Refactor Attribute to use Path and TokenStream instead of MetaItem.

This commit is contained in:
Jeffrey Seyfried 2017-03-03 09:23:59 +00:00
parent 460bf55f8a
commit 68c1cc68b4
41 changed files with 623 additions and 371 deletions

View file

@ -374,38 +374,80 @@ fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
s[1..].chars().all(|c| '0' <= c && c <= '9')
}
fn filtered_float_lit(data: Symbol, suffix: Option<Symbol>, sd: &Handler, sp: Span)
-> ast::LitKind {
debug!("filtered_float_lit: {}, {:?}", data, suffix);
let suffix = match suffix {
Some(suffix) => suffix,
None => return ast::LitKind::FloatUnsuffixed(data),
};
match &*suffix.as_str() {
"f32" => ast::LitKind::Float(data, ast::FloatTy::F32),
"f64" => ast::LitKind::Float(data, ast::FloatTy::F64),
suf => {
if suf.len() >= 2 && looks_like_width_suffix(&['f'], suf) {
// if it looks like a width, lets try to be helpful.
sd.struct_span_err(sp, &format!("invalid width `{}` for float literal", &suf[1..]))
.help("valid widths are 32 and 64")
.emit();
} else {
sd.struct_span_err(sp, &format!("invalid suffix `{}` for float literal", suf))
.help("valid suffixes are `f32` and `f64`")
.emit();
}
ast::LitKind::FloatUnsuffixed(data)
macro_rules! err {
($opt_diag:expr, |$span:ident, $diag:ident| $($body:tt)*) => {
match $opt_diag {
Some(($span, $diag)) => { $($body)* }
None => return None,
}
}
}
pub fn float_lit(s: &str, suffix: Option<Symbol>, sd: &Handler, sp: Span) -> ast::LitKind {
pub fn lit_token(lit: token::Lit, suf: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> (bool /* suffix illegal? */, Option<ast::LitKind>) {
use ast::LitKind;
match lit {
token::Byte(i) => (true, Some(LitKind::Byte(byte_lit(&i.as_str()).0))),
token::Char(i) => (true, Some(LitKind::Char(char_lit(&i.as_str()).0))),
// There are some valid suffixes for integer and float literals,
// so all the handling is done internally.
token::Integer(s) => (false, integer_lit(&s.as_str(), suf, diag)),
token::Float(s) => (false, float_lit(&s.as_str(), suf, diag)),
token::Str_(s) => {
let s = Symbol::intern(&str_lit(&s.as_str()));
(true, Some(LitKind::Str(s, ast::StrStyle::Cooked)))
}
token::StrRaw(s, n) => {
let s = Symbol::intern(&raw_str_lit(&s.as_str()));
(true, Some(LitKind::Str(s, ast::StrStyle::Raw(n))))
}
token::ByteStr(i) => {
(true, Some(LitKind::ByteStr(byte_str_lit(&i.as_str()))))
}
token::ByteStrRaw(i, _) => {
(true, Some(LitKind::ByteStr(Rc::new(i.to_string().into_bytes()))))
}
}
}
fn filtered_float_lit(data: Symbol, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<ast::LitKind> {
debug!("filtered_float_lit: {}, {:?}", data, suffix);
let suffix = match suffix {
Some(suffix) => suffix,
None => return Some(ast::LitKind::FloatUnsuffixed(data)),
};
Some(match &*suffix.as_str() {
"f32" => ast::LitKind::Float(data, ast::FloatTy::F32),
"f64" => ast::LitKind::Float(data, ast::FloatTy::F64),
suf => {
err!(diag, |span, diag| {
if suf.len() >= 2 && looks_like_width_suffix(&['f'], suf) {
// if it looks like a width, lets try to be helpful.
let msg = format!("invalid width `{}` for float literal", &suf[1..]);
diag.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit()
} else {
let msg = format!("invalid suffix `{}` for float literal", suf);
diag.struct_span_err(span, &msg)
.help("valid suffixes are `f32` and `f64`")
.emit();
}
});
ast::LitKind::FloatUnsuffixed(data)
}
})
}
pub fn float_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<ast::LitKind> {
debug!("float_lit: {:?}, {:?}", s, suffix);
// FIXME #2252: bounds checking float literals is deferred until trans
let s = s.chars().filter(|&c| c != '_').collect::<String>();
filtered_float_lit(Symbol::intern(&s), suffix, sd, sp)
filtered_float_lit(Symbol::intern(&s), suffix, diag)
}
/// Parse a string representing a byte literal into its final form. Similar to `char_lit`
@ -500,7 +542,8 @@ pub fn byte_str_lit(lit: &str) -> Rc<Vec<u8>> {
Rc::new(res)
}
pub fn integer_lit(s: &str, suffix: Option<Symbol>, sd: &Handler, sp: Span) -> ast::LitKind {
pub fn integer_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<ast::LitKind> {
// s can only be ascii, byte indexing is fine
let s2 = s.chars().filter(|&c| c != '_').collect::<String>();
@ -524,13 +567,16 @@ pub fn integer_lit(s: &str, suffix: Option<Symbol>, sd: &Handler, sp: Span) -> a
// 1f64 and 2f32 etc. are valid float literals.
if let Some(suf) = suffix {
if looks_like_width_suffix(&['f'], &suf.as_str()) {
match base {
16 => sd.span_err(sp, "hexadecimal float literal is not supported"),
8 => sd.span_err(sp, "octal float literal is not supported"),
2 => sd.span_err(sp, "binary float literal is not supported"),
_ => ()
let err = match base {
16 => Some("hexadecimal float literal is not supported"),
8 => Some("octal float literal is not supported"),
2 => Some("binary float literal is not supported"),
_ => None,
};
if let Some(err) = err {
err!(diag, |span, diag| diag.span_err(span, err));
}
return filtered_float_lit(Symbol::intern(&s), Some(suf), sd, sp)
return filtered_float_lit(Symbol::intern(&s), Some(suf), diag)
}
}
@ -539,7 +585,9 @@ pub fn integer_lit(s: &str, suffix: Option<Symbol>, sd: &Handler, sp: Span) -> a
}
if let Some(suf) = suffix {
if suf.as_str().is_empty() { sd.span_bug(sp, "found empty literal suffix in Some")}
if suf.as_str().is_empty() {
err!(diag, |span, diag| diag.span_bug(span, "found empty literal suffix in Some"));
}
ty = match &*suf.as_str() {
"isize" => ast::LitIntType::Signed(ast::IntTy::Is),
"i8" => ast::LitIntType::Signed(ast::IntTy::I8),
@ -556,17 +604,20 @@ pub fn integer_lit(s: &str, suffix: Option<Symbol>, sd: &Handler, sp: Span) -> a
suf => {
// i<digits> and u<digits> look like widths, so lets
// give an error message along those lines
if looks_like_width_suffix(&['i', 'u'], suf) {
sd.struct_span_err(sp, &format!("invalid width `{}` for integer literal",
&suf[1..]))
.help("valid widths are 8, 16, 32, 64 and 128")
.emit();
} else {
sd.struct_span_err(sp, &format!("invalid suffix `{}` for numeric literal", suf))
.help("the suffix must be one of the integral types \
(`u32`, `isize`, etc)")
.emit();
}
err!(diag, |span, diag| {
if looks_like_width_suffix(&['i', 'u'], suf) {
let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
diag.struct_span_err(span, &msg)
.help("valid widths are 8, 16, 32, 64 and 128")
.emit();
} else {
let msg = format!("invalid suffix `{}` for numeric literal", suf);
diag.struct_span_err(span, &msg)
.help("the suffix must be one of the integral types \
(`u32`, `isize`, etc)")
.emit();
}
});
ty
}
@ -576,7 +627,7 @@ pub fn integer_lit(s: &str, suffix: Option<Symbol>, sd: &Handler, sp: Span) -> a
debug!("integer_lit: the type is {:?}, base {:?}, the new string is {:?}, the original \
string was {:?}, the original suffix was {:?}", ty, base, s, orig, suffix);
match u128::from_str_radix(s, base) {
Some(match u128::from_str_radix(s, base) {
Ok(r) => ast::LitKind::Int(r, ty),
Err(_) => {
// small bases are lexed as if they were base 10, e.g, the string
@ -588,11 +639,11 @@ pub fn integer_lit(s: &str, suffix: Option<Symbol>, sd: &Handler, sp: Span) -> a
s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
if !already_errored {
sd.span_err(sp, "int literal is too large");
err!(diag, |span, diag| diag.span_err(span, "int literal is too large"));
}
ast::LitKind::Int(0, ty)
}
}
})
}
#[cfg(test)]
@ -957,7 +1008,7 @@ mod tests {
let source = "/// doc comment\r\n/// line 2\r\nfn foo() {}".to_string();
let item = parse_item_from_source_str(name.clone(), source, &sess)
.unwrap().unwrap();
let docs = item.attrs.iter().filter(|a| a.name() == "doc")
let docs = item.attrs.iter().filter(|a| a.path == "doc")
.map(|a| a.value_str().unwrap().to_string()).collect::<Vec<_>>();
let b: &[_] = &["/// doc comment".to_string(), "/// line 2".to_string()];
assert_eq!(&docs[..], b);