1
Fork 0

coverage: Extract module mapgen::unused for handling unused functions

This commit is contained in:
Zalathar 2025-03-21 15:07:05 +11:00
parent c2110769cd
commit 75135aaf19
2 changed files with 132 additions and 125 deletions

View file

@ -5,15 +5,11 @@ use rustc_abi::Align;
use rustc_codegen_ssa::traits::{
BaseTypeCodegenMethods, ConstCodegenMethods, StaticCodegenMethods,
};
use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_data_structures::fx::FxIndexMap;
use rustc_index::IndexVec;
use rustc_middle::mir;
use rustc_middle::mir::mono::MonoItemPartitions;
use rustc_middle::ty::{self, TyCtxt};
use rustc_middle::ty::TyCtxt;
use rustc_session::RemapFileNameExt;
use rustc_session::config::RemapPathScopeComponents;
use rustc_span::def_id::DefIdSet;
use rustc_span::{SourceFile, StableSourceFileId};
use tracing::debug;
@ -24,6 +20,7 @@ use crate::llvm;
mod covfun;
mod spans;
mod unused;
/// Generates and exports the coverage map, which is embedded in special
/// linker sections in the final binary.
@ -76,7 +73,7 @@ pub(crate) fn finalize(cx: &CodegenCx<'_, '_>) {
// In a single designated CGU, also prepare covfun records for functions
// in this crate that were instrumented for coverage, but are unused.
if cx.codegen_unit.is_code_coverage_dead_code_cgu() {
let mut unused_instances = gather_unused_function_instances(cx);
let mut unused_instances = unused::gather_unused_function_instances(cx);
// Sort the unused instances by symbol name, for the same reason as the used ones.
unused_instances.sort_by_cached_key(|&instance| tcx.symbol_name(instance).name);
covfun_records.extend(unused_instances.into_iter().filter_map(|instance| {
@ -249,121 +246,3 @@ fn generate_covmap_record<'ll>(cx: &CodegenCx<'ll, '_>, version: u32, filenames_
cx.add_used_global(covmap_global);
}
/// Each CGU will normally only emit coverage metadata for the functions that it actually generates.
/// But since we don't want unused functions to disappear from coverage reports, we also scan for
/// functions that were instrumented but are not participating in codegen.
///
/// These unused functions don't need to be codegenned, but we do need to add them to the function
/// coverage map (in a single designated CGU) so that we still emit coverage mappings for them.
/// We also end up adding their symbol names to a special global array that LLVM will include in
/// its embedded coverage data.
fn gather_unused_function_instances<'tcx>(cx: &CodegenCx<'_, 'tcx>) -> Vec<ty::Instance<'tcx>> {
assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu());
let tcx = cx.tcx;
let usage = prepare_usage_sets(tcx);
let is_unused_fn = |def_id: LocalDefId| -> bool {
// Usage sets expect `DefId`, so convert from `LocalDefId`.
let d: DefId = LocalDefId::to_def_id(def_id);
// To be potentially eligible for "unused function" mappings, a definition must:
// - Be eligible for coverage instrumentation
// - Not participate directly in codegen (or have lost all its coverage statements)
// - Not have any coverage statements inlined into codegenned functions
tcx.is_eligible_for_coverage(def_id)
&& (!usage.all_mono_items.contains(&d) || usage.missing_own_coverage.contains(&d))
&& !usage.used_via_inlining.contains(&d)
};
// FIXME(#79651): Consider trying to filter out dummy instantiations of
// unused generic functions from library crates, because they can produce
// "unused instantiation" in coverage reports even when they are actually
// used by some downstream crate in the same binary.
tcx.mir_keys(())
.iter()
.copied()
.filter(|&def_id| is_unused_fn(def_id))
.map(|def_id| make_dummy_instance(tcx, def_id))
.collect::<Vec<_>>()
}
struct UsageSets<'tcx> {
all_mono_items: &'tcx DefIdSet,
used_via_inlining: FxHashSet<DefId>,
missing_own_coverage: FxHashSet<DefId>,
}
/// Prepare sets of definitions that are relevant to deciding whether something
/// is an "unused function" for coverage purposes.
fn prepare_usage_sets<'tcx>(tcx: TyCtxt<'tcx>) -> UsageSets<'tcx> {
let MonoItemPartitions { all_mono_items, codegen_units, .. } =
tcx.collect_and_partition_mono_items(());
// Obtain a MIR body for each function participating in codegen, via an
// arbitrary instance.
let mut def_ids_seen = FxHashSet::default();
let def_and_mir_for_all_mono_fns = codegen_units
.iter()
.flat_map(|cgu| cgu.items().keys())
.filter_map(|item| match item {
mir::mono::MonoItem::Fn(instance) => Some(instance),
mir::mono::MonoItem::Static(_) | mir::mono::MonoItem::GlobalAsm(_) => None,
})
// We only need one arbitrary instance per definition.
.filter(move |instance| def_ids_seen.insert(instance.def_id()))
.map(|instance| {
// We don't care about the instance, just its underlying MIR.
let body = tcx.instance_mir(instance.def);
(instance.def_id(), body)
});
// Functions whose coverage statements were found inlined into other functions.
let mut used_via_inlining = FxHashSet::default();
// Functions that were instrumented, but had all of their coverage statements
// removed by later MIR transforms (e.g. UnreachablePropagation).
let mut missing_own_coverage = FxHashSet::default();
for (def_id, body) in def_and_mir_for_all_mono_fns {
let mut saw_own_coverage = false;
// Inspect every coverage statement in the function's MIR.
for stmt in body
.basic_blocks
.iter()
.flat_map(|block| &block.statements)
.filter(|stmt| matches!(stmt.kind, mir::StatementKind::Coverage(_)))
{
if let Some(inlined) = stmt.source_info.scope.inlined_instance(&body.source_scopes) {
// This coverage statement was inlined from another function.
used_via_inlining.insert(inlined.def_id());
} else {
// Non-inlined coverage statements belong to the enclosing function.
saw_own_coverage = true;
}
}
if !saw_own_coverage && body.function_coverage_info.is_some() {
missing_own_coverage.insert(def_id);
}
}
UsageSets { all_mono_items, used_via_inlining, missing_own_coverage }
}
fn make_dummy_instance<'tcx>(tcx: TyCtxt<'tcx>, local_def_id: LocalDefId) -> ty::Instance<'tcx> {
let def_id = local_def_id.to_def_id();
// Make a dummy instance that fills in all generics with placeholders.
ty::Instance::new(
def_id,
ty::GenericArgs::for_item(tcx, def_id, |param, _| {
if let ty::GenericParamDefKind::Lifetime = param.kind {
tcx.lifetimes.re_erased.into()
} else {
tcx.mk_param_from_def(param)
}
}),
)
}

View file

@ -0,0 +1,128 @@
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::mir;
use rustc_middle::mir::mono::MonoItemPartitions;
use rustc_middle::ty::{self, TyCtxt};
use rustc_span::def_id::DefIdSet;
use crate::common::CodegenCx;
/// Each CGU will normally only emit coverage metadata for the functions that it actually generates.
/// But since we don't want unused functions to disappear from coverage reports, we also scan for
/// functions that were instrumented but are not participating in codegen.
///
/// These unused functions don't need to be codegenned, but we do need to add them to the function
/// coverage map (in a single designated CGU) so that we still emit coverage mappings for them.
/// We also end up adding their symbol names to a special global array that LLVM will include in
/// its embedded coverage data.
pub(crate) fn gather_unused_function_instances<'tcx>(
cx: &CodegenCx<'_, 'tcx>,
) -> Vec<ty::Instance<'tcx>> {
assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu());
let tcx = cx.tcx;
let usage = prepare_usage_sets(tcx);
let is_unused_fn = |def_id: LocalDefId| -> bool {
// Usage sets expect `DefId`, so convert from `LocalDefId`.
let d: DefId = LocalDefId::to_def_id(def_id);
// To be potentially eligible for "unused function" mappings, a definition must:
// - Be eligible for coverage instrumentation
// - Not participate directly in codegen (or have lost all its coverage statements)
// - Not have any coverage statements inlined into codegenned functions
tcx.is_eligible_for_coverage(def_id)
&& (!usage.all_mono_items.contains(&d) || usage.missing_own_coverage.contains(&d))
&& !usage.used_via_inlining.contains(&d)
};
// FIXME(#79651): Consider trying to filter out dummy instantiations of
// unused generic functions from library crates, because they can produce
// "unused instantiation" in coverage reports even when they are actually
// used by some downstream crate in the same binary.
tcx.mir_keys(())
.iter()
.copied()
.filter(|&def_id| is_unused_fn(def_id))
.map(|def_id| make_dummy_instance(tcx, def_id))
.collect::<Vec<_>>()
}
struct UsageSets<'tcx> {
all_mono_items: &'tcx DefIdSet,
used_via_inlining: FxHashSet<DefId>,
missing_own_coverage: FxHashSet<DefId>,
}
/// Prepare sets of definitions that are relevant to deciding whether something
/// is an "unused function" for coverage purposes.
fn prepare_usage_sets<'tcx>(tcx: TyCtxt<'tcx>) -> UsageSets<'tcx> {
let MonoItemPartitions { all_mono_items, codegen_units, .. } =
tcx.collect_and_partition_mono_items(());
// Obtain a MIR body for each function participating in codegen, via an
// arbitrary instance.
let mut def_ids_seen = FxHashSet::default();
let def_and_mir_for_all_mono_fns = codegen_units
.iter()
.flat_map(|cgu| cgu.items().keys())
.filter_map(|item| match item {
mir::mono::MonoItem::Fn(instance) => Some(instance),
mir::mono::MonoItem::Static(_) | mir::mono::MonoItem::GlobalAsm(_) => None,
})
// We only need one arbitrary instance per definition.
.filter(move |instance| def_ids_seen.insert(instance.def_id()))
.map(|instance| {
// We don't care about the instance, just its underlying MIR.
let body = tcx.instance_mir(instance.def);
(instance.def_id(), body)
});
// Functions whose coverage statements were found inlined into other functions.
let mut used_via_inlining = FxHashSet::default();
// Functions that were instrumented, but had all of their coverage statements
// removed by later MIR transforms (e.g. UnreachablePropagation).
let mut missing_own_coverage = FxHashSet::default();
for (def_id, body) in def_and_mir_for_all_mono_fns {
let mut saw_own_coverage = false;
// Inspect every coverage statement in the function's MIR.
for stmt in body
.basic_blocks
.iter()
.flat_map(|block| &block.statements)
.filter(|stmt| matches!(stmt.kind, mir::StatementKind::Coverage(_)))
{
if let Some(inlined) = stmt.source_info.scope.inlined_instance(&body.source_scopes) {
// This coverage statement was inlined from another function.
used_via_inlining.insert(inlined.def_id());
} else {
// Non-inlined coverage statements belong to the enclosing function.
saw_own_coverage = true;
}
}
if !saw_own_coverage && body.function_coverage_info.is_some() {
missing_own_coverage.insert(def_id);
}
}
UsageSets { all_mono_items, used_via_inlining, missing_own_coverage }
}
fn make_dummy_instance<'tcx>(tcx: TyCtxt<'tcx>, local_def_id: LocalDefId) -> ty::Instance<'tcx> {
let def_id = local_def_id.to_def_id();
// Make a dummy instance that fills in all generics with placeholders.
ty::Instance::new(
def_id,
ty::GenericArgs::for_item(tcx, def_id, |param, _| {
if let ty::GenericParamDefKind::Lifetime = param.kind {
tcx.lifetimes.re_erased.into()
} else {
tcx.mk_param_from_def(param)
}
}),
)
}