Auto merge of #83774 - richkadel:zero-based-counters, r=tmandry

Translate counters from Rust 1-based to LLVM 0-based counter ids

A colleague contacted me and asked why Rust's counters start at 1, when
Clangs appear to start at 0. There is a reason why Rust's internal
counters start at 1 (see the docs), and I tried to keep them consistent
when codegenned to LLVM's coverage mapping format. LLVM should be
tolerant of missing counters, but as my colleague pointed out,
`llvm-cov` will silently fail to generate a coverage report for a
function based on LLVM's assumption that the counters are 0-based.

See:
https://github.com/llvm/llvm-project/blob/main/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp#L170

Apparently, if, for example, a function has no branches, it would have
exactly 1 counter. `CounterValues.size()` would be 1, and (with the
1-based index), the counter ID would be 1. This would fail the check
and abort reporting coverage for the function.

It turns out that by correcting for this during coverage map generation,
by subtracting 1 from the Rust Counter ID (both when generating the
counter increment intrinsic call, and when adding counters to the map),
some uncovered functions (including in tests) now appear covered! This
corrects the coverage for a few tests!

r? `@tmandry`
FYI: `@wesleywiser`
This commit is contained in:
bors 2021-04-03 06:27:03 +00:00
commit 836c317426
11 changed files with 212 additions and 96 deletions

View file

@ -24,21 +24,39 @@ pub enum CounterKind {
pub struct Counter {
// Important: The layout (order and types of fields) must match its C++ counterpart.
pub kind: CounterKind,
pub id: u32,
id: u32,
}
impl Counter {
/// Constructs a new `Counter` of kind `Zero`. For this `CounterKind`, the
/// `id` is not used.
pub fn zero() -> Self {
Self { kind: CounterKind::Zero, id: 0 }
}
/// Constructs a new `Counter` of kind `CounterValueReference`, and converts
/// the given 1-based counter_id to the required 0-based equivalent for
/// the `Counter` encoding.
pub fn counter_value_reference(counter_id: CounterValueReference) -> Self {
Self { kind: CounterKind::CounterValueReference, id: counter_id.into() }
Self { kind: CounterKind::CounterValueReference, id: counter_id.zero_based_index() }
}
/// Constructs a new `Counter` of kind `Expression`.
pub fn expression(mapped_expression_index: MappedExpressionIndex) -> Self {
Self { kind: CounterKind::Expression, id: mapped_expression_index.into() }
}
/// Returns true if the `Counter` kind is `Zero`.
pub fn is_zero(&self) -> bool {
matches!(self.kind, CounterKind::Zero)
}
/// An explicitly-named function to get the ID value, making it more obvious
/// that the stored value is now 0-based.
pub fn zero_based_id(&self) -> u32 {
debug_assert!(!self.is_zero(), "`id` is undefined for CounterKind::Zero");
self.id
}
}
/// Aligns with [llvm::coverage::CounterExpression::ExprKind](https://github.com/rust-lang/llvm-project/blob/rustc/11.0-2020-10-12/llvm/include/llvm/ProfileData/Coverage/CoverageMapping.h#L147)

View file

@ -163,9 +163,7 @@ impl<'tcx> FunctionCoverage<'tcx> {
self.counters.iter_enumerated().filter_map(|(index, entry)| {
// Option::map() will return None to filter out missing counters. This may happen
// if, for example, a MIR-instrumented counter is removed during an optimization.
entry.as_ref().map(|region| {
(Counter::counter_value_reference(index as CounterValueReference), region)
})
entry.as_ref().map(|region| (Counter::counter_value_reference(index), region))
})
}
@ -206,9 +204,15 @@ impl<'tcx> FunctionCoverage<'tcx> {
if id == ExpressionOperandId::ZERO {
Some(Counter::zero())
} else if id.index() < self.counters.len() {
debug_assert!(
id.index() > 0,
"ExpressionOperandId indexes for counters are 1-based, but this id={}",
id.index()
);
// Note: Some codegen-injected Counters may be only referenced by `Expression`s,
// and may not have their own `CodeRegion`s,
let index = CounterValueReference::from(id.index());
// Note, the conversion to LLVM `Counter` adjusts the index to be zero-based.
Some(Counter::counter_value_reference(index))
} else {
let index = self.expression_index(u32::from(id));
@ -233,19 +237,60 @@ impl<'tcx> FunctionCoverage<'tcx> {
let optional_region = &expression.region;
let Expression { lhs, op, rhs, .. } = *expression;
if let Some(Some((lhs_counter, rhs_counter))) =
id_to_counter(&new_indexes, lhs).map(|lhs_counter| {
if let Some(Some((lhs_counter, mut rhs_counter))) = id_to_counter(&new_indexes, lhs)
.map(|lhs_counter| {
id_to_counter(&new_indexes, rhs).map(|rhs_counter| (lhs_counter, rhs_counter))
})
{
if lhs_counter.is_zero() && op.is_subtract() {
// The left side of a subtraction was probably optimized out. As an example,
// a branch condition might be evaluated as a constant expression, and the
// branch could be removed, dropping unused counters in the process.
//
// Since counters are unsigned, we must assume the result of the expression
// can be no more and no less than zero. An expression known to evaluate to zero
// does not need to be added to the coverage map.
//
// Coverage test `loops_branches.rs` includes multiple variations of branches
// based on constant conditional (literal `true` or `false`), and demonstrates
// that the expected counts are still correct.
debug!(
"Expression subtracts from zero (assume unreachable): \
original_index={:?}, lhs={:?}, op={:?}, rhs={:?}, region={:?}",
original_index, lhs, op, rhs, optional_region,
);
rhs_counter = Counter::zero();
}
debug_assert!(
(lhs_counter.id as usize)
< usize::max(self.counters.len(), self.expressions.len())
lhs_counter.is_zero()
// Note: with `as usize` the ID _could_ overflow/wrap if `usize = u16`
|| ((lhs_counter.zero_based_id() as usize)
<= usize::max(self.counters.len(), self.expressions.len())),
"lhs id={} > both counters.len()={} and expressions.len()={}
({:?} {:?} {:?})",
lhs_counter.zero_based_id(),
self.counters.len(),
self.expressions.len(),
lhs_counter,
op,
rhs_counter,
);
debug_assert!(
(rhs_counter.id as usize)
< usize::max(self.counters.len(), self.expressions.len())
rhs_counter.is_zero()
// Note: with `as usize` the ID _could_ overflow/wrap if `usize = u16`
|| ((rhs_counter.zero_based_id() as usize)
<= usize::max(self.counters.len(), self.expressions.len())),
"rhs id={} > both counters.len()={} and expressions.len()={}
({:?} {:?} {:?})",
rhs_counter.zero_based_id(),
self.counters.len(),
self.expressions.len(),
lhs_counter,
op,
rhs_counter,
);
// Both operands exist. `Expression` operands exist in `self.expressions` and have
// been assigned a `new_index`.
let mapped_expression_index =
@ -268,11 +313,15 @@ impl<'tcx> FunctionCoverage<'tcx> {
expression_regions.push((Counter::expression(mapped_expression_index), region));
}
} else {
debug!(
"Ignoring expression with one or more missing operands: \
original_index={:?}, lhs={:?}, op={:?}, rhs={:?}, region={:?}",
original_index, lhs, op, rhs, optional_region,
)
bug!(
"expression has one or more missing operands \
original_index={:?}, lhs={:?}, op={:?}, rhs={:?}, region={:?}",
original_index,
lhs,
op,
rhs,
optional_region,
);
}
}
(counter_expressions, expression_regions.into_iter())

View file

@ -36,7 +36,7 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
let fn_name = bx.get_pgo_func_name_var(instance);
let hash = bx.const_u64(function_source_hash);
let num_counters = bx.const_u32(coverageinfo.num_counters);
let index = bx.const_u32(u32::from(id));
let index = bx.const_u32(id.zero_based_index());
debug!(
"codegen intrinsic instrprof.increment(fn_name={:?}, hash={:?}, num_counters={:?}, index={:?})",
fn_name, hash, num_counters, index,