compiler: rustc_abi::Abi
=> BackendRepr
The initial naming of "Abi" was an awful mistake, conveying wrong ideas about how psABIs worked and even more about what the enum meant. It was only meant to represent the way the value would be described to a codegen backend as it was lowered to that intermediate representation. It was never meant to mean anything about the actual psABI handling! The conflation is because LLVM typically will associate a certain form with a certain ABI, but even that does not hold when the special cases that actually exist arise, plus the IR annotations that modify the ABI. Reframe `rustc_abi::Abi` as the `BackendRepr` of the type, and rename `BackendRepr::Aggregate` as `BackendRepr::Memory`. Unfortunately, due to the persistent misunderstandings, this too is now incorrect: - Scattered ABI-relevant code is entangled with BackendRepr - We do not always pre-compute a correct BackendRepr that reflects how we "actually" want this value to be handled, so we leave the backend interface to also inject various special-cases here - In some cases `BackendRepr::Memory` is a "real" aggregate, but in others it is in fact using memory, and in some cases it is a scalar! Our rustc-to-backend lowering code handles this sort of thing right now. That will eventually be addressed by lifting duplicated lowering code to either rustc_codegen_ssa or rustc_target as appropriate.
This commit is contained in:
parent
2dece5bb62
commit
7086dd83cc
51 changed files with 517 additions and 428 deletions
|
@ -6,7 +6,7 @@ use rustc_index::Idx;
|
|||
use tracing::debug;
|
||||
|
||||
use crate::{
|
||||
Abi, AbiAndPrefAlign, Align, FieldsShape, HasDataLayout, IndexSlice, IndexVec, Integer,
|
||||
AbiAndPrefAlign, Align, BackendRepr, FieldsShape, HasDataLayout, IndexSlice, IndexVec, Integer,
|
||||
LayoutData, Niche, NonZeroUsize, Primitive, ReprOptions, Scalar, Size, StructKind, TagEncoding,
|
||||
Variants, WrappingRange,
|
||||
};
|
||||
|
@ -125,7 +125,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
offsets: [Size::ZERO, b_offset].into(),
|
||||
memory_index: [0, 1].into(),
|
||||
},
|
||||
abi: Abi::ScalarPair(a, b),
|
||||
backend_repr: BackendRepr::ScalarPair(a, b),
|
||||
largest_niche,
|
||||
align,
|
||||
size,
|
||||
|
@ -216,7 +216,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
LayoutData {
|
||||
variants: Variants::Single { index: VariantIdx::new(0) },
|
||||
fields: FieldsShape::Primitive,
|
||||
abi: Abi::Uninhabited,
|
||||
backend_repr: BackendRepr::Uninhabited,
|
||||
largest_niche: None,
|
||||
align: dl.i8_align,
|
||||
size: Size::ZERO,
|
||||
|
@ -331,7 +331,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
|
||||
if let Ok(common) = common_non_zst_abi_and_align {
|
||||
// Discard valid range information and allow undef
|
||||
let field_abi = field.abi.to_union();
|
||||
let field_abi = field.backend_repr.to_union();
|
||||
|
||||
if let Some((common_abi, common_align)) = common {
|
||||
if common_abi != field_abi {
|
||||
|
@ -340,7 +340,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
} else {
|
||||
// Fields with the same non-Aggregate ABI should also
|
||||
// have the same alignment
|
||||
if !matches!(common_abi, Abi::Aggregate { .. }) {
|
||||
if !matches!(common_abi, BackendRepr::Memory { .. }) {
|
||||
assert_eq!(
|
||||
common_align, field.align.abi,
|
||||
"non-Aggregate field with matching ABI but differing alignment"
|
||||
|
@ -369,11 +369,11 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
// If all non-ZST fields have the same ABI, we may forward that ABI
|
||||
// for the union as a whole, unless otherwise inhibited.
|
||||
let abi = match common_non_zst_abi_and_align {
|
||||
Err(AbiMismatch) | Ok(None) => Abi::Aggregate { sized: true },
|
||||
Err(AbiMismatch) | Ok(None) => BackendRepr::Memory { sized: true },
|
||||
Ok(Some((abi, _))) => {
|
||||
if abi.inherent_align(dl).map(|a| a.abi) != Some(align.abi) {
|
||||
// Mismatched alignment (e.g. union is #[repr(packed)]): disable opt
|
||||
Abi::Aggregate { sized: true }
|
||||
BackendRepr::Memory { sized: true }
|
||||
} else {
|
||||
abi
|
||||
}
|
||||
|
@ -387,7 +387,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
Ok(LayoutData {
|
||||
variants: Variants::Single { index: only_variant_idx },
|
||||
fields: FieldsShape::Union(union_field_count),
|
||||
abi,
|
||||
backend_repr: abi,
|
||||
largest_niche: None,
|
||||
align,
|
||||
size: size.align_to(align.abi),
|
||||
|
@ -434,23 +434,23 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
// Already doesn't have any niches
|
||||
Scalar::Union { .. } => {}
|
||||
};
|
||||
match &mut st.abi {
|
||||
Abi::Uninhabited => {}
|
||||
Abi::Scalar(scalar) => hide_niches(scalar),
|
||||
Abi::ScalarPair(a, b) => {
|
||||
match &mut st.backend_repr {
|
||||
BackendRepr::Uninhabited => {}
|
||||
BackendRepr::Scalar(scalar) => hide_niches(scalar),
|
||||
BackendRepr::ScalarPair(a, b) => {
|
||||
hide_niches(a);
|
||||
hide_niches(b);
|
||||
}
|
||||
Abi::Vector { element, count: _ } => hide_niches(element),
|
||||
Abi::Aggregate { sized: _ } => {}
|
||||
BackendRepr::Vector { element, count: _ } => hide_niches(element),
|
||||
BackendRepr::Memory { sized: _ } => {}
|
||||
}
|
||||
st.largest_niche = None;
|
||||
return Ok(st);
|
||||
}
|
||||
|
||||
let (start, end) = scalar_valid_range;
|
||||
match st.abi {
|
||||
Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => {
|
||||
match st.backend_repr {
|
||||
BackendRepr::Scalar(ref mut scalar) | BackendRepr::ScalarPair(ref mut scalar, _) => {
|
||||
// Enlarging validity ranges would result in missed
|
||||
// optimizations, *not* wrongly assuming the inner
|
||||
// value is valid. e.g. unions already enlarge validity ranges,
|
||||
|
@ -607,8 +607,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
}
|
||||
|
||||
// It can't be a Scalar or ScalarPair because the offset isn't 0.
|
||||
if !layout.abi.is_uninhabited() {
|
||||
layout.abi = Abi::Aggregate { sized: true };
|
||||
if !layout.is_uninhabited() {
|
||||
layout.backend_repr = BackendRepr::Memory { sized: true };
|
||||
}
|
||||
layout.size += this_offset;
|
||||
|
||||
|
@ -627,26 +627,26 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
let same_size = size == variant_layouts[largest_variant_index].size;
|
||||
let same_align = align == variant_layouts[largest_variant_index].align;
|
||||
|
||||
let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) {
|
||||
Abi::Uninhabited
|
||||
let abi = if variant_layouts.iter().all(|v| v.is_uninhabited()) {
|
||||
BackendRepr::Uninhabited
|
||||
} else if same_size && same_align && others_zst {
|
||||
match variant_layouts[largest_variant_index].abi {
|
||||
match variant_layouts[largest_variant_index].backend_repr {
|
||||
// When the total alignment and size match, we can use the
|
||||
// same ABI as the scalar variant with the reserved niche.
|
||||
Abi::Scalar(_) => Abi::Scalar(niche_scalar),
|
||||
Abi::ScalarPair(first, second) => {
|
||||
BackendRepr::Scalar(_) => BackendRepr::Scalar(niche_scalar),
|
||||
BackendRepr::ScalarPair(first, second) => {
|
||||
// Only the niche is guaranteed to be initialised,
|
||||
// so use union layouts for the other primitive.
|
||||
if niche_offset == Size::ZERO {
|
||||
Abi::ScalarPair(niche_scalar, second.to_union())
|
||||
BackendRepr::ScalarPair(niche_scalar, second.to_union())
|
||||
} else {
|
||||
Abi::ScalarPair(first.to_union(), niche_scalar)
|
||||
BackendRepr::ScalarPair(first.to_union(), niche_scalar)
|
||||
}
|
||||
}
|
||||
_ => Abi::Aggregate { sized: true },
|
||||
_ => BackendRepr::Memory { sized: true },
|
||||
}
|
||||
} else {
|
||||
Abi::Aggregate { sized: true }
|
||||
BackendRepr::Memory { sized: true }
|
||||
};
|
||||
|
||||
let layout = LayoutData {
|
||||
|
@ -664,7 +664,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
offsets: [niche_offset].into(),
|
||||
memory_index: [0].into(),
|
||||
},
|
||||
abi,
|
||||
backend_repr: abi,
|
||||
largest_niche,
|
||||
size,
|
||||
align,
|
||||
|
@ -833,14 +833,14 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
end: (max as u128 & tag_mask),
|
||||
},
|
||||
};
|
||||
let mut abi = Abi::Aggregate { sized: true };
|
||||
let mut abi = BackendRepr::Memory { sized: true };
|
||||
|
||||
if layout_variants.iter().all(|v| v.abi.is_uninhabited()) {
|
||||
abi = Abi::Uninhabited;
|
||||
if layout_variants.iter().all(|v| v.is_uninhabited()) {
|
||||
abi = BackendRepr::Uninhabited;
|
||||
} else if tag.size(dl) == size {
|
||||
// Make sure we only use scalar layout when the enum is entirely its
|
||||
// own tag (i.e. it has no padding nor any non-ZST variant fields).
|
||||
abi = Abi::Scalar(tag);
|
||||
abi = BackendRepr::Scalar(tag);
|
||||
} else {
|
||||
// Try to use a ScalarPair for all tagged enums.
|
||||
// That's possible only if we can find a common primitive type for all variants.
|
||||
|
@ -864,8 +864,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
break;
|
||||
}
|
||||
};
|
||||
let prim = match field.abi {
|
||||
Abi::Scalar(scalar) => {
|
||||
let prim = match field.backend_repr {
|
||||
BackendRepr::Scalar(scalar) => {
|
||||
common_prim_initialized_in_all_variants &=
|
||||
matches!(scalar, Scalar::Initialized { .. });
|
||||
scalar.primitive()
|
||||
|
@ -934,7 +934,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
{
|
||||
// We can use `ScalarPair` only when it matches our
|
||||
// already computed layout (including `#[repr(C)]`).
|
||||
abi = pair.abi;
|
||||
abi = pair.backend_repr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -942,12 +942,14 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
// If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the
|
||||
// variants to ensure they are consistent. This is because a downcast is
|
||||
// semantically a NOP, and thus should not affect layout.
|
||||
if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
|
||||
if matches!(abi, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) {
|
||||
for variant in &mut layout_variants {
|
||||
// We only do this for variants with fields; the others are not accessed anyway.
|
||||
// Also do not overwrite any already existing "clever" ABIs.
|
||||
if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) {
|
||||
variant.abi = abi;
|
||||
if variant.fields.count() > 0
|
||||
&& matches!(variant.backend_repr, BackendRepr::Memory { .. })
|
||||
{
|
||||
variant.backend_repr = abi;
|
||||
// Also need to bump up the size and alignment, so that the entire value fits
|
||||
// in here.
|
||||
variant.size = cmp::max(variant.size, size);
|
||||
|
@ -970,7 +972,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
memory_index: [0].into(),
|
||||
},
|
||||
largest_niche,
|
||||
abi,
|
||||
backend_repr: abi,
|
||||
align,
|
||||
size,
|
||||
max_repr_align,
|
||||
|
@ -1252,7 +1254,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
}
|
||||
let mut layout_of_single_non_zst_field = None;
|
||||
let sized = unsized_field.is_none();
|
||||
let mut abi = Abi::Aggregate { sized };
|
||||
let mut abi = BackendRepr::Memory { sized };
|
||||
|
||||
let optimize_abi = !repr.inhibit_newtype_abi_optimization();
|
||||
|
||||
|
@ -1270,16 +1272,16 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
// Field fills the struct and it has a scalar or scalar pair ABI.
|
||||
if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size
|
||||
{
|
||||
match field.abi {
|
||||
match field.backend_repr {
|
||||
// For plain scalars, or vectors of them, we can't unpack
|
||||
// newtypes for `#[repr(C)]`, as that affects C ABIs.
|
||||
Abi::Scalar(_) | Abi::Vector { .. } if optimize_abi => {
|
||||
abi = field.abi;
|
||||
BackendRepr::Scalar(_) | BackendRepr::Vector { .. } if optimize_abi => {
|
||||
abi = field.backend_repr;
|
||||
}
|
||||
// But scalar pairs are Rust-specific and get
|
||||
// treated as aggregates by C ABIs anyway.
|
||||
Abi::ScalarPair(..) => {
|
||||
abi = field.abi;
|
||||
BackendRepr::ScalarPair(..) => {
|
||||
abi = field.backend_repr;
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
|
@ -1288,8 +1290,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
|
||||
// Two non-ZST fields, and they're both scalars.
|
||||
(Some((i, a)), Some((j, b)), None) => {
|
||||
match (a.abi, b.abi) {
|
||||
(Abi::Scalar(a), Abi::Scalar(b)) => {
|
||||
match (a.backend_repr, b.backend_repr) {
|
||||
(BackendRepr::Scalar(a), BackendRepr::Scalar(b)) => {
|
||||
// Order by the memory placement, not source order.
|
||||
let ((i, a), (j, b)) = if offsets[i] < offsets[j] {
|
||||
((i, a), (j, b))
|
||||
|
@ -1315,7 +1317,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
{
|
||||
// We can use `ScalarPair` only when it matches our
|
||||
// already computed layout (including `#[repr(C)]`).
|
||||
abi = pair.abi;
|
||||
abi = pair.backend_repr;
|
||||
}
|
||||
}
|
||||
_ => {}
|
||||
|
@ -1325,8 +1327,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
_ => {}
|
||||
}
|
||||
}
|
||||
if fields.iter().any(|f| f.abi.is_uninhabited()) {
|
||||
abi = Abi::Uninhabited;
|
||||
if fields.iter().any(|f| f.is_uninhabited()) {
|
||||
abi = BackendRepr::Uninhabited;
|
||||
}
|
||||
|
||||
let unadjusted_abi_align = if repr.transparent() {
|
||||
|
@ -1344,7 +1346,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
|
|||
Ok(LayoutData {
|
||||
variants: Variants::Single { index: VariantIdx::new(0) },
|
||||
fields: FieldsShape::Arbitrary { offsets, memory_index },
|
||||
abi,
|
||||
backend_repr: abi,
|
||||
largest_niche,
|
||||
align,
|
||||
size,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue