1
Fork 0

Change enum->int casts to not go through MIR casts.

Instead we generate a discriminant rvalue and cast the result of that.
This commit is contained in:
Oli Scherer 2022-06-29 14:18:55 +00:00
parent 0e674b3ec5
commit 7839cb963f
15 changed files with 221 additions and 132 deletions

View file

@ -12,7 +12,6 @@ use rustc_middle::ty::cast::{CastTy, IntTy};
use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf};
use rustc_middle::ty::{self, adjustment::PointerCast, Instance, Ty, TyCtxt};
use rustc_span::source_map::{Span, DUMMY_SP};
use rustc_target::abi::{Abi, Int, Variants};
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
#[instrument(level = "debug", skip(self, bx))]
@ -283,74 +282,12 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
CastTy::from_ty(operand.layout.ty).expect("bad input type for cast");
let r_t_out = CastTy::from_ty(cast.ty).expect("bad output type for cast");
let ll_t_in = bx.cx().immediate_backend_type(operand.layout);
match operand.layout.variants {
Variants::Single { index } => {
if let Some(discr) =
operand.layout.ty.discriminant_for_variant(bx.tcx(), index)
{
let discr_layout = bx.cx().layout_of(discr.ty);
let discr_t = bx.cx().immediate_backend_type(discr_layout);
let discr_val = bx.cx().const_uint_big(discr_t, discr.val);
let discr_val =
bx.intcast(discr_val, ll_t_out, discr.ty.is_signed());
return (
bx,
OperandRef {
val: OperandValue::Immediate(discr_val),
layout: cast,
},
);
}
}
Variants::Multiple { .. } => {}
}
let llval = operand.immediate();
let mut signed = false;
if let Abi::Scalar(scalar) = operand.layout.abi {
if let Int(_, s) = scalar.primitive() {
// We use `i1` for bytes that are always `0` or `1`,
// e.g., `#[repr(i8)] enum E { A, B }`, but we can't
// let LLVM interpret the `i1` as signed, because
// then `i1 1` (i.e., E::B) is effectively `i8 -1`.
signed = !scalar.is_bool() && s;
if !scalar.is_always_valid(bx.cx())
&& scalar.valid_range(bx.cx()).end
>= scalar.valid_range(bx.cx()).start
{
// We want `table[e as usize ± k]` to not
// have bound checks, and this is the most
// convenient place to put the `assume`s.
if scalar.valid_range(bx.cx()).start > 0 {
let enum_value_lower_bound = bx.cx().const_uint_big(
ll_t_in,
scalar.valid_range(bx.cx()).start,
);
let cmp_start = bx.icmp(
IntPredicate::IntUGE,
llval,
enum_value_lower_bound,
);
bx.assume(cmp_start);
}
let enum_value_upper_bound = bx
.cx()
.const_uint_big(ll_t_in, scalar.valid_range(bx.cx()).end);
let cmp_end = bx.icmp(
IntPredicate::IntULE,
llval,
enum_value_upper_bound,
);
bx.assume(cmp_end);
}
}
}
let newval = match (r_t_in, r_t_out) {
(CastTy::Int(_), CastTy::Int(_)) => bx.intcast(llval, ll_t_out, signed),
(CastTy::Int(i), CastTy::Int(_)) => {
bx.intcast(llval, ll_t_out, matches!(i, IntTy::I))
}
(CastTy::Float, CastTy::Float) => {
let srcsz = bx.cx().float_width(ll_t_in);
let dstsz = bx.cx().float_width(ll_t_out);
@ -362,8 +299,8 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
llval
}
}
(CastTy::Int(_), CastTy::Float) => {
if signed {
(CastTy::Int(i), CastTy::Float) => {
if matches!(i, IntTy::I) {
bx.sitofp(llval, ll_t_out)
} else {
bx.uitofp(llval, ll_t_out)
@ -372,8 +309,9 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
(CastTy::Ptr(_) | CastTy::FnPtr, CastTy::Ptr(_)) => {
bx.pointercast(llval, ll_t_out)
}
(CastTy::Int(_), CastTy::Ptr(_)) => {
let usize_llval = bx.intcast(llval, bx.cx().type_isize(), signed);
(CastTy::Int(i), CastTy::Ptr(_)) => {
let usize_llval =
bx.intcast(llval, bx.cx().type_isize(), matches!(i, IntTy::I));
bx.inttoptr(usize_llval, ll_t_out)
}
(CastTy::Float, CastTy::Int(IntTy::I)) => {