1
Fork 0

compiler: rustc_abi::Abi => BackendRepr

The initial naming of "Abi" was an awful mistake, conveying wrong ideas
about how psABIs worked and even more about what the enum meant.
It was only meant to represent the way the value would be described to
a codegen backend as it was lowered to that intermediate representation.
It was never meant to mean anything about the actual psABI handling!
The conflation is because LLVM typically will associate a certain form
with a certain ABI, but even that does not hold when the special cases
that actually exist arise, plus the IR annotations that modify the ABI.

Reframe `rustc_abi::Abi` as the `BackendRepr` of the type, and rename
`BackendRepr::Aggregate` as `BackendRepr::Memory`. Unfortunately, due to
the persistent misunderstandings, this too is now incorrect:
- Scattered ABI-relevant code is entangled with BackendRepr
- We do not always pre-compute a correct BackendRepr that reflects how
  we "actually" want this value to be handled, so we leave the backend
  interface to also inject various special-cases here
- In some cases `BackendRepr::Memory` is a "real" aggregate, but in
  others it is in fact using memory, and in some cases it is a scalar!

Our rustc-to-backend lowering code handles this sort of thing right now.
That will eventually be addressed by lifting duplicated lowering code
to either rustc_codegen_ssa or rustc_target as appropriate.
This commit is contained in:
Jubilee Young 2024-10-29 13:37:26 -07:00
parent 2dece5bb62
commit 7086dd83cc
51 changed files with 517 additions and 428 deletions

View file

@ -66,12 +66,12 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLayout<'tcx>) {
// Verify the ABI mandated alignment and size.
let align = layout.abi.inherent_align(cx).map(|align| align.abi);
let size = layout.abi.inherent_size(cx);
let align = layout.backend_repr.inherent_align(cx).map(|align| align.abi);
let size = layout.backend_repr.inherent_size(cx);
let Some((align, size)) = align.zip(size) else {
assert_matches!(
layout.layout.abi(),
Abi::Uninhabited | Abi::Aggregate { .. },
layout.layout.backend_repr(),
BackendRepr::Uninhabited | BackendRepr::Memory { .. },
"ABI unexpectedly missing alignment and/or size in {layout:#?}"
);
return;
@ -88,12 +88,12 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
);
// Verify per-ABI invariants
match layout.layout.abi() {
Abi::Scalar(_) => {
match layout.layout.backend_repr() {
BackendRepr::Scalar(_) => {
// Check that this matches the underlying field.
let inner = skip_newtypes(cx, layout);
assert!(
matches!(inner.layout.abi(), Abi::Scalar(_)),
matches!(inner.layout.backend_repr(), BackendRepr::Scalar(_)),
"`Scalar` type {} is newtype around non-`Scalar` type {}",
layout.ty,
inner.ty
@ -132,7 +132,7 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
"`Scalar` field with bad align in {inner:#?}",
);
assert!(
matches!(field.abi, Abi::Scalar(_)),
matches!(field.backend_repr, BackendRepr::Scalar(_)),
"`Scalar` field with bad ABI in {inner:#?}",
);
}
@ -141,11 +141,11 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
}
}
}
Abi::ScalarPair(scalar1, scalar2) => {
BackendRepr::ScalarPair(scalar1, scalar2) => {
// Check that the underlying pair of fields matches.
let inner = skip_newtypes(cx, layout);
assert!(
matches!(inner.layout.abi(), Abi::ScalarPair(..)),
matches!(inner.layout.backend_repr(), BackendRepr::ScalarPair(..)),
"`ScalarPair` type {} is newtype around non-`ScalarPair` type {}",
layout.ty,
inner.ty
@ -208,8 +208,8 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
"`ScalarPair` first field with bad align in {inner:#?}",
);
assert_matches!(
field1.abi,
Abi::Scalar(_),
field1.backend_repr,
BackendRepr::Scalar(_),
"`ScalarPair` first field with bad ABI in {inner:#?}",
);
let field2_offset = size1.align_to(align2);
@ -226,16 +226,16 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
"`ScalarPair` second field with bad align in {inner:#?}",
);
assert_matches!(
field2.abi,
Abi::Scalar(_),
field2.backend_repr,
BackendRepr::Scalar(_),
"`ScalarPair` second field with bad ABI in {inner:#?}",
);
}
Abi::Vector { element, .. } => {
BackendRepr::Vector { element, .. } => {
assert!(align >= element.align(cx).abi); // just sanity-checking `vector_align`.
// FIXME: Do some kind of check of the inner type, like for Scalar and ScalarPair.
}
Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
BackendRepr::Uninhabited | BackendRepr::Memory { .. } => {} // Nothing to check.
}
}
@ -274,13 +274,13 @@ pub(super) fn partially_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLa
// The top-level ABI and the ABI of the variants should be coherent.
let scalar_coherent =
|s1: Scalar, s2: Scalar| s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx);
let abi_coherent = match (layout.abi, variant.abi) {
(Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
(Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
let abi_coherent = match (layout.backend_repr, variant.backend_repr) {
(BackendRepr::Scalar(s1), BackendRepr::Scalar(s2)) => scalar_coherent(s1, s2),
(BackendRepr::ScalarPair(a1, b1), BackendRepr::ScalarPair(a2, b2)) => {
scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
}
(Abi::Uninhabited, _) => true,
(Abi::Aggregate { .. }, _) => true,
(BackendRepr::Uninhabited, _) => true,
(BackendRepr::Memory { .. }, _) => true,
_ => false,
};
if !abi_coherent {