1
Fork 0

Auto merge of #96046 - oli-obk:const_typeck, r=cjgillot

Move various checks to typeck so them failing causes the typeck result to get tainted

Fixes #69487
fixes #79047

cc `@RalfJung` this gets rid of the `Transmute` invalid program error variant
This commit is contained in:
bors 2022-05-27 11:31:37 +00:00
commit 56fd680cf9
57 changed files with 875 additions and 518 deletions

View file

@ -1,3 +1,5 @@
use crate::check::wfcheck::for_item;
use super::coercion::CoerceMany;
use super::compare_method::check_type_bounds;
use super::compare_method::{compare_const_impl, compare_impl_method, compare_ty_impl};
@ -871,6 +873,14 @@ pub fn check_item_type<'tcx>(tcx: TyCtxt<'tcx>, id: hir::ItemId) {
}
}
}
DefKind::GlobalAsm => {
let it = tcx.hir().item(id);
let hir::ItemKind::GlobalAsm(asm) = it.kind else { span_bug!(it.span, "DefKind::GlobalAsm but got {:#?}", it) };
for_item(tcx, it).with_fcx(|fcx| {
fcx.check_asm(asm, it.hir_id());
Default::default()
})
}
_ => {}
}
}

View file

@ -51,6 +51,7 @@ use rustc_span::lev_distance::find_best_match_for_name;
use rustc_span::source_map::Span;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{BytePos, Pos};
use rustc_target::spec::abi::Abi::RustIntrinsic;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::{self, ObligationCauseCode};
@ -294,7 +295,11 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
self.check_lang_item_path(lang_item, expr, hir_id)
}
ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, &[]),
ExprKind::InlineAsm(asm) => self.check_expr_asm(asm),
ExprKind::InlineAsm(asm) => {
// We defer some asm checks as we may not have resolved the input and output types yet (they may still be infer vars).
self.deferred_asm_checks.borrow_mut().push((asm, expr.hir_id));
self.check_expr_asm(asm)
}
ExprKind::Break(destination, ref expr_opt) => {
self.check_expr_break(destination, expr_opt.as_deref(), expr)
}
@ -530,8 +535,17 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
_ => self.instantiate_value_path(segs, opt_ty, res, expr.span, expr.hir_id).0,
};
if let ty::FnDef(..) = ty.kind() {
if let ty::FnDef(did, ..) = *ty.kind() {
let fn_sig = ty.fn_sig(tcx);
if tcx.fn_sig(did).abi() == RustIntrinsic && tcx.item_name(did) == sym::transmute {
let from = fn_sig.inputs().skip_binder()[0];
let to = fn_sig.output().skip_binder();
// We defer the transmute to the end of typeck, once all inference vars have
// been resolved or we errored. This is important as we can only check transmute
// on concrete types, but the output type may not be known yet (it would only
// be known if explicitly specified via turbofish).
self.deferred_transmute_checks.borrow_mut().push((from, to, expr.span));
}
if !tcx.features().unsized_fn_params {
// We want to remove some Sized bounds from std functions,
// but don't want to expose the removal to stable Rust.

View file

@ -47,6 +47,23 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
}
pub(in super::super) fn check_transmutes(&self) {
let mut deferred_transmute_checks = self.deferred_transmute_checks.borrow_mut();
debug!("FnCtxt::check_transmutes: {} deferred checks", deferred_transmute_checks.len());
for (from, to, span) in deferred_transmute_checks.drain(..) {
self.check_transmute(span, from, to);
}
}
pub(in super::super) fn check_asms(&self) {
let mut deferred_asm_checks = self.deferred_asm_checks.borrow_mut();
debug!("FnCtxt::check_asm: {} deferred checks", deferred_asm_checks.len());
for (asm, hir_id) in deferred_asm_checks.drain(..) {
let enclosing_id = self.tcx.hir().enclosing_body_owner(hir_id);
self.check_asm(asm, enclosing_id);
}
}
pub(in super::super) fn check_method_argument_types(
&self,
sp: Span,

View file

@ -50,6 +50,10 @@ pub struct Inherited<'a, 'tcx> {
pub(super) deferred_cast_checks: RefCell<Vec<super::cast::CastCheck<'tcx>>>,
pub(super) deferred_transmute_checks: RefCell<Vec<(Ty<'tcx>, Ty<'tcx>, Span)>>,
pub(super) deferred_asm_checks: RefCell<Vec<(&'tcx hir::InlineAsm<'tcx>, hir::HirId)>>,
pub(super) deferred_generator_interiors:
RefCell<Vec<(hir::BodyId, Ty<'tcx>, hir::GeneratorKind)>>,
@ -113,6 +117,8 @@ impl<'a, 'tcx> Inherited<'a, 'tcx> {
deferred_sized_obligations: RefCell::new(Vec::new()),
deferred_call_resolutions: RefCell::new(Default::default()),
deferred_cast_checks: RefCell::new(Vec::new()),
deferred_transmute_checks: RefCell::new(Vec::new()),
deferred_asm_checks: RefCell::new(Vec::new()),
deferred_generator_interiors: RefCell::new(Vec::new()),
diverging_type_vars: RefCell::new(Default::default()),
body_id,

View file

@ -0,0 +1,521 @@
use rustc_ast::InlineAsmTemplatePiece;
use rustc_data_structures::stable_set::FxHashSet;
use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_index::vec::Idx;
use rustc_middle::ty::layout::{LayoutError, SizeSkeleton};
use rustc_middle::ty::{self, FloatTy, InferTy, IntTy, Ty, TyCtxt, TypeFoldable, UintTy};
use rustc_session::lint;
use rustc_span::{Span, Symbol, DUMMY_SP};
use rustc_target::abi::{Pointer, VariantIdx};
use rustc_target::asm::{InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType};
use super::FnCtxt;
/// If the type is `Option<T>`, it will return `T`, otherwise
/// the type itself. Works on most `Option`-like types.
fn unpack_option_like<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
let ty::Adt(def, substs) = *ty.kind() else { return ty };
if def.variants().len() == 2 && !def.repr().c() && def.repr().int.is_none() {
let data_idx;
let one = VariantIdx::new(1);
let zero = VariantIdx::new(0);
if def.variant(zero).fields.is_empty() {
data_idx = one;
} else if def.variant(one).fields.is_empty() {
data_idx = zero;
} else {
return ty;
}
if def.variant(data_idx).fields.len() == 1 {
return def.variant(data_idx).fields[0].ty(tcx, substs);
}
}
ty
}
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub fn check_transmute(&self, span: Span, from: Ty<'tcx>, to: Ty<'tcx>) {
let convert = |ty: Ty<'tcx>| {
let ty = self.resolve_vars_if_possible(ty);
let ty = self.tcx.normalize_erasing_regions(self.param_env, ty);
(SizeSkeleton::compute(ty, self.tcx, self.param_env), ty)
};
let (sk_from, from) = convert(from);
let (sk_to, to) = convert(to);
// Check for same size using the skeletons.
if let (Ok(sk_from), Ok(sk_to)) = (sk_from, sk_to) {
if sk_from.same_size(sk_to) {
return;
}
// Special-case transmuting from `typeof(function)` and
// `Option<typeof(function)>` to present a clearer error.
let from = unpack_option_like(self.tcx, from);
if let (&ty::FnDef(..), SizeSkeleton::Known(size_to)) = (from.kind(), sk_to) && size_to == Pointer.size(&self.tcx) {
struct_span_err!(self.tcx.sess, span, E0591, "can't transmute zero-sized type")
.note(&format!("source type: {from}"))
.note(&format!("target type: {to}"))
.help("cast with `as` to a pointer instead")
.emit();
return;
}
}
// Try to display a sensible error with as much information as possible.
let skeleton_string = |ty: Ty<'tcx>, sk| match sk {
Ok(SizeSkeleton::Known(size)) => format!("{} bits", size.bits()),
Ok(SizeSkeleton::Pointer { tail, .. }) => format!("pointer to `{tail}`"),
Err(LayoutError::Unknown(bad)) => {
if bad == ty {
"this type does not have a fixed size".to_owned()
} else {
format!("size can vary because of {bad}")
}
}
Err(err) => err.to_string(),
};
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0512,
"cannot transmute between types of different sizes, \
or dependently-sized types"
);
if from == to {
err.note(&format!("`{from}` does not have a fixed size"));
} else {
err.note(&format!("source type: `{}` ({})", from, skeleton_string(from, sk_from)))
.note(&format!("target type: `{}` ({})", to, skeleton_string(to, sk_to)));
}
err.emit();
}
fn is_thin_ptr_ty(&self, ty: Ty<'tcx>) -> bool {
if ty.is_sized(self.tcx.at(DUMMY_SP), self.param_env) {
return true;
}
if let ty::Foreign(..) = ty.kind() {
return true;
}
false
}
fn check_asm_operand_type(
&self,
idx: usize,
reg: InlineAsmRegOrRegClass,
expr: &hir::Expr<'tcx>,
template: &[InlineAsmTemplatePiece],
is_input: bool,
tied_input: Option<(&hir::Expr<'tcx>, Option<InlineAsmType>)>,
target_features: &FxHashSet<Symbol>,
) -> Option<InlineAsmType> {
// Check the type against the allowed types for inline asm.
let ty = self.typeck_results.borrow().expr_ty_adjusted(expr);
let ty = self.resolve_vars_if_possible(ty);
let asm_ty_isize = match self.tcx.sess.target.pointer_width {
16 => InlineAsmType::I16,
32 => InlineAsmType::I32,
64 => InlineAsmType::I64,
_ => unreachable!(),
};
let asm_ty = match *ty.kind() {
// `!` is allowed for input but not for output (issue #87802)
ty::Never if is_input => return None,
ty::Error(_) => return None,
ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Some(InlineAsmType::I8),
ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Some(InlineAsmType::I16),
// Somewhat of a hack: fallback in the presence of errors does not actually
// fall back to i32, but to ty::Error. For integer inference variables this
// means that they don't get any fallback and stay as `{integer}`.
// Since compilation can't succeed anyway, it's fine to use this to avoid printing
// "cannot use value of type `{integer}`", even though that would absolutely
// work due due i32 fallback if the current function had no other errors.
ty::Infer(InferTy::IntVar(_)) => {
assert!(self.is_tainted_by_errors());
Some(InlineAsmType::I32)
}
ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Some(InlineAsmType::I32),
ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Some(InlineAsmType::I64),
ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Some(InlineAsmType::I128),
ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Some(asm_ty_isize),
ty::Infer(InferTy::FloatVar(_)) => {
assert!(self.is_tainted_by_errors());
Some(InlineAsmType::F32)
}
ty::Float(FloatTy::F32) => Some(InlineAsmType::F32),
ty::Float(FloatTy::F64) => Some(InlineAsmType::F64),
ty::FnPtr(_) => Some(asm_ty_isize),
ty::RawPtr(ty::TypeAndMut { ty, mutbl: _ }) if self.is_thin_ptr_ty(ty) => {
Some(asm_ty_isize)
}
ty::Adt(adt, substs) if adt.repr().simd() => {
let fields = &adt.non_enum_variant().fields;
let elem_ty = fields[0].ty(self.tcx, substs);
match elem_ty.kind() {
ty::Never | ty::Error(_) => return None,
ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => {
Some(InlineAsmType::VecI8(fields.len() as u64))
}
ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => {
Some(InlineAsmType::VecI16(fields.len() as u64))
}
ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => {
Some(InlineAsmType::VecI32(fields.len() as u64))
}
ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => {
Some(InlineAsmType::VecI64(fields.len() as u64))
}
ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => {
Some(InlineAsmType::VecI128(fields.len() as u64))
}
ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => {
Some(match self.tcx.sess.target.pointer_width {
16 => InlineAsmType::VecI16(fields.len() as u64),
32 => InlineAsmType::VecI32(fields.len() as u64),
64 => InlineAsmType::VecI64(fields.len() as u64),
_ => unreachable!(),
})
}
ty::Float(FloatTy::F32) => Some(InlineAsmType::VecF32(fields.len() as u64)),
ty::Float(FloatTy::F64) => Some(InlineAsmType::VecF64(fields.len() as u64)),
_ => None,
}
}
_ => None,
};
let Some(asm_ty) = asm_ty else {
let msg = &format!("cannot use value of type `{ty}` for inline assembly");
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
err.note(
"only integers, floats, SIMD vectors, pointers and function pointers \
can be used as arguments for inline assembly",
);
err.emit();
return None;
};
if ty.has_infer_types_or_consts() {
assert!(self.is_tainted_by_errors());
return None;
}
// Check that the type implements Copy. The only case where this can
// possibly fail is for SIMD types which don't #[derive(Copy)].
if !ty.is_copy_modulo_regions(self.tcx.at(DUMMY_SP), self.param_env) {
let msg = "arguments for inline assembly must be copyable";
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
err.note(&format!("`{ty}` does not implement the Copy trait"));
err.emit();
}
// Ideally we wouldn't need to do this, but LLVM's register allocator
// really doesn't like it when tied operands have different types.
//
// This is purely an LLVM limitation, but we have to live with it since
// there is no way to hide this with implicit conversions.
//
// For the purposes of this check we only look at the `InlineAsmType`,
// which means that pointers and integers are treated as identical (modulo
// size).
if let Some((in_expr, Some(in_asm_ty))) = tied_input {
if in_asm_ty != asm_ty {
let msg = "incompatible types for asm inout argument";
let mut err = self.tcx.sess.struct_span_err(vec![in_expr.span, expr.span], msg);
let in_expr_ty = self.typeck_results.borrow().expr_ty_adjusted(in_expr);
let in_expr_ty = self.resolve_vars_if_possible(in_expr_ty);
err.span_label(in_expr.span, &format!("type `{in_expr_ty}`"));
err.span_label(expr.span, &format!("type `{ty}`"));
err.note(
"asm inout arguments must have the same type, \
unless they are both pointers or integers of the same size",
);
err.emit();
}
// All of the later checks have already been done on the input, so
// let's not emit errors and warnings twice.
return Some(asm_ty);
}
// Check the type against the list of types supported by the selected
// register class.
let asm_arch = self.tcx.sess.asm_arch.unwrap();
let reg_class = reg.reg_class();
let supported_tys = reg_class.supported_types(asm_arch);
let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else {
let msg = &format!("type `{ty}` cannot be used with this register class");
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
let supported_tys: Vec<_> =
supported_tys.iter().map(|(t, _)| t.to_string()).collect();
err.note(&format!(
"register class `{}` supports these types: {}",
reg_class.name(),
supported_tys.join(", "),
));
if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) {
err.help(&format!(
"consider using the `{}` register class instead",
suggest.name()
));
}
err.emit();
return Some(asm_ty);
};
// Check whether the selected type requires a target feature. Note that
// this is different from the feature check we did earlier. While the
// previous check checked that this register class is usable at all
// with the currently enabled features, some types may only be usable
// with a register class when a certain feature is enabled. We check
// this here since it depends on the results of typeck.
//
// Also note that this check isn't run when the operand type is never
// (!). In that case we still need the earlier check to verify that the
// register class is usable at all.
if let Some(feature) = feature {
if !target_features.contains(&feature) {
let msg = &format!("`{}` target feature is not enabled", feature);
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
err.note(&format!(
"this is required to use type `{}` with register class `{}`",
ty,
reg_class.name(),
));
err.emit();
return Some(asm_ty);
}
}
// Check whether a modifier is suggested for using this type.
if let Some((suggested_modifier, suggested_result)) =
reg_class.suggest_modifier(asm_arch, asm_ty)
{
// Search for any use of this operand without a modifier and emit
// the suggestion for them.
let mut spans = vec![];
for piece in template {
if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece
{
if operand_idx == idx && modifier.is_none() {
spans.push(span);
}
}
}
if !spans.is_empty() {
let (default_modifier, default_result) =
reg_class.default_modifier(asm_arch).unwrap();
self.tcx.struct_span_lint_hir(
lint::builtin::ASM_SUB_REGISTER,
expr.hir_id,
spans,
|lint| {
let msg = "formatting may not be suitable for sub-register argument";
let mut err = lint.build(msg);
err.span_label(expr.span, "for this argument");
err.help(&format!(
"use the `{suggested_modifier}` modifier to have the register formatted as `{suggested_result}`",
));
err.help(&format!(
"or use the `{default_modifier}` modifier to keep the default formatting of `{default_result}`",
));
err.emit();
},
);
}
}
Some(asm_ty)
}
pub fn check_asm(&self, asm: &hir::InlineAsm<'tcx>, enclosing_id: hir::HirId) {
let hir = self.tcx.hir();
let enclosing_def_id = hir.local_def_id(enclosing_id).to_def_id();
let target_features = self.tcx.asm_target_features(enclosing_def_id);
let Some(asm_arch) = self.tcx.sess.asm_arch else {
self.tcx.sess.delay_span_bug(DUMMY_SP, "target architecture does not support asm");
return;
};
for (idx, (op, op_sp)) in asm.operands.iter().enumerate() {
// Validate register classes against currently enabled target
// features. We check that at least one type is available for
// the enabled features.
//
// We ignore target feature requirements for clobbers: if the
// feature is disabled then the compiler doesn't care what we
// do with the registers.
//
// Note that this is only possible for explicit register
// operands, which cannot be used in the asm string.
if let Some(reg) = op.reg() {
// Some explicit registers cannot be used depending on the
// target. Reject those here.
if let InlineAsmRegOrRegClass::Reg(reg) = reg {
if let InlineAsmReg::Err = reg {
// `validate` will panic on `Err`, as an error must
// already have been reported.
continue;
}
if let Err(msg) = reg.validate(
asm_arch,
self.tcx.sess.relocation_model(),
&target_features,
&self.tcx.sess.target,
op.is_clobber(),
) {
let msg = format!("cannot use register `{}`: {}", reg.name(), msg);
self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
continue;
}
}
if !op.is_clobber() {
let mut missing_required_features = vec![];
let reg_class = reg.reg_class();
if let InlineAsmRegClass::Err = reg_class {
continue;
}
for &(_, feature) in reg_class.supported_types(asm_arch) {
match feature {
Some(feature) => {
if target_features.contains(&feature) {
missing_required_features.clear();
break;
} else {
missing_required_features.push(feature);
}
}
None => {
missing_required_features.clear();
break;
}
}
}
// We are sorting primitive strs here and can use unstable sort here
missing_required_features.sort_unstable();
missing_required_features.dedup();
match &missing_required_features[..] {
[] => {}
[feature] => {
let msg = format!(
"register class `{}` requires the `{}` target feature",
reg_class.name(),
feature
);
self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
// register isn't enabled, don't do more checks
continue;
}
features => {
let msg = format!(
"register class `{}` requires at least one of the following target features: {}",
reg_class.name(),
features
.iter()
.map(|f| f.as_str())
.intersperse(", ")
.collect::<String>(),
);
self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
// register isn't enabled, don't do more checks
continue;
}
}
}
}
match *op {
hir::InlineAsmOperand::In { reg, ref expr } => {
self.check_asm_operand_type(
idx,
reg,
expr,
asm.template,
true,
None,
&target_features,
);
}
hir::InlineAsmOperand::Out { reg, late: _, ref expr } => {
if let Some(expr) = expr {
self.check_asm_operand_type(
idx,
reg,
expr,
asm.template,
false,
None,
&target_features,
);
}
}
hir::InlineAsmOperand::InOut { reg, late: _, ref expr } => {
self.check_asm_operand_type(
idx,
reg,
expr,
asm.template,
false,
None,
&target_features,
);
}
hir::InlineAsmOperand::SplitInOut { reg, late: _, ref in_expr, ref out_expr } => {
let in_ty = self.check_asm_operand_type(
idx,
reg,
in_expr,
asm.template,
true,
None,
&target_features,
);
if let Some(out_expr) = out_expr {
self.check_asm_operand_type(
idx,
reg,
out_expr,
asm.template,
false,
Some((in_expr, in_ty)),
&target_features,
);
}
}
// No special checking is needed for these:
// - Typeck has checked that Const operands are integers.
// - AST lowering guarantees that SymStatic points to a static.
hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymStatic { .. } => {}
// Check that sym actually points to a function. Later passes
// depend on this.
hir::InlineAsmOperand::SymFn { anon_const } => {
let ty = self.tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id);
match ty.kind() {
ty::Never | ty::Error(_) => {}
ty::FnDef(..) => {}
_ => {
let mut err =
self.tcx.sess.struct_span_err(*op_sp, "invalid `sym` operand");
err.span_label(
self.tcx.hir().span(anon_const.body.hir_id),
&format!("is {} `{}`", ty.kind().article(), ty),
);
err.help("`sym` operands must refer to either a function or a static");
err.emit();
}
};
}
}
}
}
}

View file

@ -81,6 +81,7 @@ mod gather_locals;
mod generator_interior;
mod inherited;
pub mod intrinsic;
mod intrinsicck;
pub mod method;
mod op;
mod pat;
@ -487,6 +488,12 @@ fn typeck_with_fallback<'tcx>(
fcx.select_all_obligations_or_error();
if !fcx.infcx.is_tainted_by_errors() {
fcx.check_transmutes();
}
fcx.check_asms();
if fn_sig.is_some() {
fcx.regionck_fn(id, body, span, wf_tys);
} else {

View file

@ -41,7 +41,7 @@ use std::ops::ControlFlow;
/// ```ignore (illustrative)
/// F: for<'b, 'tcx> where 'tcx FnOnce(FnCtxt<'b, 'tcx>)
/// ```
struct CheckWfFcxBuilder<'tcx> {
pub(super) struct CheckWfFcxBuilder<'tcx> {
inherited: super::InheritedBuilder<'tcx>,
id: hir::HirId,
span: Span,
@ -49,7 +49,7 @@ struct CheckWfFcxBuilder<'tcx> {
}
impl<'tcx> CheckWfFcxBuilder<'tcx> {
fn with_fcx<F>(&mut self, f: F)
pub(super) fn with_fcx<F>(&mut self, f: F)
where
F: for<'b> FnOnce(&FnCtxt<'b, 'tcx>) -> FxHashSet<Ty<'tcx>>,
{
@ -972,7 +972,7 @@ fn check_associated_item(
})
}
fn for_item<'tcx>(tcx: TyCtxt<'tcx>, item: &hir::Item<'_>) -> CheckWfFcxBuilder<'tcx> {
pub(super) fn for_item<'tcx>(tcx: TyCtxt<'tcx>, item: &hir::Item<'_>) -> CheckWfFcxBuilder<'tcx> {
for_id(tcx, item.def_id, item.span)
}

View file

@ -63,6 +63,7 @@ This API is completely unstable and subject to change.
#![feature(hash_drain_filter)]
#![feature(if_let_guard)]
#![feature(is_sorted)]
#![feature(iter_intersperse)]
#![feature(label_break_value)]
#![feature(let_chains)]
#![feature(let_else)]