lhs, rhs) => {
let lhs = self.evaluated[lhs].as_ref()?;
let lhs = self.ecx.read_immediate(lhs).ok()?;
let rhs = self.evaluated[rhs].as_ref()?;
let rhs = self.ecx.read_immediate(rhs).ok()?;
let (val, overflowed) = self.ecx.overflowing_binary_op(bin_op, &lhs, &rhs).ok()?;
let tuple = Ty::new_tup_from_iter(
self.tcx,
[val.layout.ty, self.tcx.types.bool].into_iter(),
);
let tuple = self.ecx.layout_of(tuple).ok()?;
ImmTy::from_scalar_pair(val.to_scalar(), Scalar::from_bool(overflowed), tuple)
.into()
}
Cast { kind, value, from: _, to } => match kind {
CastKind::IntToInt | CastKind::IntToFloat => {
let value = self.evaluated[value].as_ref()?;
let value = self.ecx.read_immediate(value).ok()?;
let to = self.ecx.layout_of(to).ok()?;
let res = self.ecx.int_to_int_or_float(&value, to).ok()?;
res.into()
}
CastKind::FloatToFloat | CastKind::FloatToInt => {
let value = self.evaluated[value].as_ref()?;
let value = self.ecx.read_immediate(value).ok()?;
let to = self.ecx.layout_of(to).ok()?;
let res = self.ecx.float_to_float_or_int(&value, to).ok()?;
res.into()
}
CastKind::Transmute => {
let value = self.evaluated[value].as_ref()?;
let to = self.ecx.layout_of(to).ok()?;
// `offset` for immediates only supports scalar/scalar-pair ABIs,
// so bail out if the target is not one.
if value.as_mplace_or_imm().is_right() {
match (value.layout.abi, to.abi) {
(Abi::Scalar(..), Abi::Scalar(..)) => {}
(Abi::ScalarPair(..), Abi::ScalarPair(..)) => {}
_ => return None,
}
}
value.offset(Size::ZERO, to, &self.ecx).ok()?
}
_ => return None,
},
};
Some(op)
}
fn project(
&mut self,
place: PlaceRef<'tcx>,
value: VnIndex,
proj: PlaceElem<'tcx>,
) -> Option<VnIndex> {
let proj = match proj {
ProjectionElem::Deref => {
let ty = place.ty(self.local_decls, self.tcx).ty;
if let Some(Mutability::Not) = ty.ref_mutability()
&& let Some(pointee_ty) = ty.builtin_deref(true)
&& pointee_ty.ty.is_freeze(self.tcx, self.param_env)
{
// An immutable borrow `_x` always points to the same value for the
// lifetime of the borrow, so we can merge all instances of `*_x`.
ProjectionElem::Deref
} else {
return None;
}
}
ProjectionElem::Downcast(name, index) => ProjectionElem::Downcast(name, index),
ProjectionElem::Field(f, ty) => {
if let Value::Aggregate(_, _, fields) = self.get(value) {
return Some(fields[f.as_usize()]);
} else if let Value::Projection(outer_value, ProjectionElem::Downcast(_, read_variant)) = self.get(value)
&& let Value::Aggregate(_, written_variant, fields) = self.get(*outer_value)
// This pass is not aware of control-flow, so we do not know whether the
// replacement we are doing is actually reachable. We could be in any arm of
// ```
// match Some(x) {
// Some(y) => /* stuff */,
// None => /* other */,
// }
// ```
//
// In surface rust, the current statement would be unreachable.
//
// However, from the reference chapter on enums and RFC 2195,
// accessing the wrong variant is not UB if the enum has repr.
// So it's not impossible for a series of MIR opts to generate
// a downcast to an inactive variant.
&& written_variant == read_variant
{
return Some(fields[f.as_usize()]);
}
ProjectionElem::Field(f, ty)
}
ProjectionElem::Index(idx) => {
if let Value::Repeat(inner, _) = self.get(value) {
return Some(*inner);
}
let idx = self.locals[idx]?;
ProjectionElem::Index(idx)
}
ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
match self.get(value) {
Value::Repeat(inner, _) => {
return Some(*inner);
}
Value::Aggregate(AggregateTy::Array, _, operands) => {
let offset = if from_end {
operands.len() - offset as usize
} else {
offset as usize
};
return operands.get(offset).copied();
}
_ => {}
};
ProjectionElem::ConstantIndex { offset, min_length, from_end }
}
ProjectionElem::Subslice { from, to, from_end } => {
ProjectionElem::Subslice { from, to, from_end }
}
ProjectionElem::OpaqueCast(ty) => ProjectionElem::OpaqueCast(ty),
ProjectionElem::Subtype(ty) => ProjectionElem::Subtype(ty),
};
Some(self.insert(Value::Projection(value, proj)))
}
/// Simplify the projection chain if we know better.
#[instrument(level = "trace", skip(self))]
fn simplify_place_projection(&mut self, place: &mut Place<'tcx>, location: Location) {
// If the projection is indirect, we treat the local as a value, so can replace it with
// another local.
if place.is_indirect()
&& let Some(base) = self.locals[place.local]
&& let Some(new_local) = self.try_as_local(base, location)
{
place.local = new_local;
self.reused_locals.insert(new_local);
}
let mut projection = Cow::Borrowed(&place.projection[..]);
for i in 0..projection.len() {
let elem = projection[i];
if let ProjectionElem::Index(idx) = elem
&& let Some(idx) = self.locals[idx]
{
if let Some(offset) = self.evaluated[idx].as_ref()
&& let Ok(offset) = self.ecx.read_target_usize(offset)
{
projection.to_mut()[i] = ProjectionElem::ConstantIndex {
offset,
min_length: offset + 1,
from_end: false,
};
} else if let Some(new_idx) = self.try_as_local(idx, location) {
projection.to_mut()[i] = ProjectionElem::Index(new_idx);
self.reused_locals.insert(new_idx);
}
}
}
if projection.is_owned() {
place.projection = self.tcx.mk_place_elems(&projection);
}
trace!(?place);
}
/// Represent the *value* which would be read from `place`, and point `place` to a preexisting
/// place with the same value (if that already exists).
#[instrument(level = "trace", skip(self), ret)]
@ -266,6 +669,8 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
place: &mut Place<'tcx>,
location: Location,
) -> Option<VnIndex> {
self.simplify_place_projection(place, location);
// Invariant: `place` and `place_ref` point to the same value, even if they point to
// different memory locations.
let mut place_ref = place.as_ref();
@ -280,58 +685,18 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
place_ref = PlaceRef { local, projection: &place.projection[index..] };
}
let proj = match proj {
ProjectionElem::Deref => {
let ty = Place::ty_from(
place.local,
&place.projection[..index],
self.local_decls,
self.tcx,
)
.ty;
if let Some(Mutability::Not) = ty.ref_mutability()
&& let Some(pointee_ty) = ty.builtin_deref(true)
&& pointee_ty.ty.is_freeze(self.tcx, self.param_env)
{
// An immutable borrow `_x` always points to the same value for the
// lifetime of the borrow, so we can merge all instances of `*_x`.
ProjectionElem::Deref
} else {
return None;
}
}
ProjectionElem::Field(f, ty) => ProjectionElem::Field(f, ty),
ProjectionElem::Index(idx) => {
let idx = self.locals[idx]?;
ProjectionElem::Index(idx)
}
ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
ProjectionElem::ConstantIndex { offset, min_length, from_end }
}
ProjectionElem::Subslice { from, to, from_end } => {
ProjectionElem::Subslice { from, to, from_end }
}
ProjectionElem::Downcast(name, index) => ProjectionElem::Downcast(name, index),
ProjectionElem::OpaqueCast(ty) => ProjectionElem::OpaqueCast(ty),
ProjectionElem::Subtype(ty) => ProjectionElem::Subtype(ty),
};
value = self.insert(Value::Projection(value, proj));
let base = PlaceRef { local: place.local, projection: &place.projection[..index] };
value = self.project(base, value, proj)?;
}
if let Some(local) = self.try_as_local(value, location)
&& local != place.local
// in case we had no projection to begin with.
{
*place = local.into();
self.reused_locals.insert(local);
self.any_replacement = true;
} else if place_ref.local != place.local
|| place_ref.projection.len() < place.projection.len()
{
if let Some(new_local) = self.try_as_local(value, location) {
place_ref = PlaceRef { local: new_local, projection: &[] };
}
if place_ref.local != place.local || place_ref.projection.len() < place.projection.len() {
// By the invariant on `place_ref`.
*place = place_ref.project_deeper(&[], self.tcx);
self.reused_locals.insert(place_ref.local);
self.any_replacement = true;
}
Some(value)
@ -344,12 +709,14 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
location: Location,
) -> Option<VnIndex> {
match *operand {
Operand::Constant(ref constant) => Some(self.insert(Value::Constant(constant.const_))),
Operand::Constant(ref mut constant) => {
let const_ = constant.const_.normalize(self.tcx, self.param_env);
self.insert_constant(const_)
}
Operand::Copy(ref mut place) | Operand::Move(ref mut place) => {
let value = self.simplify_place_value(place, location)?;
if let Some(const_) = self.try_as_constant(value) {
*operand = Operand::Constant(Box::new(const_));
self.any_replacement = true;
}
Some(value)
}
@ -378,24 +745,15 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
Value::Repeat(op, amount)
}
Rvalue::NullaryOp(op, ty) => Value::NullaryOp(op, ty),
Rvalue::Aggregate(box ref kind, ref mut fields) => {
let variant_index = match *kind {
AggregateKind::Array(..)
| AggregateKind::Tuple
| AggregateKind::Closure(..)
| AggregateKind::Coroutine(..) => FIRST_VARIANT,
AggregateKind::Adt(_, variant_index, _, _, None) => variant_index,
// Do not track unions.
AggregateKind::Adt(_, _, _, _, Some(_)) => return None,
};
let fields: Option<Vec<_>> = fields
.iter_mut()
.map(|op| self.simplify_operand(op, location).or_else(|| self.new_opaque()))
.collect();
let ty = rvalue.ty(self.local_decls, self.tcx);
Value::Aggregate(ty, variant_index, fields?)
Rvalue::Aggregate(..) => return self.simplify_aggregate(rvalue, location),
Rvalue::Ref(_, borrow_kind, ref mut place) => {
self.simplify_place_projection(place, location);
return self.new_pointer(*place, AddressKind::Ref(borrow_kind));
}
Rvalue::AddressOf(mutbl, ref mut place) => {
self.simplify_place_projection(place, location);
return self.new_pointer(*place, AddressKind::Address(mutbl));
}
Rvalue::Ref(.., place) | Rvalue::AddressOf(_, place) => return self.new_pointer(place),
// Operations.
Rvalue::Len(ref mut place) => {
@ -405,6 +763,14 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
Rvalue::Cast(kind, ref mut value, to) => {
let from = value.ty(self.local_decls, self.tcx);
let value = self.simplify_operand(value, location)?;
if let CastKind::PointerCoercion(
PointerCoercion::ReifyFnPointer | PointerCoercion::ClosureFnPointer(_),
) = kind
{
// Each reification of a generic fn may get a different pointer.
// Do not try to merge them.
return self.new_opaque();
}
Value::Cast { kind, value, from, to }
}
Rvalue::BinaryOp(op, box (ref mut lhs, ref mut rhs)) => {
@ -423,6 +789,9 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
}
Rvalue::Discriminant(ref mut place) => {
let place = self.simplify_place_value(place, location)?;
if let Some(discr) = self.simplify_discriminant(place) {
return Some(discr);
}
Value::Discriminant(place)
}
@ -432,45 +801,182 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
debug!(?value);
Some(self.insert(value))
}
fn simplify_discriminant(&mut self, place: VnIndex) -> Option<VnIndex> {
if let Value::Aggregate(enum_ty, variant, _) = *self.get(place)
&& let AggregateTy::Def(enum_did, enum_substs) = enum_ty
&& let DefKind::Enum = self.tcx.def_kind(enum_did)
{
let enum_ty = self.tcx.type_of(enum_did).instantiate(self.tcx, enum_substs);
let discr = self.ecx.discriminant_for_variant(enum_ty, variant).ok()?;
return Some(self.insert_scalar(discr.to_scalar(), discr.layout.ty));
}
None
}
fn simplify_aggregate(
&mut self,
rvalue: &mut Rvalue<'tcx>,
location: Location,
) -> Option<VnIndex> {
let Rvalue::Aggregate(box ref kind, ref mut fields) = *rvalue else { bug!() };
let tcx = self.tcx;
if fields.is_empty() {
let is_zst = match *kind {
AggregateKind::Array(..) | AggregateKind::Tuple | AggregateKind::Closure(..) => {
true
}
// Only enums can be non-ZST.
AggregateKind::Adt(did, ..) => tcx.def_kind(did) != DefKind::Enum,
// Coroutines are never ZST, as they at least contain the implicit states.
AggregateKind::Coroutine(..) => false,
};
if is_zst {
let ty = rvalue.ty(self.local_decls, tcx);
return self.insert_constant(Const::zero_sized(ty));
}
}
let (ty, variant_index) = match *kind {
AggregateKind::Array(..) => {
assert!(!fields.is_empty());
(AggregateTy::Array, FIRST_VARIANT)
}
AggregateKind::Tuple => {
assert!(!fields.is_empty());
(AggregateTy::Tuple, FIRST_VARIANT)
}
AggregateKind::Closure(did, substs) | AggregateKind::Coroutine(did, substs, _) => {
(AggregateTy::Def(did, substs), FIRST_VARIANT)
}
AggregateKind::Adt(did, variant_index, substs, _, None) => {
(AggregateTy::Def(did, substs), variant_index)
}
// Do not track unions.
AggregateKind::Adt(_, _, _, _, Some(_)) => return None,
};
let fields: Option<Vec<_>> = fields
.iter_mut()
.map(|op| self.simplify_operand(op, location).or_else(|| self.new_opaque()))
.collect();
let fields = fields?;
if let AggregateTy::Array = ty && fields.len() > 4 {
let first = fields[0];
if fields.iter().all(|&v| v == first) {
let len = ty::Const::from_target_usize(self.tcx, fields.len().try_into().unwrap());
if let Some(const_) = self.try_as_constant(first) {
*rvalue = Rvalue::Repeat(Operand::Constant(Box::new(const_)), len);
} else if let Some(local) = self.try_as_local(first, location) {
*rvalue = Rvalue::Repeat(Operand::Copy(local.into()), len);
self.reused_locals.insert(local);
}
return Some(self.insert(Value::Repeat(first, len)));
}
}
Some(self.insert(Value::Aggregate(ty, variant_index, fields)))
}
}
fn op_to_prop_const<'tcx>(
ecx: &mut InterpCx<'_, 'tcx, DummyMachine>,
op: &OpTy<'tcx>,
) -> Option<ConstValue<'tcx>> {
// Do not attempt to propagate unsized locals.
if op.layout.is_unsized() {
return None;
}
// This constant is a ZST, just return an empty value.
if op.layout.is_zst() {
return Some(ConstValue::ZeroSized);
}
// Do not synthetize too large constants. Codegen will just memcpy them, which we'd like to avoid.
if !matches!(op.layout.abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
return None;
}
// If this constant has scalar ABI, return it as a `ConstValue::Scalar`.
if let Abi::Scalar(abi::Scalar::Initialized { .. }) = op.layout.abi
&& let Ok(scalar) = ecx.read_scalar(op)
&& scalar.try_to_int().is_ok()
{
return Some(ConstValue::Scalar(scalar));
}
// If this constant is already represented as an `Allocation`,
// try putting it into global memory to return it.
if let Either::Left(mplace) = op.as_mplace_or_imm() {
let (size, _align) = ecx.size_and_align_of_mplace(&mplace).ok()??;
// Do not try interning a value that contains provenance.
// Due to https://github.com/rust-lang/rust/issues/79738, doing so could lead to bugs.
// FIXME: remove this hack once that issue is fixed.
let alloc_ref = ecx.get_ptr_alloc(mplace.ptr(), size).ok()??;
if alloc_ref.has_provenance() {
return None;
}
let pointer = mplace.ptr().into_pointer_or_addr().ok()?;
let (alloc_id, offset) = pointer.into_parts();
intern_const_alloc_for_constprop(ecx, alloc_id).ok()?;
if matches!(ecx.tcx.global_alloc(alloc_id), GlobalAlloc::Memory(_)) {
// `alloc_id` may point to a static. Codegen will choke on an `Indirect` with anything
// by `GlobalAlloc::Memory`, so do fall through to copying if needed.
// FIXME: find a way to treat this more uniformly
// (probably by fixing codegen)
return Some(ConstValue::Indirect { alloc_id, offset });
}
}
// Everything failed: create a new allocation to hold the data.
let alloc_id =
ecx.intern_with_temp_alloc(op.layout, |ecx, dest| ecx.copy_op(op, dest, false)).ok()?;
let value = ConstValue::Indirect { alloc_id, offset: Size::ZERO };
// Check that we do not leak a pointer.
// Those pointers may lose part of their identity in codegen.
// FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed.
if ecx.tcx.global_alloc(alloc_id).unwrap_memory().inner().provenance().ptrs().is_empty() {
return Some(value);
}
None
}
impl<'tcx> VnState<'_, 'tcx> {
/// If `index` is a `Value::Constant`, return the `Constant` to be put in the MIR.
fn try_as_constant(&mut self, index: VnIndex) -> Option<ConstOperand<'tcx>> {
if let Value::Constant(const_) = *self.get(index) {
// Some constants may contain pointers. We need to preserve the provenance of these
// pointers, but not all constants guarantee this:
// - valtrees purposefully do not;
// - ConstValue::Slice does not either.
match const_ {
Const::Ty(c) => match c.kind() {
ty::ConstKind::Value(valtree) => match valtree {
// This is just an integer, keep it.
ty::ValTree::Leaf(_) => {}
ty::ValTree::Branch(_) => return None,
},
ty::ConstKind::Param(..)
| ty::ConstKind::Unevaluated(..)
| ty::ConstKind::Expr(..) => {}
// Should not appear in runtime MIR.
ty::ConstKind::Infer(..)
| ty::ConstKind::Bound(..)
| ty::ConstKind::Placeholder(..)
| ty::ConstKind::Error(..) => bug!(),
},
Const::Unevaluated(..) => {}
// If the same slice appears twice in the MIR, we cannot guarantee that we will
// give the same `AllocId` to the data.
Const::Val(ConstValue::Slice { .. }, _) => return None,
Const::Val(
ConstValue::ZeroSized | ConstValue::Scalar(_) | ConstValue::Indirect { .. },
_,
) => {}
}
Some(ConstOperand { span: rustc_span::DUMMY_SP, user_ty: None, const_ })
} else {
None
// This was already constant in MIR, do not change it.
if let Value::Constant { value, disambiguator: _ } = *self.get(index)
// If the constant is not deterministic, adding an additional mention of it in MIR will
// not give the same value as the former mention.
&& value.is_deterministic()
{
return Some(ConstOperand { span: rustc_span::DUMMY_SP, user_ty: None, const_: value });
}
let op = self.evaluated[index].as_ref()?;
if op.layout.is_unsized() {
// Do not attempt to propagate unsized locals.
return None;
}
let value = op_to_prop_const(&mut self.ecx, op)?;
// Check that we do not leak a pointer.
// Those pointers may lose part of their identity in codegen.
// FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed.
assert!(!value.may_have_provenance(self.tcx, op.layout.size));
let const_ = Const::Val(value, op.layout.ty);
Some(ConstOperand { span: rustc_span::DUMMY_SP, user_ty: None, const_ })
}
/// If there is a local which is assigned `index`, and its assignment strictly dominates `loc`,
@ -489,27 +995,32 @@ impl<'tcx> MutVisitor<'tcx> for VnState<'_, 'tcx> {
self.tcx
}
fn visit_place(&mut self, place: &mut Place<'tcx>, _: PlaceContext, location: Location) {
self.simplify_place_projection(place, location);
}
fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
self.simplify_operand(operand, location);
}
fn visit_statement(&mut self, stmt: &mut Statement<'tcx>, location: Location) {
self.super_statement(stmt, location);
if let StatementKind::Assign(box (_, ref mut rvalue)) = stmt.kind
// Do not try to simplify a constant, it's already in canonical shape.
&& !matches!(rvalue, Rvalue::Use(Operand::Constant(_)))
&& let Some(value) = self.simplify_rvalue(rvalue, location)
{
if let Some(const_) = self.try_as_constant(value) {
*rvalue = Rvalue::Use(Operand::Constant(Box::new(const_)));
self.any_replacement = true;
} else if let Some(local) = self.try_as_local(value, location)
&& *rvalue != Rvalue::Use(Operand::Move(local.into()))
if let Some(value) = self.simplify_rvalue(rvalue, location)
{
*rvalue = Rvalue::Use(Operand::Copy(local.into()));
self.reused_locals.insert(local);
self.any_replacement = true;
if let Some(const_) = self.try_as_constant(value) {
*rvalue = Rvalue::Use(Operand::Constant(Box::new(const_)));
} else if let Some(local) = self.try_as_local(value, location)
&& *rvalue != Rvalue::Use(Operand::Move(local.into()))
{
*rvalue = Rvalue::Use(Operand::Copy(local.into()));
self.reused_locals.insert(local);
}
}
} else {
self.super_statement(stmt, location);
}
}
}

View file

@ -2,6 +2,7 @@
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]
#![feature(box_patterns)]
#![feature(cow_is_borrowed)]
#![feature(decl_macro)]
#![feature(is_sorted)]
#![feature(let_chains)]
@ -590,6 +591,7 @@ fn run_optimization_passes<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
&separate_const_switch::SeparateConstSwitch,
&const_prop::ConstProp,
&gvn::GVN,
&simplify::SimplifyLocals::AfterGVN,
&dataflow_const_prop::DataflowConstProp,
&const_debuginfo::ConstDebugInfo,
&o1(simplify_branches::SimplifyConstCondition::AfterConstProp),

View file

@ -366,6 +366,7 @@ pub fn remove_dead_blocks(body: &mut Body<'_>) {
pub enum SimplifyLocals {
BeforeConstProp,
AfterGVN,
Final,
}
@ -373,6 +374,7 @@ impl<'tcx> MirPass<'tcx> for SimplifyLocals {
fn name(&self) -> &'static str {
match &self {
SimplifyLocals::BeforeConstProp => "SimplifyLocals-before-const-prop",
SimplifyLocals::AfterGVN => "SimplifyLocals-after-value-numbering",
SimplifyLocals::Final => "SimplifyLocals-final",
}
}