1
Fork 0

add ecx.probe_candidate

This commit is contained in:
lcnr 2023-07-04 16:59:21 +02:00
parent cd68ead9ec
commit 795c2ef7d9
5 changed files with 276 additions and 294 deletions

View file

@ -6,7 +6,6 @@ use rustc_hir::def_id::DefId;
use rustc_hir::{LangItem, Movability};
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::util::supertraits;
use rustc_middle::traits::solve::inspect::CandidateKind;
use rustc_middle::traits::solve::{CanonicalResponse, Certainty, Goal, QueryResult};
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams, TreatProjections};
use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt};
@ -62,7 +61,7 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
},
};
ecx.probe(|r| CandidateKind::Candidate { name: "impl".into(), result: *r }).enter(|ecx| {
ecx.probe_candidate("impl").enter(|ecx| {
let impl_substs = ecx.fresh_substs_for_item(impl_def_id);
let impl_trait_ref = impl_trait_ref.subst(tcx, impl_substs);
@ -90,16 +89,15 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
&& trait_clause.polarity() == goal.predicate.polarity
{
// FIXME: Constness
ecx.probe(|r| CandidateKind::Candidate { name: "assumption".into(), result: *r })
.enter(|ecx| {
let assumption_trait_pred = ecx.instantiate_binder_with_infer(trait_clause);
ecx.eq(
goal.param_env,
goal.predicate.trait_ref,
assumption_trait_pred.trait_ref,
)?;
then(ecx)
})
ecx.probe_candidate("assumption").enter(|ecx| {
let assumption_trait_pred = ecx.instantiate_binder_with_infer(trait_clause);
ecx.eq(
goal.param_env,
goal.predicate.trait_ref,
assumption_trait_pred.trait_ref,
)?;
then(ecx)
})
} else {
Err(NoSolution)
}
@ -136,15 +134,13 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
let tcx = ecx.tcx();
ecx.probe(|r| CandidateKind::Candidate { name: "trait alias".into(), result: *r }).enter(
|ecx| {
let nested_obligations = tcx
.predicates_of(goal.predicate.def_id())
.instantiate(tcx, goal.predicate.trait_ref.substs);
ecx.add_goals(nested_obligations.predicates.into_iter().map(|p| goal.with(tcx, p)));
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
},
)
ecx.probe_candidate("trait alias").enter(|ecx| {
let nested_obligations = tcx
.predicates_of(goal.predicate.def_id())
.instantiate(tcx, goal.predicate.trait_ref.substs);
ecx.add_goals(nested_obligations.predicates.into_iter().map(|p| goal.with(tcx, p)));
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
})
}
fn consider_builtin_sized_candidate(
@ -350,115 +346,109 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
if b_ty.is_ty_var() {
return ecx.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS);
}
ecx.probe(|r| CandidateKind::Candidate { name: "builtin unsize".into(), result: *r }).enter(
|ecx| {
match (a_ty.kind(), b_ty.kind()) {
// Trait upcasting, or `dyn Trait + Auto + 'a` -> `dyn Trait + 'b`
(&ty::Dynamic(_, _, ty::Dyn), &ty::Dynamic(_, _, ty::Dyn)) => {
// Dyn upcasting is handled separately, since due to upcasting,
// when there are two supertraits that differ by substs, we
// may return more than one query response.
Err(NoSolution)
ecx.probe_candidate("builtin unsize").enter(|ecx| {
match (a_ty.kind(), b_ty.kind()) {
// Trait upcasting, or `dyn Trait + Auto + 'a` -> `dyn Trait + 'b`
(&ty::Dynamic(_, _, ty::Dyn), &ty::Dynamic(_, _, ty::Dyn)) => {
// Dyn upcasting is handled separately, since due to upcasting,
// when there are two supertraits that differ by substs, we
// may return more than one query response.
Err(NoSolution)
}
// `T` -> `dyn Trait` unsizing
(_, &ty::Dynamic(data, region, ty::Dyn)) => {
// Can only unsize to an object-safe type
if data
.principal_def_id()
.is_some_and(|def_id| !tcx.check_is_object_safe(def_id))
{
return Err(NoSolution);
}
// `T` -> `dyn Trait` unsizing
(_, &ty::Dynamic(data, region, ty::Dyn)) => {
// Can only unsize to an object-safe type
if data
.principal_def_id()
.is_some_and(|def_id| !tcx.check_is_object_safe(def_id))
{
return Err(NoSolution);
}
let Some(sized_def_id) = tcx.lang_items().sized_trait() else {
let Some(sized_def_id) = tcx.lang_items().sized_trait() else {
return Err(NoSolution);
};
// Check that the type implements all of the predicates of the def-id.
// (i.e. the principal, all of the associated types match, and any auto traits)
ecx.add_goals(
data.iter().map(|pred| goal.with(tcx, pred.with_self_ty(tcx, a_ty))),
);
// The type must be Sized to be unsized.
ecx.add_goal(goal.with(tcx, ty::TraitRef::new(tcx, sized_def_id, [a_ty])));
// The type must outlive the lifetime of the `dyn` we're unsizing into.
ecx.add_goal(
goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_ty, region))),
);
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
// `[T; n]` -> `[T]` unsizing
(&ty::Array(a_elem_ty, ..), &ty::Slice(b_elem_ty)) => {
// We just require that the element type stays the same
ecx.eq(goal.param_env, a_elem_ty, b_elem_ty)?;
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
// Struct unsizing `Struct<T>` -> `Struct<U>` where `T: Unsize<U>`
(&ty::Adt(a_def, a_substs), &ty::Adt(b_def, b_substs))
if a_def.is_struct() && a_def.did() == b_def.did() =>
{
let unsizing_params = tcx.unsizing_params_for_adt(a_def.did());
// We must be unsizing some type parameters. This also implies
// that the struct has a tail field.
if unsizing_params.is_empty() {
return Err(NoSolution);
}
let tail_field = a_def
.non_enum_variant()
.fields
.raw
.last()
.expect("expected unsized ADT to have a tail field");
let tail_field_ty = tcx.type_of(tail_field.did);
let a_tail_ty = tail_field_ty.subst(tcx, a_substs);
let b_tail_ty = tail_field_ty.subst(tcx, b_substs);
// Substitute just the unsizing params from B into A. The type after
// this substitution must be equal to B. This is so we don't unsize
// unrelated type parameters.
let new_a_substs =
tcx.mk_substs_from_iter(a_substs.iter().enumerate().map(|(i, a)| {
if unsizing_params.contains(i as u32) { b_substs[i] } else { a }
}));
let unsized_a_ty = tcx.mk_adt(a_def, new_a_substs);
// Finally, we require that `TailA: Unsize<TailB>` for the tail field
// types.
ecx.eq(goal.param_env, unsized_a_ty, b_ty)?;
ecx.add_goal(goal.with(
tcx,
ty::TraitRef::new(tcx, goal.predicate.def_id(), [a_tail_ty, b_tail_ty]),
));
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
// Tuple unsizing `(.., T)` -> `(.., U)` where `T: Unsize<U>`
(&ty::Tuple(a_tys), &ty::Tuple(b_tys))
if a_tys.len() == b_tys.len() && !a_tys.is_empty() =>
{
let (a_last_ty, a_rest_tys) = a_tys.split_last().unwrap();
let b_last_ty = b_tys.last().unwrap();
// Substitute just the tail field of B., and require that they're equal.
let unsized_a_ty =
tcx.mk_tup_from_iter(a_rest_tys.iter().chain([b_last_ty]).copied());
ecx.eq(goal.param_env, unsized_a_ty, b_ty)?;
// Similar to ADTs, require that the rest of the fields are equal.
ecx.add_goal(goal.with(
tcx,
ty::TraitRef::new(
tcx,
goal.predicate.def_id(),
[*a_last_ty, *b_last_ty],
),
));
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
_ => Err(NoSolution),
// Check that the type implements all of the predicates of the def-id.
// (i.e. the principal, all of the associated types match, and any auto traits)
ecx.add_goals(
data.iter().map(|pred| goal.with(tcx, pred.with_self_ty(tcx, a_ty))),
);
// The type must be Sized to be unsized.
ecx.add_goal(goal.with(tcx, ty::TraitRef::new(tcx, sized_def_id, [a_ty])));
// The type must outlive the lifetime of the `dyn` we're unsizing into.
ecx.add_goal(
goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_ty, region))),
);
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
},
)
// `[T; n]` -> `[T]` unsizing
(&ty::Array(a_elem_ty, ..), &ty::Slice(b_elem_ty)) => {
// We just require that the element type stays the same
ecx.eq(goal.param_env, a_elem_ty, b_elem_ty)?;
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
// Struct unsizing `Struct<T>` -> `Struct<U>` where `T: Unsize<U>`
(&ty::Adt(a_def, a_substs), &ty::Adt(b_def, b_substs))
if a_def.is_struct() && a_def.did() == b_def.did() =>
{
let unsizing_params = tcx.unsizing_params_for_adt(a_def.did());
// We must be unsizing some type parameters. This also implies
// that the struct has a tail field.
if unsizing_params.is_empty() {
return Err(NoSolution);
}
let tail_field = a_def
.non_enum_variant()
.fields
.raw
.last()
.expect("expected unsized ADT to have a tail field");
let tail_field_ty = tcx.type_of(tail_field.did);
let a_tail_ty = tail_field_ty.subst(tcx, a_substs);
let b_tail_ty = tail_field_ty.subst(tcx, b_substs);
// Substitute just the unsizing params from B into A. The type after
// this substitution must be equal to B. This is so we don't unsize
// unrelated type parameters.
let new_a_substs =
tcx.mk_substs_from_iter(a_substs.iter().enumerate().map(|(i, a)| {
if unsizing_params.contains(i as u32) { b_substs[i] } else { a }
}));
let unsized_a_ty = tcx.mk_adt(a_def, new_a_substs);
// Finally, we require that `TailA: Unsize<TailB>` for the tail field
// types.
ecx.eq(goal.param_env, unsized_a_ty, b_ty)?;
ecx.add_goal(goal.with(
tcx,
ty::TraitRef::new(tcx, goal.predicate.def_id(), [a_tail_ty, b_tail_ty]),
));
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
// Tuple unsizing `(.., T)` -> `(.., U)` where `T: Unsize<U>`
(&ty::Tuple(a_tys), &ty::Tuple(b_tys))
if a_tys.len() == b_tys.len() && !a_tys.is_empty() =>
{
let (a_last_ty, a_rest_tys) = a_tys.split_last().unwrap();
let b_last_ty = b_tys.last().unwrap();
// Substitute just the tail field of B., and require that they're equal.
let unsized_a_ty =
tcx.mk_tup_from_iter(a_rest_tys.iter().chain([b_last_ty]).copied());
ecx.eq(goal.param_env, unsized_a_ty, b_ty)?;
// Similar to ADTs, require that the rest of the fields are equal.
ecx.add_goal(goal.with(
tcx,
ty::TraitRef::new(tcx, goal.predicate.def_id(), [*a_last_ty, *b_last_ty]),
));
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
_ => Err(NoSolution),
}
})
}
fn consider_builtin_dyn_upcast_candidates(
@ -488,11 +478,7 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
}
let mut unsize_dyn_to_principal = |principal: Option<ty::PolyExistentialTraitRef<'tcx>>| {
ecx.probe(|r| CandidateKind::Candidate {
name: "upcast dyn to principle".into(),
result: *r,
})
.enter(|ecx| -> Result<_, NoSolution> {
ecx.probe_candidate("upcast dyn to principle").enter(|ecx| -> Result<_, NoSolution> {
// Require that all of the trait predicates from A match B, except for
// the auto traits. We do this by constructing a new A type with B's
// auto traits, and equating these types.
@ -714,21 +700,20 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
goal: Goal<'tcx, TraitPredicate<'tcx>>,
constituent_tys: impl Fn(&EvalCtxt<'_, 'tcx>, Ty<'tcx>) -> Result<Vec<Ty<'tcx>>, NoSolution>,
) -> QueryResult<'tcx> {
self.probe(|r| CandidateKind::Candidate { name: "constituent tys".into(), result: *r })
.enter(|ecx| {
ecx.add_goals(
constituent_tys(ecx, goal.predicate.self_ty())?
.into_iter()
.map(|ty| {
goal.with(
ecx.tcx(),
ty::Binder::dummy(goal.predicate.with_self_ty(ecx.tcx(), ty)),
)
})
.collect::<Vec<_>>(),
);
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
})
self.probe_candidate("constituent tys").enter(|ecx| {
ecx.add_goals(
constituent_tys(ecx, goal.predicate.self_ty())?
.into_iter()
.map(|ty| {
goal.with(
ecx.tcx(),
ty::Binder::dummy(goal.predicate.with_self_ty(ecx.tcx(), ty)),
)
})
.collect::<Vec<_>>(),
);
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
})
}
#[instrument(level = "debug", skip(self))]