1
Fork 0

Auto merge of #120712 - compiler-errors:async-closures-harmonize, r=oli-obk

Harmonize `AsyncFn` implementations, make async closures conditionally impl `Fn*` traits

This PR implements several changes to the built-in and libcore-provided implementations of `Fn*` and `AsyncFn*` to address two problems:
1. async closures do not implement the `Fn*` family traits, leading to breakage: https://crater-reports.s3.amazonaws.com/pr-120361/index.html
2. *references* to async closures do not implement `AsyncFn*`, as a consequence of the existing blanket impls of the shape `AsyncFn for F where F: Fn, F::Output: Future`.

In order to fix (1.), we implement `Fn` traits appropriately for async closures. It turns out that async closures can:
* always implement `FnOnce`, meaning that they're drop-in compatible with `FnOnce`-bound combinators like `Option::map`.
* conditionally implement `Fn`/`FnMut` if they have no captures, which means that existing usages of async closures should *probably* work without breakage (crater checking this: https://github.com/rust-lang/rust/pull/120712#issuecomment-1930587805).

In order to fix (2.), we make all of the built-in callables implement `AsyncFn*` via built-in impls, and instead adjust the blanket impls for `AsyncFn*` provided by libcore to match the blanket impls for `Fn*`.
This commit is contained in:
bors 2024-02-10 07:15:15 +00:00
commit 757b8efed4
21 changed files with 706 additions and 263 deletions

View file

@ -872,17 +872,25 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
// touch bound regions, they just capture the in-scope
// type/region parameters.
let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
let ty::Closure(closure_def_id, args) = *self_ty.kind() else {
bug!("closure candidate for non-closure {:?}", obligation);
let trait_ref = match *self_ty.kind() {
ty::Closure(_, args) => {
self.closure_trait_ref_unnormalized(obligation, args, self.tcx().consts.true_)
}
ty::CoroutineClosure(_, args) => {
args.as_coroutine_closure().coroutine_closure_sig().map_bound(|sig| {
ty::TraitRef::new(
self.tcx(),
obligation.predicate.def_id(),
[self_ty, sig.tupled_inputs_ty],
)
})
}
_ => {
bug!("closure candidate for non-closure {:?}", obligation);
}
};
let trait_ref =
self.closure_trait_ref_unnormalized(obligation, args, self.tcx().consts.true_);
let nested = self.confirm_poly_trait_refs(obligation, trait_ref)?;
debug!(?closure_def_id, ?trait_ref, ?nested, "confirm closure candidate obligations");
Ok(nested)
self.confirm_poly_trait_refs(obligation, trait_ref)
}
#[instrument(skip(self), level = "debug")]
@ -890,40 +898,86 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
&mut self,
obligation: &PolyTraitObligation<'tcx>,
) -> Result<Vec<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
// Okay to skip binder because the args on closure types never
// touch bound regions, they just capture the in-scope
// type/region parameters.
let tcx = self.tcx();
let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
let ty::CoroutineClosure(closure_def_id, args) = *self_ty.kind() else {
bug!("async closure candidate for non-coroutine-closure {:?}", obligation);
let mut nested = vec![];
let (trait_ref, kind_ty) = match *self_ty.kind() {
ty::CoroutineClosure(_, args) => {
let args = args.as_coroutine_closure();
let trait_ref = args.coroutine_closure_sig().map_bound(|sig| {
ty::TraitRef::new(
self.tcx(),
obligation.predicate.def_id(),
[self_ty, sig.tupled_inputs_ty],
)
});
(trait_ref, args.kind_ty())
}
ty::FnDef(..) | ty::FnPtr(..) => {
let sig = self_ty.fn_sig(tcx);
let trait_ref = sig.map_bound(|sig| {
ty::TraitRef::new(
self.tcx(),
obligation.predicate.def_id(),
[self_ty, Ty::new_tup(tcx, sig.inputs())],
)
});
// We must additionally check that the return type impls `Future`.
let future_trait_def_id = tcx.require_lang_item(LangItem::Future, None);
nested.push(obligation.with(
tcx,
sig.map_bound(|sig| {
ty::TraitRef::new(tcx, future_trait_def_id, [sig.output()])
}),
));
(trait_ref, Ty::from_closure_kind(tcx, ty::ClosureKind::Fn))
}
ty::Closure(_, args) => {
let sig = args.as_closure().sig();
let trait_ref = sig.map_bound(|sig| {
ty::TraitRef::new(
self.tcx(),
obligation.predicate.def_id(),
[self_ty, sig.inputs()[0]],
)
});
// We must additionally check that the return type impls `Future`.
let future_trait_def_id = tcx.require_lang_item(LangItem::Future, None);
nested.push(obligation.with(
tcx,
sig.map_bound(|sig| {
ty::TraitRef::new(tcx, future_trait_def_id, [sig.output()])
}),
));
(trait_ref, Ty::from_closure_kind(tcx, ty::ClosureKind::Fn))
}
_ => bug!("expected callable type for AsyncFn candidate"),
};
let trait_ref = args.as_coroutine_closure().coroutine_closure_sig().map_bound(|sig| {
ty::TraitRef::new(
self.tcx(),
obligation.predicate.def_id(),
[self_ty, sig.tupled_inputs_ty],
)
});
let mut nested = self.confirm_poly_trait_refs(obligation, trait_ref)?;
nested.extend(self.confirm_poly_trait_refs(obligation, trait_ref)?);
let goal_kind =
self.tcx().async_fn_trait_kind_from_def_id(obligation.predicate.def_id()).unwrap();
nested.push(obligation.with(
self.tcx(),
ty::TraitRef::from_lang_item(
self.tcx(),
LangItem::AsyncFnKindHelper,
obligation.cause.span,
[
args.as_coroutine_closure().kind_ty(),
Ty::from_closure_kind(self.tcx(), goal_kind),
],
),
));
debug!(?closure_def_id, ?trait_ref, ?nested, "confirm closure candidate obligations");
// If we have not yet determiend the `ClosureKind` of the closure or coroutine-closure,
// then additionally register an `AsyncFnKindHelper` goal which will fail if the kind
// is constrained to an insufficient type later on.
if let Some(closure_kind) = self.infcx.shallow_resolve(kind_ty).to_opt_closure_kind() {
if !closure_kind.extends(goal_kind) {
return Err(SelectionError::Unimplemented);
}
} else {
nested.push(obligation.with(
self.tcx(),
ty::TraitRef::from_lang_item(
self.tcx(),
LangItem::AsyncFnKindHelper,
obligation.cause.span,
[kind_ty, Ty::from_closure_kind(self.tcx(), goal_kind)],
),
));
}
Ok(nested)
}