1
Fork 0

Only use the new node hashmap for anonymous nodes.

This commit is contained in:
Camille GILLOT 2023-03-12 11:56:20 +01:00 committed by John Kåre Alsaker
parent 1aeb99d248
commit 5a21f890e9
4 changed files with 110 additions and 55 deletions

View file

@ -1104,11 +1104,12 @@ pub fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) ->
// know that later). If we are not doing LTO, there is only one optimized // know that later). If we are not doing LTO, there is only one optimized
// version of each module, so we re-use that. // version of each module, so we re-use that.
let dep_node = cgu.codegen_dep_node(tcx); let dep_node = cgu.codegen_dep_node(tcx);
assert!( tcx.dep_graph.assert_dep_node_not_yet_allocated_in_current_session(&dep_node, || {
!tcx.dep_graph.dep_node_exists(&dep_node), format!(
"CompileCodegenUnit dep-node for CGU `{}` already exists before marking.", "CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
cgu.name() cgu.name()
); )
});
if tcx.try_mark_green(&dep_node) { if tcx.try_mark_green(&dep_node) {
// We can re-use either the pre- or the post-thinlto state. If no LTO is // We can re-use either the pre- or the post-thinlto state. If no LTO is

View file

@ -173,7 +173,7 @@ pub(crate) fn build_dep_graph(
sess.opts.dep_tracking_hash(false).encode(&mut encoder); sess.opts.dep_tracking_hash(false).encode(&mut encoder);
Some(DepGraph::new( Some(DepGraph::new(
&sess.prof, sess,
prev_graph, prev_graph,
prev_work_products, prev_work_products,
encoder, encoder,

View file

@ -1,4 +1,5 @@
use std::assert_matches::assert_matches; use std::assert_matches::assert_matches;
use std::collections::hash_map::Entry;
use std::fmt::Debug; use std::fmt::Debug;
use std::hash::Hash; use std::hash::Hash;
use std::marker::PhantomData; use std::marker::PhantomData;
@ -7,8 +8,8 @@ use std::sync::atomic::{AtomicU32, Ordering};
use rustc_data_structures::fingerprint::{Fingerprint, PackedFingerprint}; use rustc_data_structures::fingerprint::{Fingerprint, PackedFingerprint};
use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::profiling::{QueryInvocationId, SelfProfilerRef}; use rustc_data_structures::profiling::QueryInvocationId;
use rustc_data_structures::sharded::{self, ShardedHashMap}; use rustc_data_structures::sharded::{self, Sharded};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::{AtomicU64, Lock}; use rustc_data_structures::sync::{AtomicU64, Lock};
use rustc_data_structures::unord::UnordMap; use rustc_data_structures::unord::UnordMap;
@ -16,6 +17,7 @@ use rustc_errors::DiagInner;
use rustc_index::IndexVec; use rustc_index::IndexVec;
use rustc_macros::{Decodable, Encodable}; use rustc_macros::{Decodable, Encodable};
use rustc_serialize::opaque::{FileEncodeResult, FileEncoder}; use rustc_serialize::opaque::{FileEncodeResult, FileEncoder};
use rustc_session::Session;
use tracing::{debug, instrument}; use tracing::{debug, instrument};
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
use {super::debug::EdgeFilter, std::env}; use {super::debug::EdgeFilter, std::env};
@ -117,7 +119,7 @@ where
impl<D: Deps> DepGraph<D> { impl<D: Deps> DepGraph<D> {
pub fn new( pub fn new(
profiler: &SelfProfilerRef, session: &Session,
prev_graph: Arc<SerializedDepGraph>, prev_graph: Arc<SerializedDepGraph>,
prev_work_products: WorkProductMap, prev_work_products: WorkProductMap,
encoder: FileEncoder, encoder: FileEncoder,
@ -127,7 +129,7 @@ impl<D: Deps> DepGraph<D> {
let prev_graph_node_count = prev_graph.node_count(); let prev_graph_node_count = prev_graph.node_count();
let current = CurrentDepGraph::new( let current = CurrentDepGraph::new(
profiler, session,
prev_graph_node_count, prev_graph_node_count,
encoder, encoder,
record_graph, record_graph,
@ -351,12 +353,13 @@ impl<D: Deps> DepGraphData<D> {
// in `DepGraph::try_mark_green()`. // in `DepGraph::try_mark_green()`.
// 2. Two distinct query keys get mapped to the same `DepNode` // 2. Two distinct query keys get mapped to the same `DepNode`
// (see for example #48923). // (see for example #48923).
assert!( self.assert_dep_node_not_yet_allocated_in_current_session(&key, || {
!self.dep_node_exists(&key), format!(
"forcing query with already existing `DepNode`\n\ "forcing query with already existing `DepNode`\n\
- query-key: {arg:?}\n\ - query-key: {arg:?}\n\
- dep-node: {key:?}" - dep-node: {key:?}"
); )
});
let with_deps = |task_deps| D::with_deps(task_deps, || task(cx, arg)); let with_deps = |task_deps| D::with_deps(task_deps, || task(cx, arg));
let (result, edges) = if cx.dep_context().is_eval_always(key.kind) { let (result, edges) = if cx.dep_context().is_eval_always(key.kind) {
@ -436,7 +439,31 @@ impl<D: Deps> DepGraphData<D> {
hash: self.current.anon_id_seed.combine(hasher.finish()).into(), hash: self.current.anon_id_seed.combine(hasher.finish()).into(),
}; };
self.current.intern_new_node(target_dep_node, task_deps, Fingerprint::ZERO) // The DepNodes generated by the process above are not unique. 2 queries could
// have exactly the same dependencies. However, deserialization does not handle
// duplicated nodes, so we do the deduplication here directly.
//
// As anonymous nodes are a small quantity compared to the full dep-graph, the
// memory impact of this `anon_node_to_index` map remains tolerable, and helps
// us avoid useless growth of the graph with almost-equivalent nodes.
match self
.current
.anon_node_to_index
.get_shard_by_value(&target_dep_node)
.lock()
.entry(target_dep_node)
{
Entry::Occupied(entry) => *entry.get(),
Entry::Vacant(entry) => {
let dep_node_index = self.current.intern_new_node(
target_dep_node,
task_deps,
Fingerprint::ZERO,
);
entry.insert(dep_node_index);
dep_node_index
}
}
} }
}; };
@ -637,20 +664,22 @@ impl<D: Deps> DepGraph<D> {
} }
impl<D: Deps> DepGraphData<D> { impl<D: Deps> DepGraphData<D> {
#[inline] fn assert_dep_node_not_yet_allocated_in_current_session<S: std::fmt::Display>(
fn dep_node_index_of_opt(&self, dep_node: &DepNode) -> Option<DepNodeIndex> { &self,
dep_node: &DepNode,
msg: impl FnOnce() -> S,
) {
if let Some(prev_index) = self.previous.node_to_index_opt(dep_node) { if let Some(prev_index) = self.previous.node_to_index_opt(dep_node) {
self.current.prev_index_to_index.lock()[prev_index] let current = self.current.prev_index_to_index.lock()[prev_index];
} else { assert!(current.is_none(), "{}", msg())
self.current.new_node_to_index.get(dep_node) } else if let Some(nodes_newly_allocated_in_current_session) =
&self.current.nodes_newly_allocated_in_current_session
{
let seen = nodes_newly_allocated_in_current_session.lock().contains(dep_node);
assert!(!seen, "{}", msg());
} }
} }
#[inline]
fn dep_node_exists(&self, dep_node: &DepNode) -> bool {
self.dep_node_index_of_opt(dep_node).is_some()
}
fn node_color(&self, dep_node: &DepNode) -> Option<DepNodeColor> { fn node_color(&self, dep_node: &DepNode) -> Option<DepNodeColor> {
if let Some(prev_index) = self.previous.node_to_index_opt(dep_node) { if let Some(prev_index) = self.previous.node_to_index_opt(dep_node) {
self.colors.get(prev_index) self.colors.get(prev_index)
@ -734,11 +763,6 @@ impl<D: Deps> DepGraphData<D> {
} }
impl<D: Deps> DepGraph<D> { impl<D: Deps> DepGraph<D> {
#[inline]
pub fn dep_node_exists(&self, dep_node: &DepNode) -> bool {
self.data.as_ref().is_some_and(|data| data.dep_node_exists(dep_node))
}
/// Checks whether a previous work product exists for `v` and, if /// Checks whether a previous work product exists for `v` and, if
/// so, return the path that leads to it. Used to skip doing work. /// so, return the path that leads to it. Used to skip doing work.
pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> { pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
@ -964,6 +988,16 @@ impl<D: Deps> DepGraph<D> {
self.node_color(dep_node).is_some_and(|c| c.is_green()) self.node_color(dep_node).is_some_and(|c| c.is_green())
} }
pub fn assert_dep_node_not_yet_allocated_in_current_session<S: std::fmt::Display>(
&self,
dep_node: &DepNode,
msg: impl FnOnce() -> S,
) {
if let Some(data) = &self.data {
data.assert_dep_node_not_yet_allocated_in_current_session(dep_node, msg)
}
}
/// This method loads all on-disk cacheable query results into memory, so /// This method loads all on-disk cacheable query results into memory, so
/// they can be written out to the new cache file again. Most query results /// they can be written out to the new cache file again. Most query results
/// will already be in memory but in the case where we marked something as /// will already be in memory but in the case where we marked something as
@ -1069,24 +1103,24 @@ rustc_index::newtype_index! {
/// largest in the compiler. /// largest in the compiler.
/// ///
/// For this reason, we avoid storing `DepNode`s more than once as map /// For this reason, we avoid storing `DepNode`s more than once as map
/// keys. The `new_node_to_index` map only contains nodes not in the previous /// keys. The `anon_node_to_index` map only contains nodes of anonymous queries not in the previous
/// graph, and we map nodes in the previous graph to indices via a two-step /// graph, and we map nodes in the previous graph to indices via a two-step
/// mapping. `SerializedDepGraph` maps from `DepNode` to `SerializedDepNodeIndex`, /// mapping. `SerializedDepGraph` maps from `DepNode` to `SerializedDepNodeIndex`,
/// and the `prev_index_to_index` vector (which is more compact and faster than /// and the `prev_index_to_index` vector (which is more compact and faster than
/// using a map) maps from `SerializedDepNodeIndex` to `DepNodeIndex`. /// using a map) maps from `SerializedDepNodeIndex` to `DepNodeIndex`.
/// ///
/// This struct uses three locks internally. The `data`, `new_node_to_index`, /// This struct uses three locks internally. The `data`, `anon_node_to_index`,
/// and `prev_index_to_index` fields are locked separately. Operations that take /// and `prev_index_to_index` fields are locked separately. Operations that take
/// a `DepNodeIndex` typically just access the `data` field. /// a `DepNodeIndex` typically just access the `data` field.
/// ///
/// We only need to manipulate at most two locks simultaneously: /// We only need to manipulate at most two locks simultaneously:
/// `new_node_to_index` and `data`, or `prev_index_to_index` and `data`. When /// `anon_node_to_index` and `data`, or `prev_index_to_index` and `data`. When
/// manipulating both, we acquire `new_node_to_index` or `prev_index_to_index` /// manipulating both, we acquire `anon_node_to_index` or `prev_index_to_index`
/// first, and `data` second. /// first, and `data` second.
pub(super) struct CurrentDepGraph<D: Deps> { pub(super) struct CurrentDepGraph<D: Deps> {
encoder: GraphEncoder<D>, encoder: GraphEncoder<D>,
new_node_to_index: ShardedHashMap<DepNode, DepNodeIndex>,
prev_index_to_index: Lock<IndexVec<SerializedDepNodeIndex, Option<DepNodeIndex>>>, prev_index_to_index: Lock<IndexVec<SerializedDepNodeIndex, Option<DepNodeIndex>>>,
anon_node_to_index: Sharded<FxHashMap<DepNode, DepNodeIndex>>,
/// This is used to verify that fingerprints do not change between the creation of a node /// This is used to verify that fingerprints do not change between the creation of a node
/// and its recomputation. /// and its recomputation.
@ -1098,6 +1132,13 @@ pub(super) struct CurrentDepGraph<D: Deps> {
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
forbidden_edge: Option<EdgeFilter>, forbidden_edge: Option<EdgeFilter>,
/// Used to verify the absence of hash collisions among DepNodes.
/// This field is only `Some` if the `-Z incremental_verify_ich` option is present.
///
/// The map contains all DepNodes that have been allocated in the current session so far and
/// for which there is no equivalent in the previous session.
nodes_newly_allocated_in_current_session: Option<Lock<FxHashSet<DepNode>>>,
/// Anonymous `DepNode`s are nodes whose IDs we compute from the list of /// Anonymous `DepNode`s are nodes whose IDs we compute from the list of
/// their edges. This has the beneficial side-effect that multiple anonymous /// their edges. This has the beneficial side-effect that multiple anonymous
/// nodes can be coalesced into one without changing the semantics of the /// nodes can be coalesced into one without changing the semantics of the
@ -1119,7 +1160,7 @@ pub(super) struct CurrentDepGraph<D: Deps> {
impl<D: Deps> CurrentDepGraph<D> { impl<D: Deps> CurrentDepGraph<D> {
fn new( fn new(
profiler: &SelfProfilerRef, session: &Session,
prev_graph_node_count: usize, prev_graph_node_count: usize,
encoder: FileEncoder, encoder: FileEncoder,
record_graph: bool, record_graph: bool,
@ -1151,18 +1192,31 @@ impl<D: Deps> CurrentDepGraph<D> {
prev_graph_node_count, prev_graph_node_count,
record_graph, record_graph,
record_stats, record_stats,
profiler, &session.prof,
previous, previous,
), ),
new_node_to_index: ShardedHashMap::with_capacity( anon_node_to_index: Sharded::new(|| {
FxHashMap::with_capacity_and_hasher(
new_node_count_estimate / sharded::shards(), new_node_count_estimate / sharded::shards(),
), Default::default(),
)
}),
prev_index_to_index: Lock::new(IndexVec::from_elem_n(None, prev_graph_node_count)), prev_index_to_index: Lock::new(IndexVec::from_elem_n(None, prev_graph_node_count)),
anon_id_seed, anon_id_seed,
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
forbidden_edge, forbidden_edge,
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
fingerprints: Lock::new(IndexVec::from_elem_n(None, new_node_count_estimate)), fingerprints: Lock::new(IndexVec::from_elem_n(None, new_node_count_estimate)),
nodes_newly_allocated_in_current_session: session
.opts
.unstable_opts
.incremental_verify_ich
.then(|| {
Lock::new(FxHashSet::with_capacity_and_hasher(
new_node_count_estimate,
Default::default(),
))
}),
total_read_count: AtomicU64::new(0), total_read_count: AtomicU64::new(0),
total_duplicate_read_count: AtomicU64::new(0), total_duplicate_read_count: AtomicU64::new(0),
} }
@ -1186,13 +1240,19 @@ impl<D: Deps> CurrentDepGraph<D> {
edges: EdgesVec, edges: EdgesVec,
current_fingerprint: Fingerprint, current_fingerprint: Fingerprint,
) -> DepNodeIndex { ) -> DepNodeIndex {
let dep_node_index = self let dep_node_index = self.encoder.send(key, current_fingerprint, edges);
.new_node_to_index
.get_or_insert_with(key, || self.encoder.send(key, current_fingerprint, edges));
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
self.record_edge(dep_node_index, key, current_fingerprint); self.record_edge(dep_node_index, key, current_fingerprint);
if let Some(ref nodes_newly_allocated_in_current_session) =
self.nodes_newly_allocated_in_current_session
{
if !nodes_newly_allocated_in_current_session.lock().insert(key) {
panic!("Found duplicate dep-node {key:?}");
}
}
dep_node_index dep_node_index
} }
@ -1286,7 +1346,10 @@ impl<D: Deps> CurrentDepGraph<D> {
) { ) {
let node = &prev_graph.index_to_node(prev_index); let node = &prev_graph.index_to_node(prev_index);
debug_assert!( debug_assert!(
!self.new_node_to_index.get(node).is_some(), !self
.nodes_newly_allocated_in_current_session
.as_ref()
.map_or(false, |set| set.lock().contains(node)),
"node from previous graph present in new node collection" "node from previous graph present in new node collection"
); );
} }
@ -1408,16 +1471,6 @@ fn panic_on_forbidden_read<D: Deps>(data: &DepGraphData<D>, dep_node_index: DepN
} }
} }
if dep_node.is_none() {
// Try to find it among the new nodes
for shard in data.current.new_node_to_index.lock_shards() {
if let Some((node, _)) = shard.iter().find(|(_, index)| *index == dep_node_index) {
dep_node = Some(*node);
break;
}
}
}
let dep_node = dep_node.map_or_else( let dep_node = dep_node.map_or_else(
|| format!("with index {:?}", dep_node_index), || format!("with index {:?}", dep_node_index),
|dep_node| format!("`{:?}`", dep_node), |dep_node| format!("`{:?}`", dep_node),

View file

@ -2227,7 +2227,8 @@ options! {
incremental_verify_ich: bool = (false, parse_bool, [UNTRACKED], incremental_verify_ich: bool = (false, parse_bool, [UNTRACKED],
"verify extended properties for incr. comp. (default: no): "verify extended properties for incr. comp. (default: no):
- hashes of green query instances - hashes of green query instances
- hash collisions of query keys"), - hash collisions of query keys
- hash collisions when creating dep-nodes"),
inline_llvm: bool = (true, parse_bool, [TRACKED], inline_llvm: bool = (true, parse_bool, [TRACKED],
"enable LLVM inlining (default: yes)"), "enable LLVM inlining (default: yes)"),
inline_mir: Option<bool> = (None, parse_opt_bool, [TRACKED], inline_mir: Option<bool> = (None, parse_opt_bool, [TRACKED],