Introduce TtHandle and use it in TokenSet.

This removes the last use of `<mbe::TokenTree as Clone>`. It also
removes two trivial methods on `Delimited`.
This commit is contained in:
Nicholas Nethercote 2022-04-11 10:55:49 +10:00
parent 2657d8f7b3
commit 75fd391aaa
3 changed files with 111 additions and 53 deletions

View file

@ -26,18 +26,6 @@ struct Delimited {
tts: Vec<TokenTree>, tts: Vec<TokenTree>,
} }
impl Delimited {
/// Returns a `self::TokenTree` with a `Span` corresponding to the opening delimiter.
fn open_tt(&self, span: DelimSpan) -> TokenTree {
TokenTree::token(token::OpenDelim(self.delim), span.open)
}
/// Returns a `self::TokenTree` with a `Span` corresponding to the closing delimiter.
fn close_tt(&self, span: DelimSpan) -> TokenTree {
TokenTree::token(token::CloseDelim(self.delim), span.close)
}
}
#[derive(PartialEq, Encodable, Decodable, Debug)] #[derive(PartialEq, Encodable, Decodable, Debug)]
struct SequenceRepetition { struct SequenceRepetition {
/// The sequence of token trees /// The sequence of token trees

View file

@ -142,10 +142,13 @@ pub(super) fn compute_locs(sess: &ParseSess, matcher: &[TokenTree]) -> Vec<Match
locs.push(MatcherLoc::Token { token: token.clone() }); locs.push(MatcherLoc::Token { token: token.clone() });
} }
TokenTree::Delimited(span, delimited) => { TokenTree::Delimited(span, delimited) => {
let open_token = Token::new(token::OpenDelim(delimited.delim), span.open);
let close_token = Token::new(token::CloseDelim(delimited.delim), span.close);
locs.push(MatcherLoc::Delimited); locs.push(MatcherLoc::Delimited);
inner(sess, &[delimited.open_tt(*span)], locs, next_metavar, seq_depth); locs.push(MatcherLoc::Token { token: open_token });
inner(sess, &delimited.tts, locs, next_metavar, seq_depth); inner(sess, &delimited.tts, locs, next_metavar, seq_depth);
inner(sess, &[delimited.close_tt(*span)], locs, next_metavar, seq_depth); locs.push(MatcherLoc::Token { token: close_token });
} }
TokenTree::Sequence(_, seq) => { TokenTree::Sequence(_, seq) => {
// We can't determine `idx_first_after` and construct the final // We can't determine `idx_first_after` and construct the final

View file

@ -8,7 +8,7 @@ use crate::mbe::macro_parser::{MatchedSeq, MatchedTokenTree, MatcherLoc};
use crate::mbe::transcribe::transcribe; use crate::mbe::transcribe::transcribe;
use rustc_ast as ast; use rustc_ast as ast;
use rustc_ast::token::{self, NonterminalKind, Token, TokenKind::*}; use rustc_ast::token::{self, NonterminalKind, Token, TokenKind, TokenKind::*};
use rustc_ast::tokenstream::{DelimSpan, TokenStream}; use rustc_ast::tokenstream::{DelimSpan, TokenStream};
use rustc_ast::{NodeId, DUMMY_NODE_ID}; use rustc_ast::{NodeId, DUMMY_NODE_ID};
use rustc_ast_pretty::pprust; use rustc_ast_pretty::pprust;
@ -658,18 +658,18 @@ fn check_matcher(
// that do not try to inject artificial span information. My plan is // that do not try to inject artificial span information. My plan is
// to try to catch such cases ahead of time and not include them in // to try to catch such cases ahead of time and not include them in
// the precomputed mapping.) // the precomputed mapping.)
struct FirstSets { struct FirstSets<'tt> {
// this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its // this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its
// span in the original matcher to the First set for the inner sequence `tt ...`. // span in the original matcher to the First set for the inner sequence `tt ...`.
// //
// If two sequences have the same span in a matcher, then map that // If two sequences have the same span in a matcher, then map that
// span to None (invalidating the mapping here and forcing the code to // span to None (invalidating the mapping here and forcing the code to
// use a slow path). // use a slow path).
first: FxHashMap<Span, Option<TokenSet>>, first: FxHashMap<Span, Option<TokenSet<'tt>>>,
} }
impl FirstSets { impl<'tt> FirstSets<'tt> {
fn new(tts: &[mbe::TokenTree]) -> FirstSets { fn new(tts: &'tt [mbe::TokenTree]) -> FirstSets<'tt> {
use mbe::TokenTree; use mbe::TokenTree;
let mut sets = FirstSets { first: FxHashMap::default() }; let mut sets = FirstSets { first: FxHashMap::default() };
@ -679,7 +679,7 @@ impl FirstSets {
// walks backward over `tts`, returning the FIRST for `tts` // walks backward over `tts`, returning the FIRST for `tts`
// and updating `sets` at the same time for all sequence // and updating `sets` at the same time for all sequence
// substructure we find within `tts`. // substructure we find within `tts`.
fn build_recur(sets: &mut FirstSets, tts: &[TokenTree]) -> TokenSet { fn build_recur<'tt>(sets: &mut FirstSets<'tt>, tts: &'tt [TokenTree]) -> TokenSet<'tt> {
let mut first = TokenSet::empty(); let mut first = TokenSet::empty();
for tt in tts.iter().rev() { for tt in tts.iter().rev() {
match *tt { match *tt {
@ -687,11 +687,14 @@ impl FirstSets {
| TokenTree::MetaVar(..) | TokenTree::MetaVar(..)
| TokenTree::MetaVarDecl(..) | TokenTree::MetaVarDecl(..)
| TokenTree::MetaVarExpr(..) => { | TokenTree::MetaVarExpr(..) => {
first.replace_with(tt.clone()); first.replace_with(TtHandle::TtRef(tt));
} }
TokenTree::Delimited(span, ref delimited) => { TokenTree::Delimited(span, ref delimited) => {
build_recur(sets, &delimited.tts); build_recur(sets, &delimited.tts);
first.replace_with(delimited.open_tt(span)); first.replace_with(TtHandle::from_token_kind(
token::OpenDelim(delimited.delim),
span.open,
));
} }
TokenTree::Sequence(sp, ref seq_rep) => { TokenTree::Sequence(sp, ref seq_rep) => {
let subfirst = build_recur(sets, &seq_rep.tts); let subfirst = build_recur(sets, &seq_rep.tts);
@ -715,7 +718,7 @@ impl FirstSets {
// token could be the separator token itself. // token could be the separator token itself.
if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) { if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
first.add_one_maybe(TokenTree::Token(sep.clone())); first.add_one_maybe(TtHandle::from_token(sep.clone()));
} }
// Reverse scan: Sequence comes before `first`. // Reverse scan: Sequence comes before `first`.
@ -741,7 +744,7 @@ impl FirstSets {
// walks forward over `tts` until all potential FIRST tokens are // walks forward over `tts` until all potential FIRST tokens are
// identified. // identified.
fn first(&self, tts: &[mbe::TokenTree]) -> TokenSet { fn first(&self, tts: &'tt [mbe::TokenTree]) -> TokenSet<'tt> {
use mbe::TokenTree; use mbe::TokenTree;
let mut first = TokenSet::empty(); let mut first = TokenSet::empty();
@ -752,11 +755,14 @@ impl FirstSets {
| TokenTree::MetaVar(..) | TokenTree::MetaVar(..)
| TokenTree::MetaVarDecl(..) | TokenTree::MetaVarDecl(..)
| TokenTree::MetaVarExpr(..) => { | TokenTree::MetaVarExpr(..) => {
first.add_one(tt.clone()); first.add_one(TtHandle::TtRef(tt));
return first; return first;
} }
TokenTree::Delimited(span, ref delimited) => { TokenTree::Delimited(span, ref delimited) => {
first.add_one(delimited.open_tt(span)); first.add_one(TtHandle::from_token_kind(
token::OpenDelim(delimited.delim),
span.open,
));
return first; return first;
} }
TokenTree::Sequence(sp, ref seq_rep) => { TokenTree::Sequence(sp, ref seq_rep) => {
@ -775,7 +781,7 @@ impl FirstSets {
// If the sequence contents can be empty, then the first // If the sequence contents can be empty, then the first
// token could be the separator token itself. // token could be the separator token itself.
if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) { if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
first.add_one_maybe(TokenTree::Token(sep.clone())); first.add_one_maybe(TtHandle::from_token(sep.clone()));
} }
assert!(first.maybe_empty); assert!(first.maybe_empty);
@ -803,6 +809,62 @@ impl FirstSets {
} }
} }
// Most `mbe::TokenTree`s are pre-existing in the matcher, but some are defined
// implicitly, such as opening/closing delimiters and sequence repetition ops.
// This type encapsulates both kinds. It implements `Clone` while avoiding the
// need for `mbe::TokenTree` to implement `Clone`.
#[derive(Debug)]
enum TtHandle<'tt> {
/// This is used in most cases.
TtRef(&'tt mbe::TokenTree),
/// This is only used for implicit token trees. The `mbe::TokenTree` *must*
/// be `mbe::TokenTree::Token`. No other variants are allowed. We store an
/// `mbe::TokenTree` rather than a `Token` so that `get()` can return a
/// `&mbe::TokenTree`.
Token(mbe::TokenTree),
}
impl<'tt> TtHandle<'tt> {
fn from_token(tok: Token) -> Self {
TtHandle::Token(mbe::TokenTree::Token(tok))
}
fn from_token_kind(kind: TokenKind, span: Span) -> Self {
TtHandle::from_token(Token::new(kind, span))
}
// Get a reference to a token tree.
fn get(&'tt self) -> &'tt mbe::TokenTree {
match self {
TtHandle::TtRef(tt) => tt,
TtHandle::Token(token_tt) => &token_tt,
}
}
}
impl<'tt> PartialEq for TtHandle<'tt> {
fn eq(&self, other: &TtHandle<'tt>) -> bool {
self.get() == other.get()
}
}
impl<'tt> Clone for TtHandle<'tt> {
fn clone(&self) -> Self {
match self {
TtHandle::TtRef(tt) => TtHandle::TtRef(tt),
// This variant *must* contain a `mbe::TokenTree::Token`, and not
// any other variant of `mbe::TokenTree`.
TtHandle::Token(mbe::TokenTree::Token(tok)) => {
TtHandle::Token(mbe::TokenTree::Token(tok.clone()))
}
_ => unreachable!(),
}
}
}
// A set of `mbe::TokenTree`s, which may include `TokenTree::Match`s // A set of `mbe::TokenTree`s, which may include `TokenTree::Match`s
// (for macro-by-example syntactic variables). It also carries the // (for macro-by-example syntactic variables). It also carries the
// `maybe_empty` flag; that is true if and only if the matcher can // `maybe_empty` flag; that is true if and only if the matcher can
@ -814,12 +876,12 @@ impl FirstSets {
// //
// (Notably, we must allow for *-op to occur zero times.) // (Notably, we must allow for *-op to occur zero times.)
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
struct TokenSet { struct TokenSet<'tt> {
tokens: Vec<mbe::TokenTree>, tokens: Vec<TtHandle<'tt>>,
maybe_empty: bool, maybe_empty: bool,
} }
impl TokenSet { impl<'tt> TokenSet<'tt> {
// Returns a set for the empty sequence. // Returns a set for the empty sequence.
fn empty() -> Self { fn empty() -> Self {
TokenSet { tokens: Vec::new(), maybe_empty: true } TokenSet { tokens: Vec::new(), maybe_empty: true }
@ -827,15 +889,15 @@ impl TokenSet {
// Returns the set `{ tok }` for the single-token (and thus // Returns the set `{ tok }` for the single-token (and thus
// non-empty) sequence [tok]. // non-empty) sequence [tok].
fn singleton(tok: mbe::TokenTree) -> Self { fn singleton(tt: TtHandle<'tt>) -> Self {
TokenSet { tokens: vec![tok], maybe_empty: false } TokenSet { tokens: vec![tt], maybe_empty: false }
} }
// Changes self to be the set `{ tok }`. // Changes self to be the set `{ tok }`.
// Since `tok` is always present, marks self as non-empty. // Since `tok` is always present, marks self as non-empty.
fn replace_with(&mut self, tok: mbe::TokenTree) { fn replace_with(&mut self, tt: TtHandle<'tt>) {
self.tokens.clear(); self.tokens.clear();
self.tokens.push(tok); self.tokens.push(tt);
self.maybe_empty = false; self.maybe_empty = false;
} }
@ -848,17 +910,17 @@ impl TokenSet {
} }
// Adds `tok` to the set for `self`, marking sequence as non-empy. // Adds `tok` to the set for `self`, marking sequence as non-empy.
fn add_one(&mut self, tok: mbe::TokenTree) { fn add_one(&mut self, tt: TtHandle<'tt>) {
if !self.tokens.contains(&tok) { if !self.tokens.contains(&tt) {
self.tokens.push(tok); self.tokens.push(tt);
} }
self.maybe_empty = false; self.maybe_empty = false;
} }
// Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.) // Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.)
fn add_one_maybe(&mut self, tok: mbe::TokenTree) { fn add_one_maybe(&mut self, tt: TtHandle<'tt>) {
if !self.tokens.contains(&tok) { if !self.tokens.contains(&tt) {
self.tokens.push(tok); self.tokens.push(tt);
} }
} }
@ -870,9 +932,9 @@ impl TokenSet {
// setting of the empty flag of `self`. If `other` is guaranteed // setting of the empty flag of `self`. If `other` is guaranteed
// non-empty, then `self` is marked non-empty. // non-empty, then `self` is marked non-empty.
fn add_all(&mut self, other: &Self) { fn add_all(&mut self, other: &Self) {
for tok in &other.tokens { for tt in &other.tokens {
if !self.tokens.contains(tok) { if !self.tokens.contains(tt) {
self.tokens.push(tok.clone()); self.tokens.push(tt.clone());
} }
} }
if !other.maybe_empty { if !other.maybe_empty {
@ -892,14 +954,14 @@ impl TokenSet {
// //
// Requires that `first_sets` is pre-computed for `matcher`; // Requires that `first_sets` is pre-computed for `matcher`;
// see `FirstSets::new`. // see `FirstSets::new`.
fn check_matcher_core( fn check_matcher_core<'tt>(
sess: &ParseSess, sess: &ParseSess,
features: &Features, features: &Features,
def: &ast::Item, def: &ast::Item,
first_sets: &FirstSets, first_sets: &FirstSets<'tt>,
matcher: &[mbe::TokenTree], matcher: &'tt [mbe::TokenTree],
follow: &TokenSet, follow: &TokenSet<'tt>,
) -> TokenSet { ) -> TokenSet<'tt> {
use mbe::TokenTree; use mbe::TokenTree;
let mut last = TokenSet::empty(); let mut last = TokenSet::empty();
@ -938,12 +1000,15 @@ fn check_matcher_core(
// followed by anything against SUFFIX. // followed by anything against SUFFIX.
continue 'each_token; continue 'each_token;
} else { } else {
last.replace_with(token.clone()); last.replace_with(TtHandle::TtRef(token));
suffix_first = build_suffix_first(); suffix_first = build_suffix_first();
} }
} }
TokenTree::Delimited(span, ref d) => { TokenTree::Delimited(span, ref d) => {
let my_suffix = TokenSet::singleton(d.close_tt(span)); let my_suffix = TokenSet::singleton(TtHandle::from_token_kind(
token::CloseDelim(d.delim),
span.close,
));
check_matcher_core(sess, features, def, first_sets, &d.tts, &my_suffix); check_matcher_core(sess, features, def, first_sets, &d.tts, &my_suffix);
// don't track non NT tokens // don't track non NT tokens
last.replace_with_irrelevant(); last.replace_with_irrelevant();
@ -967,7 +1032,7 @@ fn check_matcher_core(
let mut new; let mut new;
let my_suffix = if let Some(sep) = &seq_rep.separator { let my_suffix = if let Some(sep) = &seq_rep.separator {
new = suffix_first.clone(); new = suffix_first.clone();
new.add_one_maybe(TokenTree::Token(sep.clone())); new.add_one_maybe(TtHandle::from_token(sep.clone()));
&new &new
} else { } else {
&suffix_first &suffix_first
@ -994,9 +1059,11 @@ fn check_matcher_core(
// Now `last` holds the complete set of NT tokens that could // Now `last` holds the complete set of NT tokens that could
// end the sequence before SUFFIX. Check that every one works with `suffix`. // end the sequence before SUFFIX. Check that every one works with `suffix`.
for token in &last.tokens { for tt in &last.tokens {
if let TokenTree::MetaVarDecl(span, name, Some(kind)) = *token { if let &TokenTree::MetaVarDecl(span, name, Some(kind)) = tt.get() {
for next_token in &suffix_first.tokens { for next_token in &suffix_first.tokens {
let next_token = next_token.get();
// Check if the old pat is used and the next token is `|` // Check if the old pat is used and the next token is `|`
// to warn about incompatibility with Rust 2021. // to warn about incompatibility with Rust 2021.
// We only emit this lint if we're parsing the original // We only emit this lint if we're parsing the original