Move orphan module-name/mod.rs files into module-name.rs files
This commit is contained in:
parent
4d247ad7d3
commit
66c1fc4c87
3 changed files with 0 additions and 0 deletions
129
compiler/rustc_trait_selection/src/traits/codegen.rs
Normal file
129
compiler/rustc_trait_selection/src/traits/codegen.rs
Normal file
|
@ -0,0 +1,129 @@
|
|||
// This file contains various trait resolution methods used by codegen.
|
||||
// They all assume regions can be erased and monomorphic types. It
|
||||
// seems likely that they should eventually be merged into more
|
||||
// general routines.
|
||||
|
||||
use crate::infer::{InferCtxt, TyCtxtInferExt};
|
||||
use crate::traits::{
|
||||
FulfillmentContext, ImplSource, Obligation, ObligationCause, SelectionContext, TraitEngine,
|
||||
Unimplemented,
|
||||
};
|
||||
use rustc_errors::ErrorReported;
|
||||
use rustc_middle::ty::fold::TypeFoldable;
|
||||
use rustc_middle::ty::{self, TyCtxt};
|
||||
|
||||
/// Attempts to resolve an obligation to a `ImplSource`. The result is
|
||||
/// a shallow `ImplSource` resolution, meaning that we do not
|
||||
/// (necessarily) resolve all nested obligations on the impl. Note
|
||||
/// that type check should guarantee to us that all nested
|
||||
/// obligations *could be* resolved if we wanted to.
|
||||
///
|
||||
/// Assumes that this is run after the entire crate has been successfully type-checked.
|
||||
/// This also expects that `trait_ref` is fully normalized.
|
||||
pub fn codegen_fulfill_obligation<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
(param_env, trait_ref): (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>),
|
||||
) -> Result<ImplSource<'tcx, ()>, ErrorReported> {
|
||||
// Remove any references to regions; this helps improve caching.
|
||||
let trait_ref = tcx.erase_regions(&trait_ref);
|
||||
// We expect the input to be fully normalized.
|
||||
debug_assert_eq!(trait_ref, tcx.normalize_erasing_regions(param_env, trait_ref));
|
||||
debug!(
|
||||
"codegen_fulfill_obligation(trait_ref={:?}, def_id={:?})",
|
||||
(param_env, trait_ref),
|
||||
trait_ref.def_id()
|
||||
);
|
||||
|
||||
// Do the initial selection for the obligation. This yields the
|
||||
// shallow result we are looking for -- that is, what specific impl.
|
||||
tcx.infer_ctxt().enter(|infcx| {
|
||||
let mut selcx = SelectionContext::new(&infcx);
|
||||
|
||||
let obligation_cause = ObligationCause::dummy();
|
||||
let obligation =
|
||||
Obligation::new(obligation_cause, param_env, trait_ref.to_poly_trait_predicate());
|
||||
|
||||
let selection = match selcx.select(&obligation) {
|
||||
Ok(Some(selection)) => selection,
|
||||
Ok(None) => {
|
||||
// Ambiguity can happen when monomorphizing during trans
|
||||
// expands to some humongo type that never occurred
|
||||
// statically -- this humongo type can then overflow,
|
||||
// leading to an ambiguous result. So report this as an
|
||||
// overflow bug, since I believe this is the only case
|
||||
// where ambiguity can result.
|
||||
infcx.tcx.sess.delay_span_bug(
|
||||
rustc_span::DUMMY_SP,
|
||||
&format!(
|
||||
"encountered ambiguity selecting `{:?}` during codegen, presuming due to \
|
||||
overflow or prior type error",
|
||||
trait_ref
|
||||
),
|
||||
);
|
||||
return Err(ErrorReported);
|
||||
}
|
||||
Err(Unimplemented) => {
|
||||
// This can trigger when we probe for the source of a `'static` lifetime requirement
|
||||
// on a trait object: `impl Foo for dyn Trait {}` has an implicit `'static` bound.
|
||||
infcx.tcx.sess.delay_span_bug(
|
||||
rustc_span::DUMMY_SP,
|
||||
&format!(
|
||||
"Encountered error `Unimplemented` selecting `{:?}` during codegen",
|
||||
trait_ref
|
||||
),
|
||||
);
|
||||
return Err(ErrorReported);
|
||||
}
|
||||
Err(e) => {
|
||||
bug!("Encountered error `{:?}` selecting `{:?}` during codegen", e, trait_ref)
|
||||
}
|
||||
};
|
||||
|
||||
debug!("fulfill_obligation: selection={:?}", selection);
|
||||
|
||||
// Currently, we use a fulfillment context to completely resolve
|
||||
// all nested obligations. This is because they can inform the
|
||||
// inference of the impl's type parameters.
|
||||
let mut fulfill_cx = FulfillmentContext::new();
|
||||
let impl_source = selection.map(|predicate| {
|
||||
debug!("fulfill_obligation: register_predicate_obligation {:?}", predicate);
|
||||
fulfill_cx.register_predicate_obligation(&infcx, predicate);
|
||||
});
|
||||
let impl_source = drain_fulfillment_cx_or_panic(&infcx, &mut fulfill_cx, &impl_source);
|
||||
|
||||
info!("Cache miss: {:?} => {:?}", trait_ref, impl_source);
|
||||
Ok(impl_source)
|
||||
})
|
||||
}
|
||||
|
||||
// # Global Cache
|
||||
|
||||
/// Finishes processes any obligations that remain in the
|
||||
/// fulfillment context, and then returns the result with all type
|
||||
/// variables removed and regions erased. Because this is intended
|
||||
/// for use after type-check has completed, if any errors occur,
|
||||
/// it will panic. It is used during normalization and other cases
|
||||
/// where processing the obligations in `fulfill_cx` may cause
|
||||
/// type inference variables that appear in `result` to be
|
||||
/// unified, and hence we need to process those obligations to get
|
||||
/// the complete picture of the type.
|
||||
fn drain_fulfillment_cx_or_panic<T>(
|
||||
infcx: &InferCtxt<'_, 'tcx>,
|
||||
fulfill_cx: &mut FulfillmentContext<'tcx>,
|
||||
result: &T,
|
||||
) -> T
|
||||
where
|
||||
T: TypeFoldable<'tcx>,
|
||||
{
|
||||
debug!("drain_fulfillment_cx_or_panic()");
|
||||
|
||||
// In principle, we only need to do this so long as `result`
|
||||
// contains unbound type parameters. It could be a slight
|
||||
// optimization to stop iterating early.
|
||||
if let Err(errors) = fulfill_cx.select_all_or_error(infcx) {
|
||||
bug!("Encountered errors `{:?}` resolving bounds after type-checking", errors);
|
||||
}
|
||||
|
||||
let result = infcx.resolve_vars_if_possible(result);
|
||||
infcx.tcx.erase_regions(&result)
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue