1
Fork 0

Rework trait expansion to happen once explicitly

This commit is contained in:
Michael Goulet 2024-12-04 02:04:26 +00:00
parent 8361aef0d7
commit 824a867e82
26 changed files with 576 additions and 657 deletions

View file

@ -4,13 +4,12 @@ use rustc_errors::struct_span_code_err;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_lint_defs::builtin::UNUSED_ASSOCIATED_TYPE_BOUNDS;
use rustc_middle::span_bug;
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::{
self, DynKind, ExistentialPredicateStableCmpExt as _, Ty, TyCtxt, TypeFoldable,
TypeVisitableExt, Upcast,
};
use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span};
use rustc_span::{ErrorGuaranteed, Span};
use rustc_trait_selection::error_reporting::traits::report_dyn_incompatibility;
use rustc_trait_selection::traits::{self, hir_ty_lowering_dyn_compatibility_violations};
use rustc_type_ir::elaborate::ClauseWithSupertraitSpan;
@ -30,16 +29,16 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
&self,
span: Span,
hir_id: hir::HirId,
hir_trait_bounds: &[hir::PolyTraitRef<'tcx>],
hir_bounds: &[hir::PolyTraitRef<'tcx>],
lifetime: &hir::Lifetime,
representation: DynKind,
) -> Ty<'tcx> {
let tcx = self.tcx();
let dummy_self = tcx.types.trait_object_dummy_self;
let mut bounds = Bounds::default();
let mut user_written_bounds = Bounds::default();
let mut potential_assoc_types = Vec::new();
let dummy_self = self.tcx().types.trait_object_dummy_self;
for trait_bound in hir_trait_bounds.iter().rev() {
for trait_bound in hir_bounds.iter() {
if let hir::BoundPolarity::Maybe(_) = trait_bound.modifiers.polarity {
continue;
}
@ -53,92 +52,67 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
hir::BoundConstness::Never,
hir::BoundPolarity::Positive,
dummy_self,
&mut bounds,
&mut user_written_bounds,
PredicateFilter::SelfOnly,
) {
potential_assoc_types.extend(cur_potential_assoc_types);
}
}
let mut trait_bounds = vec![];
let mut projection_bounds = vec![];
for (pred, span) in bounds.clauses() {
let bound_pred = pred.kind();
match bound_pred.skip_binder() {
ty::ClauseKind::Trait(trait_pred) => {
assert_eq!(trait_pred.polarity, ty::PredicatePolarity::Positive);
trait_bounds.push((bound_pred.rebind(trait_pred.trait_ref), span));
}
ty::ClauseKind::Projection(proj) => {
projection_bounds.push((bound_pred.rebind(proj), span));
}
ty::ClauseKind::TypeOutlives(_) => {
// Do nothing, we deal with regions separately
}
ty::ClauseKind::RegionOutlives(_)
| ty::ClauseKind::ConstArgHasType(..)
| ty::ClauseKind::WellFormed(_)
| ty::ClauseKind::ConstEvaluatable(_)
| ty::ClauseKind::HostEffect(..) => {
span_bug!(span, "did not expect {pred} clause in object bounds");
}
}
let (trait_bounds, mut projection_bounds) =
traits::expand_trait_aliases(tcx, user_written_bounds.clauses());
let (regular_traits, mut auto_traits): (Vec<_>, Vec<_>) = trait_bounds
.into_iter()
.partition(|(trait_ref, _)| !tcx.trait_is_auto(trait_ref.def_id()));
// We don't support empty trait objects.
if regular_traits.is_empty() && auto_traits.is_empty() {
let guar =
self.report_trait_object_with_no_traits_error(span, user_written_bounds.clauses());
return Ty::new_error(tcx, guar);
}
// Expand trait aliases recursively and check that only one regular (non-auto) trait
// is used and no 'maybe' bounds are used.
let expanded_traits =
traits::expand_trait_aliases(tcx, trait_bounds.iter().map(|&(a, b)| (a, b)));
let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
// We don't support >1 principal
if regular_traits.len() > 1 {
let guar = self.report_trait_object_addition_traits_error(&regular_traits);
return Ty::new_error(tcx, guar);
}
// We don't support empty trait objects.
if regular_traits.is_empty() && auto_traits.is_empty() {
let guar = self.report_trait_object_with_no_traits_error(span, &trait_bounds);
return Ty::new_error(tcx, guar);
}
// Don't create a dyn trait if we have errors in the principal.
if let Err(guar) = trait_bounds.error_reported() {
if let Err(guar) = regular_traits.error_reported() {
return Ty::new_error(tcx, guar);
}
// Check that there are no gross dyn-compatibility violations;
// most importantly, that the supertraits don't contain `Self`,
// to avoid ICEs.
for item in &regular_traits {
let violations =
hir_ty_lowering_dyn_compatibility_violations(tcx, item.trait_ref().def_id());
if !violations.is_empty() {
let reported = report_dyn_incompatibility(
tcx,
span,
Some(hir_id),
item.trait_ref().def_id(),
&violations,
)
.emit();
return Ty::new_error(tcx, reported);
for (clause, span) in user_written_bounds.clauses() {
if let Some(trait_pred) = clause.as_trait_clause() {
let violations =
hir_ty_lowering_dyn_compatibility_violations(tcx, trait_pred.def_id());
if !violations.is_empty() {
let reported = report_dyn_incompatibility(
tcx,
span,
Some(hir_id),
trait_pred.def_id(),
&violations,
)
.emit();
return Ty::new_error(tcx, reported);
}
}
}
let principal_trait = regular_traits.into_iter().next();
let mut needed_associated_types = FxIndexSet::default();
let principal_span = regular_traits.first().map_or(DUMMY_SP, |info| info.bottom().1);
let regular_traits_refs_spans = trait_bounds
.into_iter()
.filter(|(trait_ref, _)| !tcx.trait_is_auto(trait_ref.def_id()));
for (base_trait_ref, original_span) in regular_traits_refs_spans {
let base_pred: ty::Predicate<'tcx> = base_trait_ref.upcast(tcx);
if let Some((principal_trait, spans)) = &principal_trait {
let pred: ty::Predicate<'tcx> = (*principal_trait).upcast(tcx);
for ClauseWithSupertraitSpan { pred, supertrait_span } in
traits::elaborate(tcx, [ClauseWithSupertraitSpan::new(base_pred, original_span)])
.filter_only_self()
traits::elaborate(tcx, [ClauseWithSupertraitSpan::new(
pred,
*spans.last().unwrap(),
)])
.filter_only_self()
{
debug!("observing object predicate `{pred:?}`");
@ -179,7 +153,7 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
// }
// ```
//
// Here, the user could theoretically write `dyn MyTrait<Output = X>`,
// Here, the user could theoretically write `dyn MyTrait<MyOutput = X>`,
// but actually supporting that would "expand" to an infinitely-long type
// `fix $ τ → dyn MyTrait<MyOutput = X, Output = <τ as MyTrait>::MyOutput`.
//
@ -188,12 +162,12 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
// the discussion in #56288 for alternatives.
if !references_self {
// Include projections defined on supertraits.
projection_bounds.push((pred, original_span));
projection_bounds.push((pred, supertrait_span));
}
self.check_elaborated_projection_mentions_input_lifetimes(
pred,
original_span,
*spans.first().unwrap(),
supertrait_span,
);
}
@ -202,11 +176,13 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
}
}
// `dyn Trait<Assoc = Foo>` desugars to (not Rust syntax) `dyn Trait where <Self as Trait>::Assoc = Foo`.
// So every `Projection` clause is an `Assoc = Foo` bound. `associated_types` contains all associated
// types's `DefId`, so the following loop removes all the `DefIds` of the associated types that have a
// corresponding `Projection` clause
for (projection_bound, span) in &projection_bounds {
// `dyn Trait<Assoc = Foo>` desugars to (not Rust syntax) `dyn Trait where
// <Self as Trait>::Assoc = Foo`. So every `Projection` clause is an
// `Assoc = Foo` bound. `needed_associated_types` contains all associated
// types that we expect to be provided by the user, so the following loop
// removes all the associated types that have a corresponding `Projection`
// clause, either from expanding trait aliases or written by the user.
for &(projection_bound, span) in &projection_bounds {
let def_id = projection_bound.item_def_id();
let trait_ref = tcx.anonymize_bound_vars(
projection_bound.map_bound(|p| p.projection_term.trait_ref(tcx)),
@ -216,17 +192,17 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
tcx.emit_node_span_lint(
UNUSED_ASSOCIATED_TYPE_BOUNDS,
hir_id,
*span,
crate::errors::UnusedAssociatedTypeBounds { span: *span },
span,
crate::errors::UnusedAssociatedTypeBounds { span },
);
}
}
if let Err(guar) = self.check_for_required_assoc_tys(
principal_span,
principal_trait.as_ref().map_or(smallvec![], |(_, spans)| spans.clone()),
needed_associated_types,
potential_assoc_types,
hir_trait_bounds,
hir_bounds,
) {
return Ty::new_error(tcx, guar);
}
@ -236,32 +212,36 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
// We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
// the bounds
let mut duplicates = FxHashSet::default();
auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
debug!(?regular_traits);
auto_traits.retain(|(trait_pred, _)| duplicates.insert(trait_pred.def_id()));
debug!(?principal_trait);
debug!(?auto_traits);
// Erase the `dummy_self` (`trait_object_dummy_self`) used above.
let existential_trait_refs = regular_traits.iter().map(|i| {
i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
let principal_trait_ref = principal_trait.map(|(trait_pred, spans)| {
trait_pred.map_bound(|trait_pred| {
let trait_ref = trait_pred.trait_ref;
assert_eq!(trait_pred.polarity, ty::PredicatePolarity::Positive);
assert_eq!(trait_ref.self_ty(), dummy_self);
let span = *spans.first().unwrap();
// Verify that `dummy_self` did not leak inside default type parameters. This
// could not be done at path creation, since we need to see through trait aliases.
let mut missing_type_params = vec![];
let mut references_self = false;
let generics = tcx.generics_of(trait_ref.def_id);
let args: Vec<_> = trait_ref
.args
.iter()
.enumerate()
.skip(1) // Remove `Self` for `ExistentialPredicate`.
// Skip `Self`
.skip(1)
.map(|(index, arg)| {
if arg == dummy_self.into() {
let param = &generics.own_params[index];
missing_type_params.push(param.name);
Ty::new_misc_error(tcx).into()
} else if arg.walk().any(|arg| arg == dummy_self.into()) {
references_self = true;
let guar = self.dcx().span_delayed_bug(
span,
"trait object trait bounds reference `Self`",
@ -273,8 +253,7 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
})
.collect();
let span = i.bottom().1;
let empty_generic_args = hir_trait_bounds.iter().any(|hir_bound| {
let empty_generic_args = hir_bounds.iter().any(|hir_bound| {
hir_bound.trait_ref.path.res == Res::Def(DefKind::Trait, trait_ref.def_id)
&& hir_bound.span.contains(span)
});
@ -285,26 +264,11 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
empty_generic_args,
);
if references_self {
let def_id = i.bottom().0.def_id();
struct_span_code_err!(
self.dcx(),
i.bottom().1,
E0038,
"the {} `{}` cannot be made into an object",
tcx.def_descr(def_id),
tcx.item_name(def_id),
)
.with_note(
rustc_middle::traits::DynCompatibilityViolation::SupertraitSelf(
smallvec![],
)
.error_msg(),
)
.emit();
}
ty::ExistentialTraitRef::new(tcx, trait_ref.def_id, args)
ty::ExistentialPredicate::Trait(ty::ExistentialTraitRef::new(
tcx,
trait_ref.def_id,
args,
))
})
});
@ -327,21 +291,24 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
b.projection_term = replace_dummy_self_with_error(tcx, b.projection_term, guar);
}
ty::ExistentialProjection::erase_self_ty(tcx, b)
ty::ExistentialPredicate::Projection(ty::ExistentialProjection::erase_self_ty(
tcx, b,
))
})
});
let regular_trait_predicates = existential_trait_refs
.map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
let auto_trait_predicates = auto_traits.into_iter().map(|(trait_pred, _)| {
assert_eq!(trait_pred.polarity(), ty::PredicatePolarity::Positive);
assert_eq!(trait_pred.self_ty().skip_binder(), dummy_self);
ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_pred.def_id()))
});
// N.b. principal, projections, auto traits
// FIXME: This is actually wrong with multiple principals in regards to symbol mangling
let mut v = regular_trait_predicates
.chain(
existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
)
let mut v = principal_trait_ref
.into_iter()
.chain(existential_projections)
.chain(auto_trait_predicates)
.collect::<SmallVec<[_; 8]>>();
v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));

View file

@ -11,7 +11,7 @@ use rustc_hir::def_id::DefId;
use rustc_middle::bug;
use rustc_middle::ty::print::{PrintPolyTraitRefExt as _, PrintTraitRefExt as _};
use rustc_middle::ty::{
self, AdtDef, Binder, GenericParamDefKind, TraitRef, Ty, TyCtxt, TypeVisitableExt,
self, AdtDef, GenericParamDefKind, Ty, TyCtxt, TypeVisitableExt,
suggest_constraining_type_param,
};
use rustc_session::parse::feature_err;
@ -19,8 +19,9 @@ use rustc_span::edit_distance::find_best_match_for_name;
use rustc_span::{BytePos, DUMMY_SP, Ident, Span, Symbol, kw, sym};
use rustc_trait_selection::error_reporting::traits::report_dyn_incompatibility;
use rustc_trait_selection::traits::{
FulfillmentError, TraitAliasExpansionInfo, dyn_compatibility_violations_for_assoc_item,
FulfillmentError, dyn_compatibility_violations_for_assoc_item,
};
use smallvec::SmallVec;
use crate::errors::{
self, AssocItemConstraintsNotAllowedHere, ManualImplementation, MissingTypeParams,
@ -720,7 +721,7 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
/// emit a generic note suggesting using a `where` clause to constraint instead.
pub(crate) fn check_for_required_assoc_tys(
&self,
principal_span: Span,
spans: SmallVec<[Span; 1]>,
missing_assoc_types: FxIndexSet<(DefId, ty::PolyTraitRef<'tcx>)>,
potential_assoc_types: Vec<usize>,
trait_bounds: &[hir::PolyTraitRef<'_>],
@ -729,6 +730,8 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
return Ok(());
}
let principal_span = *spans.first().unwrap();
let tcx = self.tcx();
// FIXME: This logic needs some more care w.r.t handling of conflicts
let missing_assoc_types: Vec<_> = missing_assoc_types
@ -1124,29 +1127,36 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
pub fn report_trait_object_addition_traits_error(
&self,
regular_traits: &Vec<TraitAliasExpansionInfo<'_>>,
regular_traits: &Vec<(ty::PolyTraitPredicate<'tcx>, SmallVec<[Span; 1]>)>,
) -> ErrorGuaranteed {
let first_trait = &regular_traits[0];
let additional_trait = &regular_traits[1];
// we use the last span to point at the traits themselves,
// and all other preceding spans are trait alias expansions.
let (&first_span, first_alias_spans) = regular_traits[0].1.split_last().unwrap();
let (&second_span, second_alias_spans) = regular_traits[1].1.split_last().unwrap();
let mut err = struct_span_code_err!(
self.dcx(),
additional_trait.bottom().1,
*regular_traits[1].1.first().unwrap(),
E0225,
"only auto traits can be used as additional traits in a trait object"
);
additional_trait.label_with_exp_info(
&mut err,
"additional non-auto trait",
"additional use",
);
first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
err.span_label(first_span, "first non-auto trait");
for &alias_span in first_alias_spans {
err.span_label(alias_span, "first non-auto trait comes from this alias");
}
err.span_label(second_span, "additional non-auto trait");
for &alias_span in second_alias_spans {
err.span_label(alias_span, "second non-auto trait comes from this alias");
}
err.help(format!(
"consider creating a new trait with all of these as supertraits and using that \
trait here instead: `trait NewTrait: {} {{}}`",
regular_traits
.iter()
// FIXME: This should `print_sugared`, but also needs to integrate projection bounds...
.map(|t| t.trait_ref().print_only_trait_path().to_string())
.map(|(pred, _)| pred
.map_bound(|pred| pred.trait_ref)
.print_only_trait_path()
.to_string())
.collect::<Vec<_>>()
.join(" + "),
));
@ -1161,14 +1171,14 @@ impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
pub fn report_trait_object_with_no_traits_error(
&self,
span: Span,
trait_bounds: &Vec<(Binder<'tcx, TraitRef<'tcx>>, Span)>,
user_written_clauses: impl IntoIterator<Item = (ty::Clause<'tcx>, Span)>,
) -> ErrorGuaranteed {
let tcx = self.tcx();
let trait_alias_span = trait_bounds
.iter()
.map(|&(trait_ref, _)| trait_ref.def_id())
.find(|&trait_ref| tcx.is_trait_alias(trait_ref))
.map(|trait_ref| tcx.def_span(trait_ref));
let trait_alias_span = user_written_clauses
.into_iter()
.filter_map(|(clause, _)| clause.as_trait_clause())
.find(|trait_ref| tcx.is_trait_alias(trait_ref.def_id()))
.map(|trait_ref| tcx.def_span(trait_ref.def_id()));
self.dcx().emit_err(TraitObjectDeclaredWithNoTraits { span, trait_alias_span })
}