Support repr(simd) on ADTs containing a single array field
This PR allows using `#[repr(simd)]` on ADTs containing a single array field: ```rust #[repr(simd)] struct S0([f32; 4]); #[repr(simd)] struct S1<const N: usize>([f32; N]); #[repr(simd)] struct S2<T, const N: usize>([T; N]); ``` This should allow experimenting with portable packed SIMD abstractions on nightly that make use of const generics.
This commit is contained in:
parent
9d78d1d027
commit
6e88e96ccf
15 changed files with 427 additions and 160 deletions
|
@ -740,6 +740,23 @@ fn generic_simd_intrinsic(
|
|||
llret_ty: &'ll Type,
|
||||
span: Span,
|
||||
) -> Result<&'ll Value, ()> {
|
||||
// Given a SIMD vector type `x` return the element type and the number of
|
||||
// elements in the vector.
|
||||
fn simd_ty_and_len(bx: &Builder<'a, 'll, 'tcx>, simd_ty: Ty<'tcx>) -> (Ty<'tcx>, u64) {
|
||||
let ty = if let ty::Adt(_def, _substs) = simd_ty.kind() {
|
||||
let f0_ty = bx.layout_of(simd_ty).field(bx, 0).ty;
|
||||
if let ty::Array(element_ty, _) = f0_ty.kind() { element_ty } else { f0_ty }
|
||||
} else {
|
||||
bug!("should only be called with a SIMD type")
|
||||
};
|
||||
let count = if let abi::Abi::Vector { count, .. } = bx.layout_of(simd_ty).abi {
|
||||
count
|
||||
} else {
|
||||
bug!("should only be called with a SIMD type")
|
||||
};
|
||||
(ty, count)
|
||||
}
|
||||
|
||||
// macros for error handling:
|
||||
macro_rules! emit_error {
|
||||
($msg: tt) => {
|
||||
|
@ -792,7 +809,7 @@ fn generic_simd_intrinsic(
|
|||
_ => return_error!("`{}` is not an integral type", in_ty),
|
||||
};
|
||||
require_simd!(arg_tys[1], "argument");
|
||||
let v_len = arg_tys[1].simd_size(tcx);
|
||||
let (_, v_len) = simd_ty_and_len(bx, arg_tys[1]);
|
||||
require!(
|
||||
// Allow masks for vectors with fewer than 8 elements to be
|
||||
// represented with a u8 or i8.
|
||||
|
@ -812,8 +829,6 @@ fn generic_simd_intrinsic(
|
|||
// every intrinsic below takes a SIMD vector as its first argument
|
||||
require_simd!(arg_tys[0], "input");
|
||||
let in_ty = arg_tys[0];
|
||||
let in_elem = arg_tys[0].simd_type(tcx);
|
||||
let in_len = arg_tys[0].simd_size(tcx);
|
||||
|
||||
let comparison = match name {
|
||||
sym::simd_eq => Some(hir::BinOpKind::Eq),
|
||||
|
@ -825,14 +840,15 @@ fn generic_simd_intrinsic(
|
|||
_ => None,
|
||||
};
|
||||
|
||||
let (in_elem, in_len) = simd_ty_and_len(bx, arg_tys[0]);
|
||||
if let Some(cmp_op) = comparison {
|
||||
require_simd!(ret_ty, "return");
|
||||
|
||||
let out_len = ret_ty.simd_size(tcx);
|
||||
let (out_ty, out_len) = simd_ty_and_len(bx, ret_ty);
|
||||
require!(
|
||||
in_len == out_len,
|
||||
"expected return type with length {} (same as input type `{}`), \
|
||||
found `{}` with length {}",
|
||||
found `{}` with length {}",
|
||||
in_len,
|
||||
in_ty,
|
||||
ret_ty,
|
||||
|
@ -842,7 +858,7 @@ fn generic_simd_intrinsic(
|
|||
bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer,
|
||||
"expected return type with integer elements, found `{}` with non-integer `{}`",
|
||||
ret_ty,
|
||||
ret_ty.simd_type(tcx)
|
||||
out_ty
|
||||
);
|
||||
|
||||
return Ok(compare_simd_types(
|
||||
|
@ -862,7 +878,7 @@ fn generic_simd_intrinsic(
|
|||
|
||||
require_simd!(ret_ty, "return");
|
||||
|
||||
let out_len = ret_ty.simd_size(tcx);
|
||||
let (out_ty, out_len) = simd_ty_and_len(bx, ret_ty);
|
||||
require!(
|
||||
out_len == n,
|
||||
"expected return type of length {}, found `{}` with length {}",
|
||||
|
@ -871,13 +887,13 @@ fn generic_simd_intrinsic(
|
|||
out_len
|
||||
);
|
||||
require!(
|
||||
in_elem == ret_ty.simd_type(tcx),
|
||||
in_elem == out_ty,
|
||||
"expected return element type `{}` (element of input `{}`), \
|
||||
found `{}` with element type `{}`",
|
||||
found `{}` with element type `{}`",
|
||||
in_elem,
|
||||
in_ty,
|
||||
ret_ty,
|
||||
ret_ty.simd_type(tcx)
|
||||
out_ty
|
||||
);
|
||||
|
||||
let total_len = u128::from(in_len) * 2;
|
||||
|
@ -946,7 +962,7 @@ fn generic_simd_intrinsic(
|
|||
let m_elem_ty = in_elem;
|
||||
let m_len = in_len;
|
||||
require_simd!(arg_tys[1], "argument");
|
||||
let v_len = arg_tys[1].simd_size(tcx);
|
||||
let (_, v_len) = simd_ty_and_len(bx, arg_tys[1]);
|
||||
require!(
|
||||
m_len == v_len,
|
||||
"mismatched lengths: mask length `{}` != other vector length `{}`",
|
||||
|
@ -1171,25 +1187,27 @@ fn generic_simd_intrinsic(
|
|||
require_simd!(ret_ty, "return");
|
||||
|
||||
// Of the same length:
|
||||
let (_, out_len) = simd_ty_and_len(bx, arg_tys[1]);
|
||||
let (_, out_len2) = simd_ty_and_len(bx, arg_tys[2]);
|
||||
require!(
|
||||
in_len == arg_tys[1].simd_size(tcx),
|
||||
in_len == out_len,
|
||||
"expected {} argument with length {} (same as input type `{}`), \
|
||||
found `{}` with length {}",
|
||||
found `{}` with length {}",
|
||||
"second",
|
||||
in_len,
|
||||
in_ty,
|
||||
arg_tys[1],
|
||||
arg_tys[1].simd_size(tcx)
|
||||
out_len
|
||||
);
|
||||
require!(
|
||||
in_len == arg_tys[2].simd_size(tcx),
|
||||
in_len == out_len2,
|
||||
"expected {} argument with length {} (same as input type `{}`), \
|
||||
found `{}` with length {}",
|
||||
found `{}` with length {}",
|
||||
"third",
|
||||
in_len,
|
||||
in_ty,
|
||||
arg_tys[2],
|
||||
arg_tys[2].simd_size(tcx)
|
||||
out_len2
|
||||
);
|
||||
|
||||
// The return type must match the first argument type
|
||||
|
@ -1213,39 +1231,40 @@ fn generic_simd_intrinsic(
|
|||
|
||||
// The second argument must be a simd vector with an element type that's a pointer
|
||||
// to the element type of the first argument
|
||||
let (pointer_count, underlying_ty) = match arg_tys[1].simd_type(tcx).kind() {
|
||||
ty::RawPtr(p) if p.ty == in_elem => {
|
||||
(ptr_count(arg_tys[1].simd_type(tcx)), non_ptr(arg_tys[1].simd_type(tcx)))
|
||||
}
|
||||
let (element_ty0, _) = simd_ty_and_len(bx, arg_tys[0]);
|
||||
let (element_ty1, _) = simd_ty_and_len(bx, arg_tys[1]);
|
||||
let (pointer_count, underlying_ty) = match element_ty1.kind() {
|
||||
ty::RawPtr(p) if p.ty == in_elem => (ptr_count(element_ty1), non_ptr(element_ty1)),
|
||||
_ => {
|
||||
require!(
|
||||
false,
|
||||
"expected element type `{}` of second argument `{}` \
|
||||
to be a pointer to the element type `{}` of the first \
|
||||
argument `{}`, found `{}` != `*_ {}`",
|
||||
arg_tys[1].simd_type(tcx),
|
||||
to be a pointer to the element type `{}` of the first \
|
||||
argument `{}`, found `{}` != `*_ {}`",
|
||||
element_ty1,
|
||||
arg_tys[1],
|
||||
in_elem,
|
||||
in_ty,
|
||||
arg_tys[1].simd_type(tcx),
|
||||
element_ty1,
|
||||
in_elem
|
||||
);
|
||||
unreachable!();
|
||||
}
|
||||
};
|
||||
assert!(pointer_count > 0);
|
||||
assert_eq!(pointer_count - 1, ptr_count(arg_tys[0].simd_type(tcx)));
|
||||
assert_eq!(underlying_ty, non_ptr(arg_tys[0].simd_type(tcx)));
|
||||
assert_eq!(pointer_count - 1, ptr_count(element_ty0));
|
||||
assert_eq!(underlying_ty, non_ptr(element_ty0));
|
||||
|
||||
// The element type of the third argument must be a signed integer type of any width:
|
||||
match arg_tys[2].simd_type(tcx).kind() {
|
||||
let (element_ty2, _) = simd_ty_and_len(bx, arg_tys[2]);
|
||||
match element_ty2.kind() {
|
||||
ty::Int(_) => (),
|
||||
_ => {
|
||||
require!(
|
||||
false,
|
||||
"expected element type `{}` of third argument `{}` \
|
||||
to be a signed integer type",
|
||||
arg_tys[2].simd_type(tcx),
|
||||
element_ty2,
|
||||
arg_tys[2]
|
||||
);
|
||||
}
|
||||
|
@ -1297,25 +1316,27 @@ fn generic_simd_intrinsic(
|
|||
require_simd!(arg_tys[2], "third");
|
||||
|
||||
// Of the same length:
|
||||
let (_, element_len1) = simd_ty_and_len(bx, arg_tys[1]);
|
||||
let (_, element_len2) = simd_ty_and_len(bx, arg_tys[2]);
|
||||
require!(
|
||||
in_len == arg_tys[1].simd_size(tcx),
|
||||
in_len == element_len1,
|
||||
"expected {} argument with length {} (same as input type `{}`), \
|
||||
found `{}` with length {}",
|
||||
found `{}` with length {}",
|
||||
"second",
|
||||
in_len,
|
||||
in_ty,
|
||||
arg_tys[1],
|
||||
arg_tys[1].simd_size(tcx)
|
||||
element_len1
|
||||
);
|
||||
require!(
|
||||
in_len == arg_tys[2].simd_size(tcx),
|
||||
in_len == element_len2,
|
||||
"expected {} argument with length {} (same as input type `{}`), \
|
||||
found `{}` with length {}",
|
||||
found `{}` with length {}",
|
||||
"third",
|
||||
in_len,
|
||||
in_ty,
|
||||
arg_tys[2],
|
||||
arg_tys[2].simd_size(tcx)
|
||||
element_len2
|
||||
);
|
||||
|
||||
// This counts how many pointers
|
||||
|
@ -1336,39 +1357,42 @@ fn generic_simd_intrinsic(
|
|||
|
||||
// The second argument must be a simd vector with an element type that's a pointer
|
||||
// to the element type of the first argument
|
||||
let (pointer_count, underlying_ty) = match arg_tys[1].simd_type(tcx).kind() {
|
||||
let (element_ty0, _element_len0) = simd_ty_and_len(bx, arg_tys[0]);
|
||||
let (element_ty1, _element_len1) = simd_ty_and_len(bx, arg_tys[1]);
|
||||
let (element_ty2, _element_len2) = simd_ty_and_len(bx, arg_tys[2]);
|
||||
let (pointer_count, underlying_ty) = match element_ty1.kind() {
|
||||
ty::RawPtr(p) if p.ty == in_elem && p.mutbl == hir::Mutability::Mut => {
|
||||
(ptr_count(arg_tys[1].simd_type(tcx)), non_ptr(arg_tys[1].simd_type(tcx)))
|
||||
(ptr_count(element_ty1), non_ptr(element_ty1))
|
||||
}
|
||||
_ => {
|
||||
require!(
|
||||
false,
|
||||
"expected element type `{}` of second argument `{}` \
|
||||
to be a pointer to the element type `{}` of the first \
|
||||
argument `{}`, found `{}` != `*mut {}`",
|
||||
arg_tys[1].simd_type(tcx),
|
||||
to be a pointer to the element type `{}` of the first \
|
||||
argument `{}`, found `{}` != `*mut {}`",
|
||||
element_ty1,
|
||||
arg_tys[1],
|
||||
in_elem,
|
||||
in_ty,
|
||||
arg_tys[1].simd_type(tcx),
|
||||
element_ty1,
|
||||
in_elem
|
||||
);
|
||||
unreachable!();
|
||||
}
|
||||
};
|
||||
assert!(pointer_count > 0);
|
||||
assert_eq!(pointer_count - 1, ptr_count(arg_tys[0].simd_type(tcx)));
|
||||
assert_eq!(underlying_ty, non_ptr(arg_tys[0].simd_type(tcx)));
|
||||
assert_eq!(pointer_count - 1, ptr_count(element_ty0));
|
||||
assert_eq!(underlying_ty, non_ptr(element_ty0));
|
||||
|
||||
// The element type of the third argument must be a signed integer type of any width:
|
||||
match arg_tys[2].simd_type(tcx).kind() {
|
||||
match element_ty2.kind() {
|
||||
ty::Int(_) => (),
|
||||
_ => {
|
||||
require!(
|
||||
false,
|
||||
"expected element type `{}` of third argument `{}` \
|
||||
to be a signed integer type",
|
||||
arg_tys[2].simd_type(tcx),
|
||||
be a signed integer type",
|
||||
element_ty2,
|
||||
arg_tys[2]
|
||||
);
|
||||
}
|
||||
|
@ -1565,7 +1589,7 @@ unsupported {} from `{}` with element `{}` of size `{}` to `{}`"#,
|
|||
|
||||
if name == sym::simd_cast {
|
||||
require_simd!(ret_ty, "return");
|
||||
let out_len = ret_ty.simd_size(tcx);
|
||||
let (out_elem, out_len) = simd_ty_and_len(bx, ret_ty);
|
||||
require!(
|
||||
in_len == out_len,
|
||||
"expected return type with length {} (same as input type `{}`), \
|
||||
|
@ -1576,8 +1600,6 @@ unsupported {} from `{}` with element `{}` of size `{}` to `{}`"#,
|
|||
out_len
|
||||
);
|
||||
// casting cares about nominal type, not just structural type
|
||||
let out_elem = ret_ty.simd_type(tcx);
|
||||
|
||||
if in_elem == out_elem {
|
||||
return Ok(args[0].immediate());
|
||||
}
|
||||
|
@ -1693,7 +1715,7 @@ unsupported {} from `{}` with element `{}` of size `{}` to `{}`"#,
|
|||
return_error!(
|
||||
"expected element type `{}` of vector type `{}` \
|
||||
to be a signed or unsigned integer type",
|
||||
arg_tys[0].simd_type(tcx),
|
||||
simd_ty_and_len(bx, arg_tys[0]).0,
|
||||
arg_tys[0]
|
||||
);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue