improve infer var handling for implied bounds

This commit is contained in:
lcnr 2022-09-19 14:59:52 +02:00
parent efa717bc2d
commit 71f8fd5c58
4 changed files with 41 additions and 34 deletions

View file

@ -49,7 +49,8 @@ fn compute_implied_outlives_bounds<'tcx>(
let mut checked_wf_args = rustc_data_structures::fx::FxHashSet::default();
let mut wf_args = vec![ty.into()];
let mut implied_bounds = vec![];
let mut outlives_bounds: Vec<ty::OutlivesPredicate<ty::GenericArg<'tcx>, ty::Region<'tcx>>> =
vec![];
let mut fulfill_cx = <dyn TraitEngine<'tcx>>::new(tcx);
@ -65,30 +66,17 @@ fn compute_implied_outlives_bounds<'tcx>(
// than the ultimate set. (Note: normally there won't be
// unresolved inference variables here anyway, but there might be
// during typeck under some circumstances.)
//
// FIXME(@lcnr): It's not really "always fine", having fewer implied
// bounds can be backward incompatible, e.g. #101951 was caused by
// us not dealing with inference vars in `TypeOutlives` predicates.
let obligations = wf::obligations(infcx, param_env, hir::CRATE_HIR_ID, 0, arg, DUMMY_SP)
.unwrap_or_default();
// N.B., all of these predicates *ought* to be easily proven
// true. In fact, their correctness is (mostly) implied by
// other parts of the program. However, in #42552, we had
// an annoying scenario where:
//
// - Some `T::Foo` gets normalized, resulting in a
// variable `_1` and a `T: Trait<Foo=_1>` constraint
// (not sure why it couldn't immediately get
// solved). This result of `_1` got cached.
// - These obligations were dropped on the floor here,
// rather than being registered.
// - Then later we would get a request to normalize
// `T::Foo` which would result in `_1` being used from
// the cache, but hence without the `T: Trait<Foo=_1>`
// constraint. As a result, `_1` never gets resolved,
// and we get an ICE (in dropck).
//
// Therefore, we register any predicates involving
// inference variables. We restrict ourselves to those
// involving inference variables both for efficiency and
// to avoids duplicate errors that otherwise show up.
// While these predicates should all be implied by other parts of
// the program, they are still relevant as they may constrain
// inference variables, which is necessary to add the correct
// implied bounds in some cases, mostly when dealing with projections.
fulfill_cx.register_predicate_obligations(
infcx,
obligations.iter().filter(|o| o.predicate.has_infer_types_or_consts()).cloned(),
@ -96,10 +84,10 @@ fn compute_implied_outlives_bounds<'tcx>(
// From the full set of obligations, just filter down to the
// region relationships.
implied_bounds.extend(obligations.into_iter().flat_map(|obligation| {
outlives_bounds.extend(obligations.into_iter().filter_map(|obligation| {
assert!(!obligation.has_escaping_bound_vars());
match obligation.predicate.kind().no_bound_vars() {
None => vec![],
None => None,
Some(pred) => match pred {
ty::PredicateKind::Trait(..)
| ty::PredicateKind::Subtype(..)
@ -109,21 +97,18 @@ fn compute_implied_outlives_bounds<'tcx>(
| ty::PredicateKind::ObjectSafe(..)
| ty::PredicateKind::ConstEvaluatable(..)
| ty::PredicateKind::ConstEquate(..)
| ty::PredicateKind::TypeWellFormedFromEnv(..) => vec![],
| ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
ty::PredicateKind::WellFormed(arg) => {
wf_args.push(arg);
vec![]
None
}
ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(r_a, r_b)) => {
vec![OutlivesBound::RegionSubRegion(r_b, r_a)]
Some(ty::OutlivesPredicate(r_a.into(), r_b))
}
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_a, r_b)) => {
let ty_a = infcx.resolve_vars_if_possible(ty_a);
let mut components = smallvec![];
push_outlives_components(tcx, ty_a, &mut components);
implied_bounds_from_components(r_b, components)
Some(ty::OutlivesPredicate(ty_a.into(), r_b))
}
},
}
@ -133,9 +118,27 @@ fn compute_implied_outlives_bounds<'tcx>(
// Ensure that those obligations that we had to solve
// get solved *here*.
match fulfill_cx.select_all_or_error(infcx).as_slice() {
[] => Ok(implied_bounds),
_ => Err(NoSolution),
[] => (),
_ => return Err(NoSolution),
}
// We lazily compute the outlives components as
// `select_all_or_error` constrains inference variables.
let implied_bounds = outlives_bounds
.into_iter()
.flat_map(|ty::OutlivesPredicate(a, r_b)| match a.unpack() {
ty::GenericArgKind::Lifetime(r_a) => vec![OutlivesBound::RegionSubRegion(r_b, r_a)],
ty::GenericArgKind::Type(ty_a) => {
let ty_a = infcx.resolve_vars_if_possible(ty_a);
let mut components = smallvec![];
push_outlives_components(tcx, ty_a, &mut components);
implied_bounds_from_components(r_b, components)
}
ty::GenericArgKind::Const(_) => unreachable!(),
})
.collect();
Ok(implied_bounds)
}
/// When we have an implied bound that `T: 'a`, we can further break