1
Fork 0

Make mir borrowck's use of opaque types independent of the typeck query's result

This commit is contained in:
Oli Scherer 2021-07-19 16:50:43 +00:00
parent d693a98f4e
commit 6d76002baf
20 changed files with 162 additions and 261 deletions

View file

@ -70,6 +70,10 @@ where
pub fn iter_mut(&mut self) -> impl Iterator<Item = (&K, &mut V)> {
self.into_iter()
}
pub fn retain(&mut self, f: impl Fn(&(K, V)) -> bool) {
self.0.retain(f)
}
}
impl<K, V> Default for VecMap<K, V> {

View file

@ -26,7 +26,7 @@ use rustc_middle::mir::*;
use rustc_middle::ty::adjustment::PointerCast;
use rustc_middle::ty::cast::CastTy;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::subst::{GenericArgKind, Subst, SubstsRef, UserSubsts};
use rustc_middle::ty::subst::{GenericArgKind, SubstsRef, UserSubsts};
use rustc_middle::ty::{
self, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, OpaqueTypeKey, RegionVid,
ToPredicate, Ty, TyCtxt, UserType, UserTypeAnnotationIndex, WithConstness,
@ -60,7 +60,6 @@ use crate::borrow_check::{
LivenessValues, PlaceholderIndex, PlaceholderIndices, RegionValueElements,
},
region_infer::{ClosureRegionRequirementsExt, TypeTest},
renumber,
type_check::free_region_relations::{CreateResult, UniversalRegionRelations},
universal_regions::{DefiningTy, UniversalRegions},
Upvar,
@ -180,7 +179,66 @@ pub(crate) fn type_check<'mir, 'tcx>(
liveness::generate(&mut cx, body, elements, flow_inits, move_data, location_table);
translate_outlives_facts(&mut cx);
cx.opaque_type_values
let mut opaque_type_values = cx.opaque_type_values;
for (_, revealed_ty) in &mut opaque_type_values {
// FIXME(oli-obk): Instead of looping, implement a visitor like
// FullTypeResolver. We can't use FullTypeResolver here, as that will
// resolve lifetimes lexically, which it can't because we didn't do old
// borrowck stuff. We want to use MIR borrowck information instead.
while revealed_ty.has_infer_types_or_consts() {
let prev = *revealed_ty;
trace!(prev=?prev.kind());
let type_resolved = infcx.shallow_resolve(prev);
trace!(type_resolved=?type_resolved.kind());
if prev == type_resolved {
infcx.tcx.sess.delay_span_bug(
body.span,
&format!("could not resolve {:#?}", type_resolved.kind()),
);
*revealed_ty = infcx.tcx.ty_error();
break;
}
*revealed_ty = type_resolved;
}
}
opaque_type_values.retain(|(opaque_type_key, resolved_ty)| {
let concrete_is_opaque = if let ty::Opaque(def_id, _) = resolved_ty.kind() {
*def_id == opaque_type_key.def_id
} else {
false
};
if concrete_is_opaque {
// We're using an opaque `impl Trait` type without
// 'revealing' it. For example, code like this:
//
// type Foo = impl Debug;
// fn foo1() -> Foo { ... }
// fn foo2() -> Foo { foo1() }
//
// In `foo2`, we're not revealing the type of `Foo` - we're
// just treating it as the opaque type.
//
// When this occurs, we do *not* want to try to equate
// the concrete type with the underlying defining type
// of the opaque type - this will always fail, since
// the defining type of an opaque type is always
// some other type (e.g. not itself)
// Essentially, none of the normal obligations apply here -
// we're just passing around some unknown opaque type,
// without actually looking at the underlying type it
// gets 'revealed' into
debug!(
"eq_opaque_type_and_type: non-defining use of {:?}",
opaque_type_key.def_id,
);
}
!concrete_is_opaque
});
opaque_type_values
},
);
@ -1240,13 +1298,10 @@ impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
}
let infcx = self.infcx;
let tcx = infcx.tcx;
let param_env = self.param_env;
let body = self.body;
let mir_def_id = body.source.def_id().expect_local();
// the "concrete opaque types" maps
let concrete_opaque_types = &tcx.typeck(mir_def_id).concrete_opaque_types;
let mut opaque_type_values = VecMap::new();
debug!("eq_opaque_type_and_type: mir_def_id={:?}", mir_def_id);
@ -1296,88 +1351,8 @@ impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
.eq(output_ty, revealed_ty)?,
);
// For each opaque type `Foo<T>` inferred by this value, we want to equate
// the inference variable `?T` with the revealed type that was computed
// earlier by type check.
for &(opaque_type_key, opaque_decl) in &opaque_type_map {
let resolved_ty = infcx.resolve_vars_if_possible(opaque_decl.concrete_ty);
let concrete_is_opaque = if let ty::Opaque(def_id, _) = resolved_ty.kind() {
*def_id == opaque_type_key.def_id
} else {
false
};
// The revealed type computed by the earlier phase of type check.
// In our example, this would be `(U, u32)`. Note that this references
// the type parameter `U` from the definition of `Foo`.
let concrete_ty = match concrete_opaque_types
.get_by(|(key, _)| key.def_id == opaque_type_key.def_id)
{
None => {
if !concrete_is_opaque {
tcx.sess.delay_span_bug(
body.span,
&format!(
"Non-defining use of {:?} with revealed type",
opaque_type_key.def_id,
),
);
}
continue;
}
Some(concrete_ty) => concrete_ty,
};
debug!("concrete_ty = {:?}", concrete_ty);
// Apply the substitution, in this case `[U -> T]`, so that the
// concrete type becomes `Foo<(T, u32)>`
let subst_opaque_defn_ty = concrete_ty.subst(tcx, opaque_type_key.substs);
// "Renumber" this, meaning that we replace all the regions
// with fresh inference variables. Not relevant to our example.
let renumbered_opaque_defn_ty =
renumber::renumber_regions(infcx, subst_opaque_defn_ty);
debug!(
"eq_opaque_type_and_type: concrete_ty={:?}={:?} opaque_defn_ty={:?}",
concrete_ty, resolved_ty, renumbered_opaque_defn_ty,
);
if !concrete_is_opaque {
// Equate the instantiated opaque type `opaque_decl.concrete_ty` (`?T`,
// in our example) with the renumbered version that we took from
// the type check results (`Foo<(T, u32)>`).
obligations.add(
infcx
.at(&ObligationCause::dummy(), param_env)
.eq(opaque_decl.concrete_ty, renumbered_opaque_defn_ty)?,
);
opaque_type_values.insert(opaque_type_key, renumbered_opaque_defn_ty);
} else {
// We're using an opaque `impl Trait` type without
// 'revealing' it. For example, code like this:
//
// type Foo = impl Debug;
// fn foo1() -> Foo { ... }
// fn foo2() -> Foo { foo1() }
//
// In `foo2`, we're not revealing the type of `Foo` - we're
// just treating it as the opaque type.
//
// When this occurs, we do *not* want to try to equate
// the concrete type with the underlying defining type
// of the opaque type - this will always fail, since
// the defining type of an opaque type is always
// some other type (e.g. not itself)
// Essentially, none of the normal obligations apply here -
// we're just passing around some unknown opaque type,
// without actually looking at the underlying type it
// gets 'revealed' into
debug!(
"eq_opaque_type_and_type: non-defining use of {:?}",
opaque_type_key.def_id,
);
}
opaque_type_values.insert(opaque_type_key, opaque_decl.concrete_ty);
}
debug!("eq_opaque_type_and_type: equated");