1
Fork 0

also use relator in interpreter assignment sanity check

This commit is contained in:
Ralf Jung 2020-06-22 09:17:33 +02:00
parent 7754322bcc
commit 7f8fe6a985
4 changed files with 109 additions and 103 deletions

View file

@ -15,7 +15,7 @@ use rustc_middle::mir::interpret::{
};
use rustc_middle::ty::layout::{self, TyAndLayout};
use rustc_middle::ty::{
self, fold::BottomUpFolder, query::TyCtxtAt, subst::SubstsRef, Ty, TyCtxt, TypeFoldable,
self, query::TyCtxtAt, subst::SubstsRef, ParamEnv, Ty, TyCtxt, TypeFoldable,
};
use rustc_span::{source_map::DUMMY_SP, Span};
use rustc_target::abi::{Align, HasDataLayout, LayoutOf, Size, TargetDataLayout};
@ -24,6 +24,7 @@ use super::{
Immediate, MPlaceTy, Machine, MemPlace, MemPlaceMeta, Memory, OpTy, Operand, Place, PlaceTy,
ScalarMaybeUninit, StackPopJump,
};
use crate::transform::validate::equal_up_to_regions;
use crate::util::storage::AlwaysLiveLocals;
pub struct InterpCx<'mir, 'tcx, M: Machine<'mir, 'tcx>> {
@ -220,6 +221,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> LayoutOf for InterpCx<'mir, 'tcx,
/// This test should be symmetric, as it is primarily about layout compatibility.
pub(super) fn mir_assign_valid_types<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
src: TyAndLayout<'tcx>,
dest: TyAndLayout<'tcx>,
) -> bool {
@ -234,29 +236,15 @@ pub(super) fn mir_assign_valid_types<'tcx>(
return false;
}
// Type-changing assignments can happen for (at least) two reasons:
// 1. `&mut T` -> `&T` gets optimized from a reborrow to a mere assignment.
// 2. Subtyping is used. While all normal lifetimes are erased, higher-ranked types
// with their late-bound lifetimes are still around and can lead to type differences.
// Normalize both of them away.
// Also see the related but slightly different pre-monomorphization method in `transform/validate.rs`.
let normalize = |ty: Ty<'tcx>| {
ty.fold_with(&mut BottomUpFolder {
tcx,
// Normalize all references to immutable.
ty_op: |ty| match ty.kind {
ty::Ref(_, pointee, _) => tcx.mk_imm_ref(tcx.lifetimes.re_erased, pointee),
_ => ty,
},
// We just erase all late-bound lifetimes, but this is not fully correct (FIXME):
// lifetimes in invariant positions could matter (e.g. through associated types).
// We rely on the fact that layout was confirmed to be equal above.
lt_op: |_| tcx.lifetimes.re_erased,
// Leave consts unchanged.
ct_op: |ct| ct,
})
};
normalize(src.ty) == normalize(dest.ty)
// Type-changing assignments can happen when subtyping is used. While
// all normal lifetimes are erased, higher-ranked types with their
// late-bound lifetimes are still around and can lead to type
// differences. So we compare ignoring lifetimes.
//
// Note that this is not fully correct (FIXME):
// lifetimes in invariant positions could matter (e.g. through associated types).
// We rely on the fact that layout was confirmed to be equal above.
equal_up_to_regions(tcx, param_env, src.ty, dest.ty)
}
/// Use the already known layout if given (but sanity check in debug mode),
@ -264,6 +252,7 @@ pub(super) fn mir_assign_valid_types<'tcx>(
#[cfg_attr(not(debug_assertions), inline(always))]
pub(super) fn from_known_layout<'tcx>(
tcx: TyCtxtAt<'tcx>,
param_env: ParamEnv<'tcx>,
known_layout: Option<TyAndLayout<'tcx>>,
compute: impl FnOnce() -> InterpResult<'tcx, TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
@ -272,7 +261,7 @@ pub(super) fn from_known_layout<'tcx>(
Some(known_layout) => {
if cfg!(debug_assertions) {
let check_layout = compute()?;
if !mir_assign_valid_types(tcx.tcx, check_layout, known_layout) {
if !mir_assign_valid_types(tcx.tcx, param_env, check_layout, known_layout) {
span_bug!(
tcx.span,
"expected type differs from actual type.\nexpected: {:?}\nactual: {:?}",
@ -476,7 +465,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
// have to support that case (mostly by skipping all caching).
match frame.locals.get(local).and_then(|state| state.layout.get()) {
None => {
let layout = from_known_layout(self.tcx, layout, || {
let layout = from_known_layout(self.tcx, self.param_env, layout, || {
let local_ty = frame.body.local_decls[local].ty;
let local_ty =
self.subst_from_frame_and_normalize_erasing_regions(frame, local_ty);

View file

@ -472,6 +472,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
// Sanity-check the type we ended up with.
debug_assert!(mir_assign_valid_types(
*self.tcx,
self.param_env,
self.layout_of(self.subst_from_current_frame_and_normalize_erasing_regions(
place.ty(&self.frame().body.local_decls, *self.tcx).ty
))?,
@ -554,7 +555,8 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
// documentation).
let val_val = M::adjust_global_const(self, val_val)?;
// Other cases need layout.
let layout = from_known_layout(self.tcx, layout, || self.layout_of(val.ty))?;
let layout =
from_known_layout(self.tcx, self.param_env, layout, || self.layout_of(val.ty))?;
let op = match val_val {
ConstValue::ByRef { alloc, offset } => {
let id = self.tcx.create_memory_alloc(alloc);

View file

@ -652,6 +652,7 @@ where
// Sanity-check the type we ended up with.
debug_assert!(mir_assign_valid_types(
*self.tcx,
self.param_env,
self.layout_of(self.subst_from_current_frame_and_normalize_erasing_regions(
place.ty(&self.frame().body.local_decls, *self.tcx).ty
))?,
@ -855,7 +856,7 @@ where
) -> InterpResult<'tcx> {
// We do NOT compare the types for equality, because well-typed code can
// actually "transmute" `&mut T` to `&T` in an assignment without a cast.
if !mir_assign_valid_types(*self.tcx, src.layout, dest.layout) {
if !mir_assign_valid_types(*self.tcx, self.param_env, src.layout, dest.layout) {
span_bug!(
self.cur_span(),
"type mismatch when copying!\nsrc: {:?},\ndest: {:?}",
@ -912,7 +913,7 @@ where
src: OpTy<'tcx, M::PointerTag>,
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
if mir_assign_valid_types(*self.tcx, src.layout, dest.layout) {
if mir_assign_valid_types(*self.tcx, self.param_env, src.layout, dest.layout) {
// Fast path: Just use normal `copy_op`
return self.copy_op(src, dest);
}

View file

@ -32,6 +32,93 @@ impl<'tcx> MirPass<'tcx> for Validator {
}
}
/// Returns whether the two types are equal up to lifetimes.
/// All lifetimes, including higher-ranked ones, get ignored for this comparison.
/// (This is unlike the `erasing_regions` methods, which keep higher-ranked lifetimes for soundness reasons.)
///
/// The point of this function is to approximate "equal up to subtyping". However,
/// the approximation is incorrect as variance is ignored.
pub fn equal_up_to_regions(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
src: Ty<'tcx>,
dest: Ty<'tcx>,
) -> bool {
struct LifetimeIgnoreRelation<'tcx> {
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
}
impl TypeRelation<'tcx> for LifetimeIgnoreRelation<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.param_env
}
fn tag(&self) -> &'static str {
"librustc_mir::transform::validate"
}
fn a_is_expected(&self) -> bool {
true
}
fn relate_with_variance<T: Relate<'tcx>>(
&mut self,
_: ty::Variance,
a: &T,
b: &T,
) -> RelateResult<'tcx, T> {
// Ignore variance, require types to be exactly the same.
self.relate(a, b)
}
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
if a == b {
// Short-circuit.
return Ok(a);
}
ty::relate::super_relate_tys(self, a, b)
}
fn regions(
&mut self,
a: ty::Region<'tcx>,
_b: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>> {
// Ignore regions.
Ok(a)
}
fn consts(
&mut self,
a: &'tcx ty::Const<'tcx>,
b: &'tcx ty::Const<'tcx>,
) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> {
ty::relate::super_relate_consts(self, a, b)
}
fn binders<T>(
&mut self,
a: &ty::Binder<T>,
b: &ty::Binder<T>,
) -> RelateResult<'tcx, ty::Binder<T>>
where
T: Relate<'tcx>,
{
self.relate(a.skip_binder(), b.skip_binder())?;
Ok(a.clone())
}
}
// Instantiate and run relation.
let mut relator: LifetimeIgnoreRelation<'tcx> = LifetimeIgnoreRelation { tcx: tcx, param_env };
relator.relate(&src, &dest).is_ok()
}
struct TypeChecker<'a, 'tcx> {
when: &'a str,
source: MirSource<'tcx>,
@ -108,80 +195,7 @@ impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
// all normal lifetimes are erased, higher-ranked types with their
// late-bound lifetimes are still around and can lead to type
// differences. So we compare ignoring lifetimes.
struct LifetimeIgnoreRelation<'tcx> {
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
}
impl TypeRelation<'tcx> for LifetimeIgnoreRelation<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.param_env
}
fn tag(&self) -> &'static str {
"librustc_mir::transform::validate"
}
fn a_is_expected(&self) -> bool {
true
}
fn relate_with_variance<T: Relate<'tcx>>(
&mut self,
_: ty::Variance,
a: &T,
b: &T,
) -> RelateResult<'tcx, T> {
// Ignore variance, require types to be exactly the same.
self.relate(a, b)
}
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
if a == b {
// Short-circuit.
return Ok(a);
}
ty::relate::super_relate_tys(self, a, b)
}
fn regions(
&mut self,
a: ty::Region<'tcx>,
_b: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>> {
// Ignore regions.
Ok(a)
}
fn consts(
&mut self,
a: &'tcx ty::Const<'tcx>,
b: &'tcx ty::Const<'tcx>,
) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> {
ty::relate::super_relate_consts(self, a, b)
}
fn binders<T>(
&mut self,
a: &ty::Binder<T>,
b: &ty::Binder<T>,
) -> RelateResult<'tcx, ty::Binder<T>>
where
T: Relate<'tcx>,
{
self.relate(a.skip_binder(), b.skip_binder())?;
Ok(a.clone())
}
}
// Instantiate and run relation.
let mut relator: LifetimeIgnoreRelation<'tcx> =
LifetimeIgnoreRelation { tcx: self.tcx, param_env };
relator.relate(&src, &dest).is_ok()
equal_up_to_regions(self.tcx, param_env, src, dest)
}
}