Add initial version of value analysis and dataflow constant propagation

This commit is contained in:
Jannis Christopher Köhl 2022-08-25 16:43:46 +00:00
parent 9b735a7132
commit 4f9c30fb67
26 changed files with 1948 additions and 2 deletions

View file

@ -0,0 +1,490 @@
use rustc_const_eval::interpret::{ConstValue, ImmTy, Immediate, InterpCx, Scalar};
use rustc_data_structures::fx::FxHashMap;
use rustc_middle::mir::visit::{MutVisitor, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::{self, ScalarInt, Ty, TyCtxt};
use rustc_mir_dataflow::value_analysis::{Map, ProjElem, State, ValueAnalysis, ValueOrPlace};
use rustc_mir_dataflow::{lattice::FlatSet, Analysis, ResultsVisitor, SwitchIntEdgeEffects};
use rustc_span::DUMMY_SP;
use crate::MirPass;
pub struct DataflowConstProp;
impl<'tcx> MirPass<'tcx> for DataflowConstProp {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
// Choose different minimum level?
sess.mir_opt_level() >= 4
}
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
// Decide which places to track during the analysis.
let mut map = Map::new();
map.register_with_filter(tcx, body, 3, |ty| ty.is_scalar() && !ty.is_unsafe_ptr());
// Perform the actual dataflow analysis.
let analysis = ConstAnalysis::new(tcx, body, map);
let results = analysis.wrap().into_engine(tcx, body).iterate_to_fixpoint();
// Collect results and patch the body afterwards.
let mut visitor = CollectAndPatch::new(tcx, &results.analysis.0.map);
results.visit_reachable_with(body, &mut visitor);
visitor.visit_body(body);
}
}
// FIXME: Consider support for discriminants, mutable references, arrays and slices.
struct ConstAnalysis<'tcx> {
map: Map,
tcx: TyCtxt<'tcx>,
ecx: InterpCx<'tcx, 'tcx, DummyMachine>,
param_env: ty::ParamEnv<'tcx>,
}
impl<'tcx> ValueAnalysis<'tcx> for ConstAnalysis<'tcx> {
type Value = FlatSet<Const<'tcx>>;
const NAME: &'static str = "ConstAnalysis";
fn map(&self) -> &Map {
&self.map
}
fn handle_assign(
&self,
target: Place<'tcx>,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) {
match rvalue {
Rvalue::CheckedBinaryOp(op, box (left, right)) => {
let target = self.map().find(target.as_ref());
let value_target = target.and_then(|target| {
self.map().apply_elem(target, ProjElem::Field(0_u32.into()))
});
let overflow_target = target.and_then(|target| {
self.map().apply_elem(target, ProjElem::Field(1_u32.into()))
});
if value_target.is_some() || overflow_target.is_some() {
let (val, overflow) = self.binary_op(state, *op, left, right);
if let Some(value_target) = value_target {
state.assign_idx(value_target, ValueOrPlace::Value(val), self.map());
}
if let Some(overflow_target) = overflow_target {
state.assign_idx(
overflow_target,
ValueOrPlace::Value(overflow),
self.map(),
);
}
}
}
_ => self.super_assign(target, rvalue, state),
}
}
fn handle_rvalue(
&self,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) -> ValueOrPlace<Self::Value> {
match rvalue {
Rvalue::Cast(CastKind::Misc, operand, ty) => {
let operand = self.eval_operand(operand, state);
match operand {
FlatSet::Elem(operand) => self
.ecx
.misc_cast(&operand, *ty)
.map(|result| ValueOrPlace::Value(self.wrap_immediate(result, *ty)))
.unwrap_or(ValueOrPlace::Unknown),
_ => ValueOrPlace::Unknown,
}
}
Rvalue::BinaryOp(op, box (left, right)) => {
let (val, _overflow) = self.binary_op(state, *op, left, right);
// FIXME: Just ignore overflow here?
ValueOrPlace::Value(val)
}
Rvalue::UnaryOp(op, operand) => match self.eval_operand(operand, state) {
FlatSet::Elem(value) => self
.ecx
.unary_op(*op, &value)
.map(|val| ValueOrPlace::Value(self.wrap_immty(val)))
.unwrap_or(ValueOrPlace::Value(FlatSet::Top)),
FlatSet::Bottom => ValueOrPlace::Value(FlatSet::Bottom),
FlatSet::Top => ValueOrPlace::Value(FlatSet::Top),
},
_ => self.super_rvalue(rvalue, state),
}
}
fn handle_constant(
&self,
constant: &Constant<'tcx>,
_state: &mut State<Self::Value>,
) -> Self::Value {
constant
.literal
.eval(self.tcx, self.param_env)
.try_to_scalar()
.and_then(|scalar| scalar.try_to_int().ok())
.map(|value| FlatSet::Elem(Const::Scalar(value, constant.ty())))
.unwrap_or(FlatSet::Top)
}
fn handle_switch_int(
&self,
discr: &Operand<'tcx>,
apply_edge_effects: &mut impl SwitchIntEdgeEffects<State<Self::Value>>,
) {
// FIXME: The dataflow framework only provides the state if we call `apply()`, which makes
// this more inefficient than it has to be.
// FIXME: Perhaps we rather need a proper unreachability flag for every block.
let mut discr_value = None;
let mut handled = false;
apply_edge_effects.apply(|state, target| {
let discr_value = match discr_value {
Some(value) => value,
None => {
let value = match self.handle_operand(discr, state) {
ValueOrPlace::Value(value) => value,
ValueOrPlace::Place(place) => state.get_idx(place, self.map()),
ValueOrPlace::Unknown => FlatSet::Top,
};
let result = match value {
FlatSet::Top => FlatSet::Top,
FlatSet::Elem(Const::Scalar(scalar, _)) => {
FlatSet::Elem(scalar.assert_bits(scalar.size()))
}
FlatSet::Bottom => FlatSet::Bottom,
};
discr_value = Some(result);
result
}
};
let FlatSet::Elem(choice) = discr_value else {
// Do nothing if we don't know which branch will be taken.
return
};
if target.value.map(|n| n == choice).unwrap_or(!handled) {
// Branch is taken. Has no effect on state.
handled = true;
} else {
// Branch is not taken, we can flood everything.
state.flood_all(FlatSet::Bottom);
}
})
}
}
#[derive(Clone, PartialEq, Eq)]
enum Const<'tcx> {
// FIXME: If there won't be any other cases, make it a struct.
Scalar(ScalarInt, Ty<'tcx>),
}
impl<'tcx> std::fmt::Debug for Const<'tcx> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match *self {
Self::Scalar(scalar, ty) => {
std::fmt::Display::fmt(&ConstantKind::Val(ConstValue::Scalar(scalar.into()), ty), f)
}
}
}
}
impl<'tcx> ConstAnalysis<'tcx> {
pub fn new(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, map: Map) -> Self {
Self {
map,
tcx,
ecx: InterpCx::new(tcx, DUMMY_SP, ty::ParamEnv::empty(), DummyMachine),
param_env: tcx.param_env(body.source.def_id()),
}
}
fn binary_op(
&self,
state: &mut State<FlatSet<Const<'tcx>>>,
op: BinOp,
left: &Operand<'tcx>,
right: &Operand<'tcx>,
) -> (FlatSet<Const<'tcx>>, FlatSet<Const<'tcx>>) {
let left = self.eval_operand(left, state);
let right = self.eval_operand(right, state);
match (left, right) {
(FlatSet::Elem(left), FlatSet::Elem(right)) => {
match self.ecx.overflowing_binary_op(op, &left, &right) {
Ok((val, overflow, ty)) => {
let val = val
.try_to_int()
.ok()
.map(|val| self.wrap_scalar(val, ty))
.unwrap_or(FlatSet::Top);
let overflow = self.wrap_scalar(overflow.into(), self.tcx.types.bool);
(val, overflow)
}
_ => (FlatSet::Top, FlatSet::Top),
}
}
(FlatSet::Bottom, _) | (_, FlatSet::Bottom) => (FlatSet::Bottom, FlatSet::Bottom),
(_, _) => {
// Could attempt some algebraic simplifcations here.
(FlatSet::Top, FlatSet::Top)
}
}
}
fn eval_operand(
&self,
op: &Operand<'tcx>,
state: &mut State<FlatSet<Const<'tcx>>>,
) -> FlatSet<ImmTy<'tcx>> {
let value = match self.handle_operand(op, state) {
ValueOrPlace::Value(value) => value,
ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
ValueOrPlace::Unknown => FlatSet::Top,
};
match value {
FlatSet::Top => FlatSet::Top,
FlatSet::Elem(Const::Scalar(value, ty)) => {
let layout = self
.tcx
.layout_of(ty::ParamEnv::empty().and(ty))
.expect("this should not happen"); // FIXME
FlatSet::Elem(ImmTy::from_scalar(value.into(), layout))
}
FlatSet::Bottom => FlatSet::Bottom,
}
}
fn wrap_scalar(&self, scalar: ScalarInt, ty: Ty<'tcx>) -> FlatSet<Const<'tcx>> {
FlatSet::Elem(Const::Scalar(scalar, ty))
}
fn wrap_immediate(&self, imm: Immediate, ty: Ty<'tcx>) -> FlatSet<Const<'tcx>> {
match imm {
Immediate::Scalar(Scalar::Int(scalar)) => self.wrap_scalar(scalar, ty),
_ => FlatSet::Top,
}
}
fn wrap_immty(&self, val: ImmTy<'tcx>) -> FlatSet<Const<'tcx>> {
self.wrap_immediate(*val, val.layout.ty)
}
}
struct CollectAndPatch<'tcx, 'map> {
tcx: TyCtxt<'tcx>,
map: &'map Map,
before_effect: FxHashMap<(Location, Place<'tcx>), Const<'tcx>>,
assignments: FxHashMap<Location, Const<'tcx>>,
}
impl<'tcx, 'map> CollectAndPatch<'tcx, 'map> {
fn new(tcx: TyCtxt<'tcx>, map: &'map Map) -> Self {
Self { tcx, map, before_effect: FxHashMap::default(), assignments: FxHashMap::default() }
}
fn make_operand(&self, constant: Const<'tcx>) -> Operand<'tcx> {
let Const::Scalar(scalar, ty) = constant;
Operand::Constant(Box::new(Constant {
span: DUMMY_SP,
user_ty: None,
literal: ConstantKind::Val(ConstValue::Scalar(scalar.into()), ty),
}))
}
}
impl<'mir, 'tcx, 'map> ResultsVisitor<'mir, 'tcx> for CollectAndPatch<'tcx, 'map> {
type FlowState = State<FlatSet<Const<'tcx>>>;
fn visit_statement_before_primary_effect(
&mut self,
state: &Self::FlowState,
statement: &'mir Statement<'tcx>,
location: Location,
) {
match &statement.kind {
StatementKind::Assign(box (_, rvalue)) => {
OperandCollector { state, visitor: self }.visit_rvalue(rvalue, location);
}
_ => (),
}
}
fn visit_statement_after_primary_effect(
&mut self,
state: &Self::FlowState,
statement: &'mir Statement<'tcx>,
location: Location,
) {
match statement.kind {
StatementKind::Assign(box (place, _)) => match state.get(place.as_ref(), self.map) {
FlatSet::Top => (),
FlatSet::Elem(value) => {
self.assignments.insert(location, value);
}
FlatSet::Bottom => {
// This statement is not reachable. Do nothing, it will (hopefully) be removed.
}
},
_ => (),
}
}
fn visit_terminator_before_primary_effect(
&mut self,
state: &Self::FlowState,
terminator: &'mir Terminator<'tcx>,
location: Location,
) {
OperandCollector { state, visitor: self }.visit_terminator(terminator, location);
}
}
impl<'tcx, 'map> MutVisitor<'tcx> for CollectAndPatch<'tcx, 'map> {
fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
if let Some(value) = self.assignments.get(&location) {
match &mut statement.kind {
StatementKind::Assign(box (_, rvalue)) => {
*rvalue = Rvalue::Use(self.make_operand(value.clone()));
}
_ => bug!("found assignment info for non-assign statement"),
}
} else {
self.super_statement(statement, location);
}
}
fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
match operand {
Operand::Copy(place) | Operand::Move(place) => {
if let Some(value) = self.before_effect.get(&(location, *place)) {
*operand = self.make_operand(value.clone());
}
}
_ => (),
}
}
}
struct OperandCollector<'tcx, 'map, 'a> {
state: &'a State<FlatSet<Const<'tcx>>>,
visitor: &'a mut CollectAndPatch<'tcx, 'map>,
}
impl<'tcx, 'map, 'a> Visitor<'tcx> for OperandCollector<'tcx, 'map, 'a> {
fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
match operand {
Operand::Copy(place) | Operand::Move(place) => {
match self.state.get(place.as_ref(), self.visitor.map) {
FlatSet::Top => (),
FlatSet::Elem(value) => {
self.visitor.before_effect.insert((location, *place), value);
}
FlatSet::Bottom => {
// This only happens if this location is unreachable.
}
}
}
_ => (),
}
}
}
struct DummyMachine;
impl<'mir, 'tcx> rustc_const_eval::interpret::Machine<'mir, 'tcx> for DummyMachine {
rustc_const_eval::interpret::compile_time_machine!(<'mir, 'tcx>);
type MemoryKind = !;
const PANIC_ON_ALLOC_FAIL: bool = true;
fn enforce_alignment(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool {
unimplemented!()
}
fn enforce_validity(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool {
unimplemented!()
}
fn find_mir_or_eval_fn(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_instance: ty::Instance<'tcx>,
_abi: rustc_target::spec::abi::Abi,
_args: &[rustc_const_eval::interpret::OpTy<'tcx, Self::Provenance>],
_destination: &rustc_const_eval::interpret::PlaceTy<'tcx, Self::Provenance>,
_target: Option<BasicBlock>,
_unwind: rustc_const_eval::interpret::StackPopUnwind,
) -> interpret::InterpResult<'tcx, Option<(&'mir Body<'tcx>, ty::Instance<'tcx>)>> {
unimplemented!()
}
fn call_intrinsic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_instance: ty::Instance<'tcx>,
_args: &[rustc_const_eval::interpret::OpTy<'tcx, Self::Provenance>],
_destination: &rustc_const_eval::interpret::PlaceTy<'tcx, Self::Provenance>,
_target: Option<BasicBlock>,
_unwind: rustc_const_eval::interpret::StackPopUnwind,
) -> interpret::InterpResult<'tcx> {
unimplemented!()
}
fn assert_panic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_msg: &rustc_middle::mir::AssertMessage<'tcx>,
_unwind: Option<BasicBlock>,
) -> interpret::InterpResult<'tcx> {
unimplemented!()
}
fn binary_ptr_op(
_ecx: &InterpCx<'mir, 'tcx, Self>,
_bin_op: BinOp,
_left: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>,
_right: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>,
) -> interpret::InterpResult<'tcx, (interpret::Scalar<Self::Provenance>, bool, Ty<'tcx>)> {
unimplemented!()
}
fn expose_ptr(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_ptr: interpret::Pointer<Self::Provenance>,
) -> interpret::InterpResult<'tcx> {
unimplemented!()
}
fn init_frame_extra(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_frame: rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance>,
) -> interpret::InterpResult<
'tcx,
rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>,
> {
unimplemented!()
}
fn stack<'a>(
_ecx: &'a InterpCx<'mir, 'tcx, Self>,
) -> &'a [rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>]
{
unimplemented!()
}
fn stack_mut<'a>(
_ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
) -> &'a mut Vec<
rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>,
> {
unimplemented!()
}
}

View file

@ -54,6 +54,7 @@ mod const_goto;
mod const_prop;
mod const_prop_lint;
mod coverage;
mod dataflow_const_prop;
mod dead_store_elimination;
mod deaggregator;
mod deduce_param_attrs;
@ -569,6 +570,7 @@ fn run_optimization_passes<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
//
// FIXME(#70073): This pass is responsible for both optimization as well as some lints.
&const_prop::ConstProp,
&dataflow_const_prop::DataflowConstProp,
//
// Const-prop runs unconditionally, but doesn't mutate the MIR at mir-opt-level=0.
&const_debuginfo::ConstDebugInfo,