1
Fork 0

Use pat_constructor to simplify specialize_one_pattern

This commit is contained in:
Nadrieril 2020-10-19 23:58:04 +01:00
parent feb1e13960
commit 7c4f94be48

View file

@ -2529,17 +2529,69 @@ fn specialize_one_pattern<'p, 'tcx>(
pat: &'p Pat<'tcx>,
constructor: &Constructor<'tcx>,
ctor_wild_subpatterns: &Fields<'p, 'tcx>,
is_its_own_ctor: bool, // Whether `ctor` is known to be derived from `pat`
is_its_own_ctor: bool, // Whether `constructor` is known to be derived from `pat`
) -> Option<Fields<'p, 'tcx>> {
if let NonExhaustive = constructor {
// Only a wildcard pattern can match the special extra constructor.
if !pat.is_wildcard() {
return None;
}
return Some(Fields::empty());
if pat.is_wildcard() {
return Some(ctor_wild_subpatterns.clone());
}
if let Opaque = constructor {
let ty = pat.ty;
// `unwrap` is safe because `pat` is not a wildcard.
let pat_ctor = pat_constructor(cx.tcx, cx.param_env, pat).unwrap();
let result = match (constructor, &pat_ctor, pat.kind.as_ref()) {
(Single, Single, PatKind::Leaf { subpatterns }) => {
Some(ctor_wild_subpatterns.replace_with_fieldpats(subpatterns))
}
(Single, Single, PatKind::Deref { subpattern }) => {
Some(Fields::from_single_pattern(subpattern))
}
(Variant(_), Variant(_), _) if constructor != &pat_ctor => None,
(Variant(_), Variant(_), PatKind::Variant { subpatterns, .. }) => {
Some(ctor_wild_subpatterns.replace_with_fieldpats(subpatterns))
}
(IntRange(ctor_range), IntRange(pat_range), _) => {
ctor_range.intersection(cx.tcx, &pat_range)?;
// Constructor splitting should ensure that all intersections we encounter
// are actually inclusions.
assert!(ctor_range.is_subrange(&pat_range));
Some(Fields::empty())
}
(FloatRange(ctor_from, ctor_to, ctor_end), FloatRange(pat_from, pat_to, pat_end), _) => {
let to = compare_const_vals(cx.tcx, ctor_to, pat_to, cx.param_env, ty)?;
let from = compare_const_vals(cx.tcx, ctor_from, pat_from, cx.param_env, ty)?;
let intersects = (from == Ordering::Greater || from == Ordering::Equal)
&& (to == Ordering::Less || (pat_end == ctor_end && to == Ordering::Equal));
if intersects { Some(Fields::empty()) } else { None }
}
(Str(ctor_val), Str(pat_val), _) => {
// FIXME: there's probably a more direct way of comparing for equality
let comparison = compare_const_vals(cx.tcx, ctor_val, pat_val, cx.param_env, ty)?;
if comparison == Ordering::Equal { Some(Fields::empty()) } else { None }
}
(Slice(ctor_slice), Slice(pat_slice), _)
if !pat_slice.pattern_kind().covers_length(ctor_slice.arity()) =>
{
None
}
(
Slice(ctor_slice),
Slice(_),
PatKind::Array { prefix, suffix, .. } | PatKind::Slice { prefix, suffix, .. },
) => {
// Number of subpatterns for the constructor
let ctor_arity = ctor_slice.arity();
// Replace the prefix and the suffix with the given patterns, leaving wildcards in
// the middle if there was a subslice pattern `..`.
let prefix = prefix.iter().enumerate();
let suffix =
suffix.iter().enumerate().map(|(i, p)| (ctor_arity as usize - suffix.len() + i, p));
Some(ctor_wild_subpatterns.replace_fields_indexed(prefix.chain(suffix)))
}
// Only a wildcard pattern can match an opaque constant, unless we're specializing the
// value against its own constructor. That happens when we call
// `v.specialize_constructor(ctor)` with `ctor` obtained from `pat_constructor(v.head())`.
@ -2559,109 +2611,23 @@ fn specialize_one_pattern<'p, 'tcx>(
// (FOO, false) => {}
// }
// ```
if is_its_own_ctor || pat.is_wildcard() {
return Some(Fields::empty());
} else {
return None;
}
}
(Opaque, Opaque, _) if is_its_own_ctor => Some(Fields::empty()),
// We are trying to inspect an opaque constant. Thus we skip the row.
(Opaque, _, _) | (_, Opaque, _) => None,
// Only a wildcard pattern can match the special extra constructor.
(NonExhaustive, _, _) => None,
let result = match *pat.kind {
PatKind::AscribeUserType { .. } => bug!(), // Handled by `expand_pattern`
PatKind::Binding { .. } | PatKind::Wild => Some(ctor_wild_subpatterns.clone()),
PatKind::Variant { adt_def, variant_index, ref subpatterns, .. } => {
let variant = &adt_def.variants[variant_index];
if constructor != &Variant(variant.def_id) {
return None;
}
Some(ctor_wild_subpatterns.replace_with_fieldpats(subpatterns))
}
PatKind::Leaf { ref subpatterns } => {
Some(ctor_wild_subpatterns.replace_with_fieldpats(subpatterns))
}
PatKind::Deref { ref subpattern } => Some(Fields::from_single_pattern(subpattern)),
PatKind::Constant { .. } | PatKind::Range { .. } => {
match constructor {
IntRange(ctor) => {
let pat = IntRange::from_pat(cx.tcx, cx.param_env, pat)?;
ctor.intersection(cx.tcx, &pat)?;
// Constructor splitting should ensure that all intersections we encounter
// are actually inclusions.
assert!(ctor.is_subrange(&pat));
}
FloatRange(ctor_from, ctor_to, ctor_end) => {
let (pat_from, pat_to, pat_end, ty) = match *pat.kind {
PatKind::Constant { value } => (value, value, RangeEnd::Included, value.ty),
PatKind::Range(PatRange { lo, hi, end }) => (lo, hi, end, lo.ty),
_ => unreachable!(), // This is ensured by the branch we're in
};
let to = compare_const_vals(cx.tcx, ctor_to, pat_to, cx.param_env, ty)?;
let from = compare_const_vals(cx.tcx, ctor_from, pat_from, cx.param_env, ty)?;
let intersects = (from == Ordering::Greater || from == Ordering::Equal)
&& (to == Ordering::Less
|| (pat_end == *ctor_end && to == Ordering::Equal));
if !intersects {
return None;
}
}
Str(ctor_value) => {
let pat_value = match *pat.kind {
PatKind::Constant { value } => value,
_ => span_bug!(
pat.span,
"unexpected range pattern {:?} for constant value ctor",
pat
),
};
// FIXME: there's probably a more direct way of comparing for equality
if compare_const_vals(cx.tcx, ctor_value, pat_value, cx.param_env, pat.ty)?
!= Ordering::Equal
{
return None;
}
}
_ => {
// If we reach here, we must be trying to inspect an opaque constant. Thus we skip
// the row.
return None;
}
}
Some(Fields::empty())
}
PatKind::Array { ref prefix, ref slice, ref suffix }
| PatKind::Slice { ref prefix, ref slice, ref suffix } => match *constructor {
Slice(_) => {
// Number of subpatterns for this pattern
let pat_len = prefix.len() + suffix.len();
// Number of subpatterns for this constructor
let arity = ctor_wild_subpatterns.len();
if (slice.is_none() && arity != pat_len) || pat_len > arity {
return None;
}
// Replace the prefix and the suffix with the given patterns, leaving wildcards in
// the middle if there was a subslice pattern `..`.
let prefix = prefix.iter().enumerate();
let suffix = suffix.iter().enumerate().map(|(i, p)| (arity - suffix.len() + i, p));
Some(ctor_wild_subpatterns.replace_fields_indexed(prefix.chain(suffix)))
}
_ => span_bug!(pat.span, "unexpected ctor {:?} for slice pat", constructor),
},
PatKind::Or { .. } => bug!("Or-pattern should have been expanded earlier on."),
_ => bug!("trying to specialize pattern {:?} with constructor {:?}", pat, constructor),
};
debug!(
"specialize({:#?}, {:#?}, {:#?}) = {:#?}",
pat, constructor, ctor_wild_subpatterns, result
);
if let Some(fields) = &result {
debug_assert_eq!(fields.len(), ctor_wild_subpatterns.len());
}
result
}