Track (partial) niche information in NaiveLayout
Still more complexity, but this allows computing exact `NaiveLayout`s for null-optimized enums, and thus allows calls like `transmute::<Option<&T>, &U>()` to work in generic contexts.
This commit is contained in:
parent
39cfe70e4f
commit
7f109086ee
5 changed files with 185 additions and 47 deletions
|
@ -1,12 +1,14 @@
|
|||
use rustc_middle::query::Providers;
|
||||
use rustc_middle::ty::layout::{
|
||||
IntegerExt, LayoutCx, LayoutError, LayoutOf, NaiveAbi, NaiveLayout, TyAndNaiveLayout,
|
||||
IntegerExt, LayoutCx, LayoutError, LayoutOf, NaiveAbi, NaiveLayout, NaiveNiches,
|
||||
TyAndNaiveLayout,
|
||||
};
|
||||
use rustc_middle::ty::{self, ReprOptions, Ty, TyCtxt, TypeVisitableExt};
|
||||
|
||||
use rustc_span::DUMMY_SP;
|
||||
use rustc_target::abi::*;
|
||||
|
||||
use std::ops::Bound;
|
||||
|
||||
use crate::layout::{compute_array_count, ptr_metadata_scalar};
|
||||
|
||||
pub fn provide(providers: &mut Providers) {
|
||||
|
@ -61,8 +63,9 @@ fn naive_layout_of_uncached<'tcx>(
|
|||
let tcx = cx.tcx;
|
||||
let dl = cx.data_layout();
|
||||
|
||||
let scalar = |value: Primitive| NaiveLayout {
|
||||
let scalar = |niched: bool, value: Primitive| NaiveLayout {
|
||||
abi: NaiveAbi::Scalar(value),
|
||||
niches: if niched { NaiveNiches::Some } else { NaiveNiches::None },
|
||||
size: value.size(dl),
|
||||
align: value.align(dl).abi,
|
||||
exact: true,
|
||||
|
@ -105,26 +108,30 @@ fn naive_layout_of_uncached<'tcx>(
|
|||
|
||||
Ok(match *ty.kind() {
|
||||
// Basic scalars
|
||||
ty::Bool => scalar(Int(I8, false)),
|
||||
ty::Char => scalar(Int(I32, false)),
|
||||
ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
|
||||
ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
|
||||
ty::Float(fty) => scalar(match fty {
|
||||
ty::FloatTy::F32 => F32,
|
||||
ty::FloatTy::F64 => F64,
|
||||
}),
|
||||
ty::FnPtr(_) => scalar(Pointer(dl.instruction_address_space)),
|
||||
ty::Bool => scalar(true, Int(I8, false)),
|
||||
ty::Char => scalar(true, Int(I32, false)),
|
||||
ty::Int(ity) => scalar(false, Int(Integer::from_int_ty(dl, ity), true)),
|
||||
ty::Uint(ity) => scalar(false, Int(Integer::from_uint_ty(dl, ity), false)),
|
||||
ty::Float(fty) => scalar(
|
||||
false,
|
||||
match fty {
|
||||
ty::FloatTy::F32 => F32,
|
||||
ty::FloatTy::F64 => F64,
|
||||
},
|
||||
),
|
||||
ty::FnPtr(_) => scalar(true, Pointer(dl.instruction_address_space)),
|
||||
|
||||
// The never type.
|
||||
ty::Never => NaiveLayout { abi: NaiveAbi::Uninhabited, ..NaiveLayout::EMPTY },
|
||||
|
||||
// Potentially-wide pointers.
|
||||
ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
|
||||
let data_ptr = scalar(Pointer(AddressSpace::DATA));
|
||||
let data_ptr = scalar(!ty.is_unsafe_ptr(), Pointer(AddressSpace::DATA));
|
||||
if let Some(metadata) = ptr_metadata_scalar(cx, pointee)? {
|
||||
// Effectively a (ptr, meta) tuple.
|
||||
let meta = scalar(!metadata.is_always_valid(dl), metadata.primitive());
|
||||
let l = data_ptr
|
||||
.concat(&scalar(metadata.primitive()), dl)
|
||||
.concat(&meta, dl)
|
||||
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
|
||||
l.pad_to_align(l.align)
|
||||
} else {
|
||||
|
@ -134,8 +141,9 @@ fn naive_layout_of_uncached<'tcx>(
|
|||
}
|
||||
|
||||
ty::Dynamic(_, _, ty::DynStar) => {
|
||||
let ptr = scalar(Pointer(AddressSpace::DATA));
|
||||
ptr.concat(&ptr, dl).ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?
|
||||
let ptr = scalar(false, Pointer(AddressSpace::DATA));
|
||||
let vtable = scalar(true, Pointer(AddressSpace::DATA));
|
||||
ptr.concat(&vtable, dl).ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?
|
||||
}
|
||||
|
||||
// Arrays and slices.
|
||||
|
@ -149,13 +157,16 @@ fn naive_layout_of_uncached<'tcx>(
|
|||
.size
|
||||
.checked_mul(count, cx)
|
||||
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?,
|
||||
niches: if count == 0 { NaiveNiches::None } else { element.niches },
|
||||
..*element
|
||||
}
|
||||
}
|
||||
ty::Slice(element) => {
|
||||
let element = cx.naive_layout_of(element)?;
|
||||
NaiveLayout { abi: NaiveAbi::Unsized, size: Size::ZERO, ..*element }
|
||||
}
|
||||
ty::Slice(element) => NaiveLayout {
|
||||
abi: NaiveAbi::Unsized,
|
||||
size: Size::ZERO,
|
||||
niches: NaiveNiches::None,
|
||||
..*cx.naive_layout_of(element)?
|
||||
},
|
||||
|
||||
ty::FnDef(..) => NaiveLayout::EMPTY,
|
||||
|
||||
|
@ -166,7 +177,9 @@ fn naive_layout_of_uncached<'tcx>(
|
|||
|
||||
// FIXME(reference_niches): try to actually compute a reasonable layout estimate,
|
||||
// without duplicating too much code from `generator_layout`.
|
||||
ty::Generator(..) => NaiveLayout { exact: false, ..NaiveLayout::EMPTY },
|
||||
ty::Generator(..) => {
|
||||
NaiveLayout { exact: false, niches: NaiveNiches::Maybe, ..NaiveLayout::EMPTY }
|
||||
}
|
||||
|
||||
ty::Closure(_, ref substs) => {
|
||||
univariant(&mut substs.as_closure().upvar_tys(), &ReprOptions::default())?
|
||||
|
@ -175,6 +188,7 @@ fn naive_layout_of_uncached<'tcx>(
|
|||
ty::Tuple(tys) => univariant(&mut tys.iter(), &ReprOptions::default())?,
|
||||
|
||||
ty::Adt(def, substs) if def.is_union() => {
|
||||
assert_eq!(def.variants().len(), 1, "union should have a single variant");
|
||||
let repr = def.repr();
|
||||
let pack = repr.pack.unwrap_or(Align::MAX);
|
||||
if repr.pack.is_some() && repr.align.is_some() {
|
||||
|
@ -182,7 +196,12 @@ fn naive_layout_of_uncached<'tcx>(
|
|||
return Err(error(cx, LayoutError::Unknown(ty)));
|
||||
}
|
||||
|
||||
let mut layout = NaiveLayout::EMPTY;
|
||||
let mut layout = NaiveLayout {
|
||||
// Unions never have niches.
|
||||
niches: NaiveNiches::None,
|
||||
..NaiveLayout::EMPTY
|
||||
};
|
||||
|
||||
for f in &def.variants()[FIRST_VARIANT].fields {
|
||||
let field = cx.naive_layout_of(f.ty(tcx, substs))?;
|
||||
layout = layout.union(&field.packed(pack));
|
||||
|
@ -201,24 +220,87 @@ fn naive_layout_of_uncached<'tcx>(
|
|||
|
||||
ty::Adt(def, substs) => {
|
||||
let repr = def.repr();
|
||||
let base = NaiveLayout {
|
||||
// For simplicity, assume that any enum has its discriminant field (if it exists)
|
||||
// niched inside one of the variants; this will underestimate the size (and sometimes
|
||||
// alignment) of enums. We also doesn't compute exact alignment for SIMD structs.
|
||||
// FIXME(reference_niches): Be smarter here.
|
||||
// Also consider adding a special case for null-optimized enums, so that we can have
|
||||
// `Option<&T>: PointerLike` in generic contexts.
|
||||
exact: !def.is_enum() && !repr.simd(),
|
||||
let mut layout = NaiveLayout {
|
||||
// An ADT with no inhabited variants should have an uninhabited ABI.
|
||||
abi: NaiveAbi::Uninhabited,
|
||||
..NaiveLayout::EMPTY
|
||||
};
|
||||
|
||||
let layout = def.variants().iter().try_fold(base, |layout, v| {
|
||||
let mut empty_variants = 0;
|
||||
for v in def.variants() {
|
||||
let mut fields = v.fields.iter().map(|f| f.ty(tcx, substs));
|
||||
let vlayout = univariant(&mut fields, &repr)?;
|
||||
Ok(layout.union(&vlayout))
|
||||
})?;
|
||||
|
||||
if vlayout.size == Size::ZERO && vlayout.exact {
|
||||
empty_variants += 1;
|
||||
} else {
|
||||
// Remember the niches of the last seen variant.
|
||||
layout.niches = vlayout.niches;
|
||||
}
|
||||
|
||||
layout = layout.union(&vlayout);
|
||||
}
|
||||
|
||||
if def.is_enum() {
|
||||
let may_need_discr = match def.variants().len() {
|
||||
0 | 1 => false,
|
||||
// Simple Option-like niche optimization.
|
||||
// Handling this special case allows enums like `Option<&T>`
|
||||
// to be recognized as `PointerLike` and to be transmutable
|
||||
// in generic contexts.
|
||||
2 if empty_variants == 1 && layout.niches == NaiveNiches::Some => {
|
||||
layout.niches = NaiveNiches::Maybe; // fill up the niche.
|
||||
false
|
||||
}
|
||||
_ => true,
|
||||
};
|
||||
|
||||
if may_need_discr || repr.inhibit_enum_layout_opt() {
|
||||
// For simplicity, assume that the discriminant always get niched.
|
||||
// This will be wrong in many cases, which will cause the size (and
|
||||
// sometimes the alignment) to be underestimated.
|
||||
// FIXME(reference_niches): Be smarter here.
|
||||
layout.niches = NaiveNiches::Maybe;
|
||||
layout = layout.inexact();
|
||||
}
|
||||
} else {
|
||||
assert_eq!(def.variants().len(), 1, "struct should have a single variant");
|
||||
|
||||
// We don't compute exact alignment for SIMD structs.
|
||||
if repr.simd() {
|
||||
layout = layout.inexact();
|
||||
}
|
||||
|
||||
// `UnsafeCell` hides all niches.
|
||||
if def.is_unsafe_cell() {
|
||||
layout.niches = NaiveNiches::None;
|
||||
}
|
||||
}
|
||||
|
||||
let valid_range = tcx.layout_scalar_valid_range(def.did());
|
||||
if valid_range != (Bound::Unbounded, Bound::Unbounded) {
|
||||
let get = |bound, default| match bound {
|
||||
Bound::Unbounded => default,
|
||||
Bound::Included(v) => v,
|
||||
Bound::Excluded(_) => bug!("exclusive `layout_scalar_valid_range` bound"),
|
||||
};
|
||||
|
||||
let valid_range = WrappingRange {
|
||||
start: get(valid_range.0, 0),
|
||||
// FIXME: this is wrong for scalar-pair ABIs. Fortunately, the
|
||||
// only type this could currently affect is`NonNull<T: !Sized>`,
|
||||
// and the `NaiveNiches` result still ends up correct.
|
||||
end: get(valid_range.1, layout.size.unsigned_int_max()),
|
||||
};
|
||||
assert!(
|
||||
valid_range.is_in_range_for(layout.size),
|
||||
"`layout_scalar_valid_range` values are out of bounds",
|
||||
);
|
||||
if !valid_range.is_full_for(layout.size) {
|
||||
layout.niches = NaiveNiches::Some;
|
||||
}
|
||||
}
|
||||
|
||||
layout.pad_to_align(layout.align)
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue